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Tumors have special features that make them distinct from their normal counterparts.
Immature cells in a tumor mass and their critical contributions to the tumorigenesis will
open new windows toward cancer therapy. Incomplete cellular development brings
versatile and unique functionality in the cellular tumor ecosystem, such as what is seen
for highly potential embryonic cells. There is evidence that maturation of certain types of
cells in this ecosystem can recover the sensitivity of the tumor. Therefore, understanding
more about the mechanisms that contributed to this immaturity will render new
therapeutic approaches in cancer therapy. Targeting such mechanisms can be
exploited as a supplementary to the current immunotherapeutic treatment schedules,
such as immune checkpoint inhibitor (ICI) therapy. The key focus of this review is to
discuss the impact of (im)maturity in cellular tumor ecosystems on cancer progression,
focusing mainly on immaturity in the immune cell compartment of the tumor, as well as on
the stemness of tumor cells.

Keywords: stemness, immunity, immaturity, natural killer (NK), myeloid-derived suppressor cell (MDSC), dendritic
cell (DC), programmed death-ligand 1 (PD-L1), immune checkpoint
HIGHLIGHTS

• Tumors are at the interface of embryonic progeny and terminally differentiated body organs.
• Immaturity in immune ecosystem gives tumors extra potentials.
• Immature immune cells can be targeted as a supplement to the ICI therapy.
• Stemness, hypoxia, vascular abnormality, and DDR are inter-related events in tumors.
• VEGF, TGF-b, PD-L1, and EMT are mediators of immaturity.
• ATRA, GM-CSF, and TRAIL-R2 are mediators of maturity.
1 INTRODUCTION

Cancer is among the most prevalent disease in humans, and has contributed to the death of millions
of people around the world (1). Solid cancers include about 80% of all human tumors and account
for around 85% of cancer-related death worldwide (2). Cancer recurrence and metastasis are life
threatening challenges in the area of cancer and therapy. Technology has brought new advances in
the field, but there are still an outstanding number of patients who died from metastasis due to lack
of efficient therapies (3). Tumors are organ-like structures that are highly ‘adaptive’ (4) and
representing a rogue arena of complex and dynamic pack of cells which are heterogeneous spatially (4).
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Adaptation and heterogeneity give tumors extra potential, which
is in contrast with normal cells in an organ working together to
pursue one or more but limited directions. This infers that
tumors take an evolutionary route but this is misleading as the
processes are deemed ‘normal’. Aberrant angiogenesis in tumors
is an example in this context, which forms vessels that are leaky,
tortuous, and blind-ended with diverse diameters (5). Control
over the whole organ cellularity is highly preserved in normal
tissue organs. Immature or multi-potential cells in a normal
organ are served to replenish organ cellularity in a pre-defined
time or at the time of tissue damage and reconstruction, which is
for preserving the entire tissue in homeostasis. Cells with such
potential in a tumor due to bypassing growth control
mechanisms will tend to destruct the cellular harmony, which
finally causes more aggressive behavior. Relations between
immaturity with cellular behavior within a tumor ecosystem is
reminiscent of which cells are of embryonic progeny and
aggressive behavior of cancer is proven (6), as it is depicted in
the schematic in Figure 1. It has found that a well-differentiated
phenotype of gastric cancer will take a G1 + G2 stage, whereas an
immature cancer will take a G3 + G4 stage, which will rationalize
the importance of a poorly differentiated state in high stage
cancers (7).

Tumor microenvironment (TME) contains several cells that
are under the control of signals and conditions within this milieu.
Malignant cells stimulate stromal and immune cells to release
inflammatory mediators for promoting a chronically inflamed
state within TME (8). Hypoxia is a well-known condition of
TME in solid cancers, which plays important roles for tumor
progression (9). Conditions and signaling in TME of an
aggressive tumor are acting mainly for suppression of anti-
tumor immune cells, such as CD8+ T, macrophage type 1
(M1), and natural killer (NK) cells, while promoting the
activity of pro-tumor immune cells including regulatory T cells
(Tregs), myeloid-derived suppressor cells (MDSCs), and
macrophage type 2 (M2) cells. In fact, tumor cells through
negative interactions with anti-tumor immune cells and
positive cross-talking with pro-tumor immune cells will take
control over the tumor ecosystem favoring resistance and
metastasis (10, 11). The key direction of this literature is to
discuss (im)maturity in the cellular immune ecosystem along
with the stemness of the tumor, its underlying mechanisms, and
its importance in the area of therapy.
2 POORLY DIFFERENTIATED STATE IN
CELLULAR IMMUNE ECOSYSTEM

