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Thermophysical and anion
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(Ux,Th1−x)O2
Michael W. D. Cooper, Samuel T. Murphy, Paul C. M.
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Using molecular dynamics, the thermophysical
properties of the (Ux,Th1−x)O2 system have been
investigated between 300 and 3600 K. The thermal
dependence of lattice parameter, linear thermal
expansion coefficient, enthalpy and specific heat at
constant pressure is explained in terms of defect
formation and diffusivity on the oxygen sublattice.
Vegard’s law is approximately observed for solid
solution thermal expansion below 2000 K. Different
deviations from Vegard’s law above this temperature
occur owing to the different temperatures at which
the solid solutions undergo the superionic transition
(2500–3300 K). Similarly, a spike in the specific
heat, associated with the superionic transition,
occurs at lower temperatures in solid solutions that
have a high U content. Correspondingly, oxygen
diffusivity is higher in pure UO2 than in pure ThO2.
Furthermore, at temperatures below the superionic
transition, oxygen mobility is notably higher in
solid solutions than in the end members. Enhanced
diffusivity is promoted by lower oxygen-defect
enthalpies in (Ux,Th1−x)O2 solid solutions. Unlike
in UO2 and ThO2, there is considerable variety of
oxygen vacancy and oxygen interstitial sites in solid
solutions generating a wide range of property values.
Trends in the defect enthalpies are discussed in
terms of composition and the lattice parameter of
(Ux,Th1−x)O2.

1. Introduction
UO2 has been studied extensively as the main component
of conventional nuclear fuel. It is also blended with other
actinide oxides, such as ThO2 [1] and PuO2 [2,3], forming
mixed oxide (MOX) fuel. Alternatively, long-lived minor
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actinides can be separated from nuclear waste and blended with UO2 or MOX for transmutation
in a reactor- [4] or accelerator-driven system [5,6]. Owing to its relative abundance, thorium
is considered as an important candidate for MOX, whereby Th232 transmutates in reactor to
U233, which can then undergo fission. As such, it is important to understand the underlying
mechanisms that govern the thermophysical and diffusion properties in mixed oxides, owing
to a non-uniform cation sublattice.

For UO2, there is a deviation from linear thermal expansion and a classical Debye description
of the constant pressure specific heat above 1300 K [7–16]. At 2670 K (0.85Tm), there is a peak in
specific heat owing to a pre-melting transition or superionic transition as seen in other fluorite
structures [7]. Below the transition, it is not yet clear to what extent the excess specific heat and
thermal expansion is driven by oxygen disorder versus electronic-defect contributions, or over
what temperature ranges these effects may dominate.

A great deal of work has been carried out using atomistic simulation to study candidate
actinide oxide components of nuclear fuel [17–21]. The ability of an interatomic potential
to accurately reproduce the thermophysical properties of UO2, such as lattice parameter,
elastic constants, thermal conductivity and specific heat over a wide range of temperatures,
has often been used as a key discriminator for the suitability of a potential set [17–20].
Similarly, Potashnikov et al. [22] compared the ability of a number of interatomic potentials
to predict oxygen diffusivity in UO2 using molecular dynamics (MD). However, experimental
data for oxygen diffusion will be influenced by the presence of point defects arising
owing to materials processing conditions, and it not necessarily comparable with the
perfect crystal calculations of Potashnikov [22]. For example, the enhancement of oxygen
diffusivity owing to non-stoichiometry in UO2 has been demonstrated recently by Govers
et al. [23] and shown experimentally by Belle [24]. Similarly, enhanced diffusivity owing
to Schottky defects was also identified by Potashnikov et al. [22]. Therefore, it is not
surprising that many simulations on perfect crystals predict lower oxygen diffusivity than
experiment.