2.1 Dendritic Cells
Dendritic cells (DCs) are antigen-presenting cells (APCs) that
take important roles for triggering and amplifying responses
from both innate and adaptive immunity against cancer (12).
DCs have three subsets based on differentiation state: immature,
semi-mature, and fully mature (13). In the human body, most
DCs are immature and express low rates of adhesion and
co-stimulatory factors. Upon stimulation by antigens, the
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immature cells will become differentiated into mature DCs,
evolving high expressions of adhesion and co-stimulatory
factors (14). DCs take key roles for induction of CD8+ T cell
effector function. CD8+ T cells under exposure to the DCs will
recognize major histocompatibility complex-1 (MHC-1)-
bounded antigens, expressed on target cells. Thus, such effector
T cells will take cytotoxic action against target cells (15). A point
here is that CD8+ T cells will become active when they are under
exposure to the ‘mature’ DCs migrated into the tumor area (16).
It was found that CD4+ T cells upon interaction with DCs induce
DC maturation (17). Mature DCs, in turn, send co-stimulatory
signals in order to activate T cells (18). DC inducible effect on
CD4+ T cell differentiation is suppressed by Tregs, depletion of
which will drive anti-tumor potential conventional CD4+ T
cells (19).

Tumor cells send signals in order to induce an ‘immature’ state
in DCs (20). Interleukin (IL)-6 signaling deviates differentiation of
myeloid progenitor cells from DCs into pro-tumor macrophages
or taking an MDSC fate (21). IL-6 and transforming growth factor
(TGF)-b (in particular) are among the main factors released from
tumors at a progressive stage that act for upregulation of inhibitor
of differentiation 1 (Id1) in bone marrow-derived myeloid cells.
Id1 is responsible for shifting DC differentiation toward MDSCs.
VEGFR is a downstream mediator of Id1 that its activity is
possibly associated with hampering DC maturation mediated by
Id1 (22). IL-10 is another cytokine acting primarily for blocking
DC maturation (14). This cytokine is released from MDSCs (23)
and M2 cells (13, 24). IL-10 also acts for activation of Tregs (23).
Tregs send signals to suppress maturation of APCs (25), and the
immature DCs stimulate the proliferation of Tregs (20). By
contrast, maturation of DCs is promoted by CD40L (also called
CD154) (26, 27). The activity of signal transducer and activator of
transcriptions (STATs) is important for DC differentiation.
STAT1 and STAT6 take opposing functions on DC
differentiation. The activity of STAT1 is most pronounced
during the maturation step, whereas STAT6 is activated
constitutively in immature DCs (28).

Immature DCs promote a hypo-active state in CD8+ T cells
called T cell anergy (29). T cell anergy is, in fact, hindering
cytotoxic T lymphocyte (CTL) activation, the outcome of which
is tumor progression (20). Alexia and colleagues in a study
evaluated the role of polyoxidonium® (PO) in breast cancer
immunity. PO incubation positively influenced maturation of
DCs. Such mature cells are found to display a rise in the number
of co-stimulatory receptors implicated in T cell priming and CTL
responses (30). In animal models, the anti-tumor efficacy of
activated DCs injected inside the tumor is higher compared with
the administration of immature DCs. In humans, safety and
efficacy of activated DCs was evaluated in phase 1 of patients
with solid cancers. Such a therapeutic approach was well-
tolerated without posing dose-limiting toxicities. Infiltration of
lymphocytes was found in 54% of cases. Such therapy also
correlated with increased production of cytokines related with
increased overall survival (31).

Immature DCs also occur in the context of infectious diseases,
and their presence is contributed to less effective T cell priming
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(32). Lipid-based nanoparticle vaccine platform (NVP) is a
strategy that can be designed to present antigens specific to the
pathogenic agents, and thereby stimulating antigen-specific
antibodies within the body. Such NVPs can be taken up by
DCs, and are important for promoting their maturation and
enhancing antigen-presenting activity against that pathogen
(33). It seems that the same approach can also be designed for
enhancing the maturity of these cells against tumor cells, mediated
through loading NVPs with cancer cell-related antigens. Cryo-
thermal therapy is another strategy that can be used for promoting
a durable anti-cancer immunity. Such strategy is reported to
promote DC maturation and strengthen their functionality
along with expanding the proportion of other anti-tumor
immune cells including M1, Th1, and CD8+ T cells (13).

2.2 Myeloid-Derived Suppressor Cells
Myeloid progeny is referred to as immature cells that upon
intruding the peripheral blood will form mature macrophages,
DCs, and granulocytes/neutrophils (34). Macrophages are one of
the leaders of tumor immunity, representing over 50% of
infiltrated cells into the stroma of the tumor. The cells take
either tumor suppressor (M1) or tumor promoter (M2)
phenotype in a context dependent manner (35). Fully mature
DCs prime peripheral blood lymphocytes in order to form active
proliferating T cells (36).
Frontiers in Oncology | www.frontiersin.org 3
Differentiation of immature myeloid cells is impaired in
chronic infections, cancer-related chronic inflammatory
conditions, and autoimmune diseases, which will lead to the
accumulation of MDSCs (37). An increase in the number of
immature myeloid cells is prospected in tumors due to tumor
tendency for surpassing immune controllers. A surge in the
number of factors released from tumors into the TME interferes
with normal differentiation of such cells, an outcome of which is
a rise in the number of MDSCs (23, 34). Loss of maturation
signals in monocytes and neutrophils will result in the
accumulation of MDSCs. Immunosuppressive signals from
MDSCs work against T cell infiltration and activation (10, 11,
38). By contrast, differentiation of MDSCs into APCs can
introduce a therapeutic approach, mediated via subverting the
suppressive tumor immunity (39). Suppressing MDSC
maintenance and inducing their differentiation profile can be a
strategy for enhancing the efficacy of ICI (40).

It seems that the suppressive activity of MDSCs is irrespective
of the developmental state. Early-stage MDSCs, for instance, are
a highly immature subset but show no suppressive effect on the
activity of T cells. By contrast, the more differentiated
granulocyte subtype (i.e., G-MDSCs) represents high
suppressive activity in patients with head and neck cancer (41).
Reduction of circulatory MDSC fraction is considered as a
marker of more potent immunological response in cancers like
FIGURE 1 | Tumors at the interface of a poorly differentiated embryonic progeny and terminally differentiated body organs. Tumors are organ-like structures that
represent a pack of immature cell types, which bring them higher capacities to promote resistance, relapse, and metastasis. A tumor closer to the embryonic
progeny displays higher progressive potency, whereas a more differentiated cellular state in a tumor will bring higher sensitivity to therapy.
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pancreas (42), and is associated with improved complete
response in ovarian cancer patients (43). Vaccination of
mature DCs is a strategy to reduce circulatory MDSC fraction,
and its application for patients with a number of solid cancers
rendered a stable disease (44).

2.3 Natural Killer Cells
NK cells are highly heterogeneous cells that act as key effector
cells against cancer, possessing the cytotoxic activity similar to
that for CD8+ T cells (45). Unlike CD8+ T cells, the activity of NK
cells is not dependent on antigen processing and presentation
(46). Immature NK cells are highly proliferative and show
suboptimal functionality. By contrast, mature NK cells are
highly functional granular effector cells (47), which indicates
that NK cells in order to exert killing functionality must be in a
mature state. Finally, terminally differentiated NK cells show a
hypofunctional state (48). NK cells upon activation release an
array of chemokines and cytokines for promoting the
recruitment and maturation of DCs. The matured DCs further
modulate T cell activation and cytotoxic responses from CD8+ T
cells (49). An example in this context is cervical cancer. Such
cancer is induced by the human papillomavirus (HPV), and
virus-like particles (VLPs) can be used as a vaccination approach
against HPV-related cancer. According to results of a study
maturation of DCs is increased by NK cells under exposure to
the HPV-VLPs. This is mediated by upregulating HLA-DR and
CD86 and repressing IL-10 production (50). The location
whereby NK cells reside can determine the differentiation state
of these cells. Generally, NK cells reside within the intestine and
lymph nodes are in the immature state, whereas circulatory (or
conventional) NK cells and cells localized within the lung, spleen,
and bone marrow are fully differentiated (45).

2.3.1 Mature and Immature Natural Killer
Cell Subsets
Two subsets of NK cells exist in the blood of normal subjects:
CD56dim CD16+ cells vs. CD56bright CD16− cells. The CD56dim

CD16+ NK is a mature subtype, whereas CD56brigh CD16− is a
marker of a less mature NK cell subset. The majority of NK cells
within circulation are mature and represent cytotoxic activity
(51). Such cells quickly mediate strong cytotoxic activates (52)
for directly killing other cells without prior priming (51). By
contrast, the less mature subtype is more localized to the
secondary lymphoid tissues and shows immune modulatory
activity (51). Inhibitory and activating receptors are usually co-
expressed on mature NK cells in order to prevent autoreactivity
(53). There is a rise in the number of mature NK cells (CD56dim

CD16+) found in solid cancer cases administered with NHS IL-12
(54). CD57 is a maker of NK cell maturation, which is
contributed to the terminal differentiation of NK cells. CD57+

NK cells undertake the final maturation step from CD56dim

CD57- into CD56dim CD57+ cells, a phenotype that is known to
be highly cytotoxic (55). High CD16 and NKG2D expressions
are found in NK cells upon expansion for adoptive
immunotherapy (56). In fact, antibodies engaging NK cells
through biding to the activating receptors CD16 and NKp46
Frontiers in Oncology | www.frontiersin.org 4
along with an antigen on tumor cells are considered as the next
generation molecules for cancer immunotherapy (57).