Recently, a potential set has been derived that accurately reproduces a wide range of
thermomechanical and thermophysical properties for AmO2, CeO2, CmO2, NpO2, PuO2, ThO2
and UO2, between 300 and 3000 K [25]. In particular, this potential accurately represents the
individual elastic constants of the actinide oxides and reproduces the Cauchy violation (C12 �=C44)
by introducing many-body interactions using the embedded atom method (EAM) [26] without
the necessity for the shell model [27]. As a result, a significant improvement in the ability
of empirical interatomic potentials to reproduce the bulk modulus over a large range of
temperatures has been achieved. Importantly, this potential set employs the same description
of oxygen–oxygen interactions throughout, enabling the simulation of actinide oxide solid
solutions. Furthermore, it accurately reproduces the melting points of UO2 and ThO2 well,
making it particularly suitable for investigating (Ux,Th1−x)O2 solid solutions.

Here, we investigate, using atomistic simulation, the lattice parameter, linear coefficient of
thermal expansion, enthalpy and specific heat at constant pressure for (Ux,Th1−x)O2 between
300 and 3600 K for x = 0.00, 0.25, 0.50, 0.75 1.00. Furthermore, the influence of solid solution
composition on oxygen-defect formation, oxygen diffusivity and the superionic transition is
reported.

2. Methodology
MD simulations are carried out using LAMMPS [28], and the set of interatomic potentials derived
previously [25].1 The model combines a pair potential description of each system with the

1Supplementary material describing the use of this potential for use in GULP [29], LAMMPS [28] and DL-POLY [30] is
provided at http://abulafia.mt.ic.ac.uk/potentials/actinides.

http://abulafia.mt.ic.ac.uk/potentials/actinides
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Table 1. ραβ parameters for the pairwise interactions of mixed cation–cation pairs determined using equation (2.6). As the
table is symmetric (i.e.ραβ = ρβα ), values are only reported once.

(Å) Ce Th U Np Pu Am Cm

Ce 0.2664 0.2772 0.2705 0.2678 0.2651 0.2637 0.2637
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Th — 0.2884 0.2815 0.2786 0.2758 0.2743 0.2743
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U — — 0.2747 0.2719 0.2691 0.2677 0.2677
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Np — — — 0.2692 0.2664 0.2650 0.2650
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pu — — — — 0.2637 0.2623 0.2623
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Am — — — — — 0.2609 0.2609
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cm — — — — — — 0.2609
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

many-body EAM description of Daw & Baskes [26]. As such, the potential energy, Ei, of an atom
i with respect to all other atoms can be written as

Ei = 1
2

∑
j

φαβ (rij) − Gα

√∑
j

σβ (rij), (2.1)

where the pairwise interaction between two atoms i and j, separated by rij, is given by φαβ (rij). This
has both long range electrostatic, φC(rij), and short range contributions. Coulombic interactions
are calculated using the Ewald method [31] with the particle–particle particle–mesh (PPPM)
implementation of the method being adopted within MD calculations in order to improve
computational efficiency [32]. The short range contributions are described using Morse, φM(rij),
and Buckingham, φB(rij), potential forms, as given by equation (2.2) [33,34]. α and β are used to
label the species of atom i and atom j, respectively,

φαβ (rij) = φC(rij) + φB(rij) + φM(rij), (2.2)

φC(rij) = qαqβ

4πε0rij
, (2.3)

φB(rij) = Aαβ exp
(−rij

ραβ

)
− Cαβ

r6
ij

(2.4)

and φM(rij) = Dαβ [exp(−2γαβ (rij − r0)) − 2 exp(−γαβ (rij − r0))], (2.5)

where Aαβ , ραβ , Cαβ , Dαβ , γαβ and r0 are empirical parameters that describe the pair interactions
between atom i and atom j. These have been reported previously for AmO2, CeO2, CmO2,
NpO2, PuO2, ThO2 and UO2 [25]. For the study of solid solutions, further mixed cation–cation
pair interactions (e.g. φU−Th) must also be defined. As was the case for the self cation–cation pair
interactions [25], the mixed cation–cation interactions are dominated by Coulombic interactions at
the separations exhibited by the fluorite structure. Hence, it is not possible to fit these parameters
to experimental bulk properties. Instead, the assumptions made previously for self-interactions
are extended here to mixed cation–cation pair potentials. The description of covalency predicted
by the Morse potential is not required for cation–cation pairs and is therefore excluded for these
interactions (e.g. DU−Th = 0 eV). The pre-exponential term of the Buckingham potential is the
same for all cation–cation pairs and is based on the parameter reported by Grimes & Catlow [35]
(e.g. AU−Th = 18600 eV). However, the reported self cation–cation ραα parameters are scaled to
cation radius [25]. Equation (2.6) [36] is used to determine ραβ parameters for mixed cation–cation
pairs whose values are reported in table 1,

ραβ = √
ραα .ρββ . (2.6)
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The second term in equation (2.1) uses the EAM to introduce a many-body perturbation to
the more dominant pairwise interactions. The derivation of the parameters and a description
of the functional terms used in the EAM component are given in reference [25].

The thermal expansion, specific heat and oxygen diffusivity in the (Ux,Th1−x)O2 system
are investigated for the UO2, (U0.75,Th0.25)O2, (U0.5,Th0.5)O2, (U0.25,Th0.75)O2 and ThO2
compositions. Solid solution crystal structures are created by randomly distributing U4+ and
Th4+ cations on the 4a Wyckoff sites (fluorite actinide sites) throughout a supercell of 10 × 10 × 10
fluorite unit cells. These structures are equilibrated for 40 ps for temperatures between 300 and
3600 K at 25 K intervals with the thermophysical properties (lattice parameter and enthalpy)
obtained from averages taken over the final 2 ps of the simulation. A 2 fs timestep is used in the
NPT ensemble with Nosé–Hoover thermostat and barostat times of 0.1 and 0.5 ps, respectively.
For each composition, this is repeated for 10 randomly generated structures.

The equilibrated solid solution structures are also used to determine oxygen diffusivity. The
oxygen mean-squared displacement (MSD) is calculated in the NVE ensemble for 1 ns with a
1 fs timestep for a range of temperatures from 2000 to 3600 K at 100 K intervals. From this the
diffusivity, D, is calculated using the following equation [37],

D = 〈R2
O〉

6t
, (2.7)

where 〈R2
O〉 is the total oxygen MSD and t is the simulation time.

The point defects present in a simulation box are counted by analysing structural information
extracted from the configuration. The following procedure is carried out independently on the
two sublattices present (oxygen and actinide). The average distribution of atoms around a site
of the sublattice A is calculated. This is a three-dimensional equivalent of the partial radial
distribution function:

μA(r) = 1
NA dV(r)

NA∑
i

NA∑
j

δ(rij − r), (2.8)

where μA(r) is proportional to the probability of finding an atom of sublattice A in a volume dV
around a position r from a lattice site; i and j are two atoms of sublattice A and NA is the number
of atoms on this sublattice. The local maxima of this scalar field indicate the positions most likely
to be occupied by a neighbour. When all the sites on a sublattice have the same local symmetry,
these are the positions of the neighbours {RA,λ}, with λ ∈ {1, . . . , ZA}, ZA being the connectivity of
the sublattice (number of neighbours for each site). For the fluorite structure, Z is 6 for the oxygen
sublattice (simple cubic), and 12 for the actinide sublattice (face centred cubic). The local maxima
of μA(r) have a width that can be estimated from the full width at half maximum (FWHM). This
is related to the fluctuations of the neighbour positions caused by thermal oscillations around the
lattice sites. Thus, one can define a distance criterion δA based on the FWHM, so that an atom j is
said to occupy the neighbour site λ around the atom i, if∣∣rij − RA,λ

∣∣ < δA. (2.9)

The connectivity, Zi, of the atom i is then the number of such valid neighbours.
Having calculated Z for each atom, those that have the same connectivity as their sublattice

are in a perfect environment and ignored for the rest of the defect counting procedure. The
vacancies are detected using the fact that several atoms would have a common missing neighbour.
A virtual atom, not present in the real configuration, is added to such positions and treated as
a regular atom during the remaining defect detection. The last step is repeated until no valid
vacancy position is found. At this point, the atoms that have a low connectivity are either part
of extended defects, which are ignored in this study, or interstitial atoms. The interstitials are
characterized by a connectivity number lower than 3.

This procedure gives the number of vacancy and interstitial defects. When carried out on
successive snapshots of constant-temperature MD simulations, the concentration of defects can
be estimated as a function of temperature. In this work, snapshots are taken at 1 ps intervals for
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simulations lasting 25 ps equilibrated at temperatures ranging from 2300 to 3200 K every 100 K.
The defect concentrations are then averaged over all snapshots for a given composition to obtain
the thermally equilibrated defect concentrations in each solid solution.

For the energy minimization calculations of isolated oxygen vacancy and interstitial defect
enthalpies, the same supercells described above are employed. Given the complex structures
of these solid solutions, the perfect supercells are subjected to a rigorous energy minimization
procedure to ensure they are fully relaxed. This consists of an initial minimization under constant
volume conditions using a damped dynamics algorithm [38] followed by a constant pressure
step using a conjugate gradient method before a final optimization step employing a steepest
descent procedure with fixed lattice parameters. Once the solid solution supercells are fully
optimized, point defects were introduced into the simulation supercells by either removing
(vacancy) or adding (interstitial) oxygen atoms into the supercell. The defective supercells are
energy minimized with the lattice parameters fixed in order to represent the dilute limit with the
defect enthalpy, dE, calculated using

dH = Hdefect − Hperfect, (2.10)

where Hperfect and Hdefect are the total enthalpies of the perfect and defective cells, respectively.
The oxygen Frenkel enthalpies for UO2 and ThO2 are converged to within 0.1 eV for the
10 × 10 × 10 supercell compared with the fully isolated enthalpies given previously [25];
therefore, the defect enthalpies are considered to be converged with respect to system size.

For the oxygen vacancy simulations, an oxygen is removed from each of the oxygen lattice
sites, in all of the 10 simulation supercells for each composition, resulting in a total of 80 000
defect simulations. Similarly, the oxygen interstitial defect enthalpy is calculated at every possible
interstitial site, in all of the supercells, leading to a total of 40 000 defect simulations. This large
number of simulations allows us to access the statistical distribution of the defect enthalpies
arising from the random arrangement of cations on the 4a Wyckoff sites. As this approach
generates a very large number of unique defect energies, the dataset has been grouped into bins
of width 0.01 eV for ease of manipulation and to enable useful presentation of these results.

3. Results and discussion

(a) Oxygen diffusivity
By assuming an Arrhenius relationship, equation (3.1), D is plotted logarithmically as a function
of 1/T, so that, the gradient is proportional to the activation enthalpy, Ha.

D = D0 exp
(

− Ha

kBT

)
, (3.1)

where D0 is the pre-exponential term, kB is the Boltzmann constant and T is temperature. For
each composition, D is averaged over all 10 randomly generated structures and plotted in
figure 1a; error bars indicate the standard deviation. Regions of constant gradient, and thus
activation enthalpy, indicate temperature regimes with a common diffusion mechanism. As
in the study of Potashnikov et al. [22], figure 1a shows that the transition between the fully
crystalline low temperature and superionic high temperature behaviour occurs over a range of
temperature specific to each composition. Similarly, figure 2 highlights the change in activation
enthalpy during the transition. It can be seen that the transition occurs at a higher temperature
in ThO2 compared with UO2. However, the addition of thorium to form (U0.75,Th0.25)O2 and
(U0.5,Th0.5)O2 solid solutions does not appear to significantly increase the superionic transition
temperature (and may even have reduced it for (U0.75,Th0.25)O2). It is not until the (U0.25,Th0.75)O2
solid solution that the thorium content is significant enough to increase the superionic phase
transition temperature. In table 2, the approximate range of superionic transition temperatures
has been summarized. The significance of this for the high temperature thermophysical properties
is discussed in §3d,e.
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Figure 1. Oxygen diffusivity as function of (a) temperature and (b) composition for UO2, ThO2 and three compositions of the
(Ux ,Th1−x )O2 solid solution. Values are given by the average from 10 different random structures and errors bars represent
the standard deviation. (Online version in colour.)
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Figure 2. The activation enthalpy,Ha, for oxygenmigration as function of temperature for UO2, ThO2 and three compositions of
the (Ux ,Th1−x )O2 solid solution. The variation in activation enthalpy with temperature indicates non-Arrhenius diffusionmostly
owing to the superionic transition. Values are given by the average from 10 different random structures and errors bars represent
the standard deviation. (Online version in colour.)

Table 2. Based on the range of temperatures over which the activation energy (figure 2) and, thus, mechanism for oxygen
diffusion changes the lower and upper temperatures of superionic transition have been summarized for each solid solution
composition.

composition, x lower (K) upper (K)

1, 0.75 and 0.5 2500 2900
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.25 2700 3100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 2900 3300
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 3. The oxygen interstitial and vacancy concentration ([O′′
i ]=[V

••
O ]) as a function of temperature for UO2, ThO2 and three

compositions of the (Ux ,Th1−x )O2 solid solution. Thenumber of interstitial–vacancypairs is normalized against the total number
of oxygen ions in the system to get the defect concentration. (Online version in colour.)

Figure 1b shows the oxygen diffusivity as a function of uranium composition for a range of
temperatures. There is a clear enhancement of oxygen diffusivity below the superionic transition
temperature for the solid solutions compared with pure UO2 and ThO2. From about 2200 to
2700 K, oxygen diffusivity is greatest in (U0.75,Th0.25)O2. For 2000 and 2100 K, (U0.5,Th0.5)O2
exhibits the highest oxygen diffusivity and (U0.25,Th0.75)O2 is approaching the same level as pure
UO2. Furthermore, if the trend for (U0.25,Th0.75)O2 in figure 1 continues below 2000 K, it is possible
that the oxygen diffusivity may also exceed that of UO2; however, further diffusivity calculations
at lower temperatures must be carried out in order to confirm this prediction. The role of such
solid solutions in enhancing oxygen diffusivity in mixed oxide fuels is therefore expected to be
significant at reactor operating temperatures and may impact the release of fission products that
occupy and migrate via the oxygen sublattice (e.g. I−) [35].

(b) Oxygen-defect concentrations
Oxygen-defect concentrations underpin the thermophysical properties of actinide oxides as well
as the transition to superionicity. It is, therefore, important to calculate the defect concentrations
that are generated during our high temperature simulations in order to correctly identify which
defects are responsible for the high temperature phenomena. The defect concentrations are
calculated using a method developed for the purpose of this study. Figure 3 shows the oxygen
interstitial concentration (fraction of oxygen ions off their lattice sites) plotted logarithmically
as a function of 1/T, such that the gradient is proportional to the defect formation enthalpy
for an interstitial–vacancy pair. Below the superionic transition, the defect populations were
dominated by tightly bound pairs of oxygen vacancies and interstitials, such that [V••

O ] = [O′′
i ].

As demonstrated in previous work using energy minimization [25], the recombination of first
nearest neighbour oxygen vacancy–interstitial pairs with this potential set is spontaneous (i.e.
no barrier). Although the oxygen ion can exist off its perfect lattice site for a finite amount of
time, it is not at a stable defect site and must be distinguished from stable Frenkel pairs that
exist beyond first nearest neighbour positions by being labelled pseudo-Frenkel defects, a name
used previously for studies on similar systems [39–41]. The oxygen pseudo-Frenkel enthalpies of
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4.42 eV for UO2 and 4.70 eV for ThO2, corresponding to the gradients of figure 3, are therefore
not equivalent to those reported previously [25] that were calculated for stable Frenkel pairs
(which have a greater vacancy–interstitial separation). This spontaneous recombination of first-
neighbour pairs on the oxygen sublattice has also been observed in UO2 using other empirical
potentials [39,40] and in other similar structures, such as pyrochlores [41]. Figure 3 shows that at
higher temperatures the fraction of oxygen anions in these pseudo-Frenkel positions increases.
As a consequence, there is an increase in system enthalpy and lattice parameter associated with
the pseudo-defect enthalpies and psuedo-defect volumes, respectively (see §3d,e). As the oxygen
disorder increases during the superionic transition (table 2), the defect counting method can no
longer identify a clear oxygen sublattice and, as a result, fails to identify the correct number of
interstitials. This point is characterized by a sharp decrease in the gradient of figure 3 that helps
identify the superionic transition, showing that the transition temperature is lower in UO2 than
ThO2 and potentially even lower in (U0.75,Th0.25)O2.

(c) Oxygen point-defect enthalpies
To study the possibility of enhanced permanent oxygen-defect concentrations in the solid
solutions, it is necessary to identify the point defect formation enthalpies. Unlike the pure end
member systems oxygen sites in a solid solution are different and consequently, there is a wide
range of defect enthalpies owing to the various environments surrounding the vacancy. A similar
observation has been made for the As vacancy in InxGa1−xAs [42].

Figure 4 identifies the fraction of oxygen sites that lie within 0.005 eV of a given oxygen
vacancy formation enthalpy. This shows that for each composition there are five peaks that
correspond to the five different first nearest cation neighbour coordination of the oxygen site, with
the lowest and highest enthalpy peaks coordinated by 4 and 0 uranium ions, respectively. The
skew in peak heights corresponds to the solid solution composition. For example, the proportion
of sites fully coordinated by uranium ions (lowest enthalpy peak) is greatest in (U0.75,Th0.25)O2.
Additionally, there is a shift in the peaks owing to lattice parameter, whereby, all oxygen vacancy
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enthalpies are shifted down for solid solutions with a greater lattice parameter (i.e. higher thorium
content; see §3d). Therefore, the peak corresponding to fully uranium-coordinated sites is always
lower for solid solutions compared with the pure UO2 system (shown by the vertical red line).
The lattice parameter effect is most clear for the (U0.25,Th0.75)O2 system despite this peak being
small. Similarly, oxygen interstitial enthalpies are shifted down for solid solutions with a larger
lattice parameter, as illustrated in figure 5.

At lower temperatures, the oxygen vacancies with higher formation enthalpies play a
proportionately lesser role in oxygen transport than at higher temperatures. This is demonstrated
by enhanced diffusivity in the solid solutions that exhibit a greater proportion of oxygen
defects with lower formation enthalpies (figure 1b). This is seen clearly for (U0.75,Th0.25)O2 and
(U0.5,Th0.5)O2, which both have a significant number of vacancy formation enthalpies below
that exhibited by UO2. The prediction in §3a that oxygen diffusivity in (U0.25,Th0.75)O2 may also
exceed diffusion in UO2 below 2000 K can now be understood as a consequence of it containing
the lowest enthalpy peak in figure 4. For the full oxygen Frenkel enthalpy, oxygen interstitials
must also be included. Figure 5 further supports enhanced oxygen disorder as all solid solution
compositions exhibit a significant number of interstitials with lower formation enthalpies than
for the end members.

(d) Thermal expansion
Figure 6 shows the increase in the lattice parameter as a function temperature for a given
composition averaged over the 10 randomly generated 10 × 10 × 10 structures. Experimental
data for UO2 [16], ThO2 [43] and (U0.55Th0.45)O2 [44] are also included and show very good
agreement with the predictions of the potential. Figure 6 illustrates a significant increase (or
‘bump’) in thermal expansion for all compositions of solid solution as well as for the pure systems
at high temperature (2300–3300 K), below this temperature, Vegard’s law [45] is obeyed. The
‘bump’ in lattice parameter can first be attributed to the defect volumes associated with the
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formation of a large number of oxygen defects and after that by the volume change owing to the
superionic transition. This is more clearly demonstrated by using the first derivative of the lattice
parameter with respect to temperature to calculate the linear thermal expansion coefficient, see
equation (3.2).

αP(L) = 1
L

(
∂L
∂T

)
P

, (3.2)

where the first derivative of lattice parameter, (∂L/∂T)P, is calculated by fitting a straight line to
the lattice parameter at a given temperature and the data points at ±25 K either side. Figure 7
shows the variation of linear thermal expansion coefficient as function of temperature. The peak
in linear thermal expansion coefficient corresponds closely to the range of temperatures for the
superionic transition for each composition (table 2). For UO2, (U0.75Th0.25)O2 and (U0.5Th0.5)O2,
the peak is at around 2600 K, in close agreement with the experimental value for the superionic
transition temperature of 2670 K for UO2 [7]. For (U0.25Th0.75)O2 and ThO2, the peak is at
approximately 2700 and 2950 K, respectively. For UO2, (U0.75Th0.25)O2 and (U0.5Th0.5)O2 a second
very high temperature peak is identified that is associated with the creation of cation defects;
however, as these peaks are above the UO2 melting point predicted by this potential [25], it is
outside the regime of interest for this study.

(e) Enthalpy and specific heat
In addition to the volume change owing to oxygen-defect formation and the superionic phase
transition, there is an associated change in system enthalpy. Figure 8 shows the enthalpy
increment (increase in enthalpy with respect to standard conditions) as a function of temperature
(i.e. H(T)–H(298 K)) averaged over the 10 randomly generated structures for each solid solution
composition. The enthalpy increment increases approximately linearly with temperature below
1500 K. Between 2300 and 3300 K, the enthalpy increment as a function of temperature increases
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more significantly. The first derivative of the enthalpy increment with respect to temperature is
used to calculate the specific heat capacity at constant pressure using the following relationship,

cp = 1
n

(
∂H
∂T

)
P

, (3.3)

where n is the number of moles and the first derivative of enthalpy, (∂H/∂T)P, is calculated by
fitting a straight line to the enthalpy at a given temperature and the data points at ±25 K either
side. Figure 9 indicates a gradual increase in the specific heat until around 2000 K at which point
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the specific heat increases more rapidly due the enthalpy required to create oxygen disorder.
The peak in specific heat is commensurate with the superionic transition (table 2), which occurs
close to the same temperature as the peak in the linear thermal expansion coefficient for each
composition.

Despite the omission of electronic defects from these empirical calculations, figures 6–9
show that anion disorder contributes significantly to excess thermal expansion and specific
heat capacity, while also indicating the peaks are commensurate with the superionic transition.
However, comparison of our results with the experimental data for UO2 specific heat capacity [16]
indicates that oxygen disorder is not sufficient to account for excess specific heat at intermediate
temperatures which may be accounted for by electronic defects [12].

4. Conclusions
Using MD, the superionic transition in (Ux,Th1−x)O2 is investigated for compositions where x
equals 0.00, 0.25, 0.50, 0.75 and 1.00. This is identified by the change in activation enthalpy,
and thus diffusion mechanism, for oxygen migration. It is shown that reduced oxygen-defect
enthalpies in the three solid solution compositions studied here contribute to enhanced oxygen
diffusivity below the superionic transition.

The creation of oxygen pseudo-Frenkel pairs and subsequently the superionic transition causes
a ‘bump’ in the lattice parameter, thermal expansion coefficient, enthalpy and specific heat
capacity for all (Ux,Th1−x)O2 compositions (including end members). The onset of the superionic
transition was calculated to occur at similar temperatures for UO2, (U0.75,Th0.25)O2 and
(U0.5,Th0.5)O2, although it appears to occur slightly earlier in (U0.75,Th0.25)O2 when the oxygen
activation enthalpy is considered. The superionic transition temperatures for (U0.25,Th0.75)O2 and
ThO2 are higher. The change in volume owing to the creation of oxygen disorder explains the
high temperature lattice expansion, whereas the latent heat required to undergo the superionic
transition is responsible for a peak in the specific heat.
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The enhanced low temperature-defect formation and anion diffusion in high U content solid
solutions, compared with the UO2 end member, has implications for the mobility of fission
products, such as iodine, which may be transported via the oxygen sublattice [35].
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