2.3.2 Functional Circuity Between Natural Killer
Cells, Dendritic Cells, and CD8+ T Cells
There is a net of functional circuity between NK cells with DCs
and CD8+ T cells, which results in a maximized effector function
against cancer (58). Direct cell-to-cell contact between NK cells
with DCs promotes immune responses through induction of DC
maturation (11, 59). Matured DC cells can uptake tumor
antigens from secondary lymph nodes. Such antigens are
presented to the T cells and are contributed to their activation
(60). DCs by turn act for priming NK cells in order to exert
effector responses (48).

2.3.3 Mature Natural Killer Cells in Cancer
Immunotherapy
Allogenic administration of mature NK cells can be a desired
approach for boosting immune functionality against cancer (61,
62). ‘Education’ is a term used for functional maturation of NK
cells in which the educated cells are highly responsive to cells that
lack the expression of self-MHC class (63). Generation of such
highly functional cells is a focus of adoptive immunotherapy, and
it is not restricted to the NK cells in which adoptive mature T
cells can also be used in cancer cellular immunotherapy (64).

T cell immunoglobulin mucin-3 (TIM-3) is a checkpoint
mediator that its expression is related to both NK cell maturity
and exhaustion (60). Based on the results of one study TIM-3+ NK
cells were higher in colorectal cancer (CRC) patients who were not
developing metastasis, and that the presence of such cells was
related negatively with cancer stage (65). Ndhlovu and colleagues
in a study found essential expression of TIM-3 on CD56dim CD16+

NK cells, and the link between TIM-3 with NK cell maturity. It is
interesting to note that expression of TIM-3 as a checkpoint
mediator on T cells is considered as a marker of cell dysfunction
(66). Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is
another checkpoint that is negatively related with cytotoxic activity
of NK cells. CTLA-4 inhibition using ipilimumab in human
melanoma patients by Tallerico and colleagues resulted in the
higher frequency of mature NK cells (CD3−CD56dim CD16+)
within circulation (67). Recently, Bi and colleagues reported a
negative link between expression of checkpoint TIPE2 with IL-15-
mediated NK cell maturation. The authors noticed enhanced
maturation in the TIPE2-deficient NK cells. The cells also had
higher activation and cytotoxic activities. Targeting TIPE2 can
thus be an approach in NK cell-based immunotherapy (68). The
maturity state among immune cells and interactions among them
along with the impact of differentiation states on the final fate of
cancer is illustrated in Figures 2, 3, respectively.
3 STEM-LIKE IMMUNE NICHES

A study by Jansen and colleagues has shown stem-like immune
niche breakdown as a potential mechanism of immune escape by
tumors. These niches are the host for stem-like CD8+ T cells,
January 2022 | Volume 11 | Article 813897
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contributed to the formation of effector T cells for targeting
tumors. A point here is that the presence of these niches is
required for strengthening T cell infiltration toward the tumor
area. Scarcity of these immune stem niches occurring progressively
after surgery along with an inefficient stimulation of cells within
these niches is a proposed reason for attenuated responses from T
cells against human cancers (69). The idea has also been approved
in animal models of cancer in which effector T cells in a terminally
differentiated state and effector memory T cells in a highly
differentiated state although being able to kill tumor cells
effectively, their anti-tumor potential is lower than that for less
Frontiers in Oncology | www.frontiersin.org 5
differentiated central memory T cells. As reported, such reduced
anti-tumor capacity is attributed partially to the CD27 and CD62L
loss of expressions in highly (or terminally) differentiated T cells. T
cells express CD27 as a molecule essential for their long-term
survival. T cells express the adhesion molecule CD62L for entering
secondary lymphoid organs, a crucial and required step for
generation of pools of long-lived memory T cells. Expression of
CD62L by T cells can be a main determinant factor for enabling
them to infiltrate into the tumor area (36). Therefore, promoting
the development of tumor suppressive T cells in a state not high in
the differentiation is important therapeutically. Maintaining stem-
FIGURE 2 | Interactions among immune cells for promoting maturity/immaturity within the tumor immune ecosystem. Maturation of dendritic cells (DCs) is affected
positively from the impact of natural killer (NK) cells, but negatively affected from the effects of cancer cells, regulatory T (Treg) cells, and myeloid-derived suppressor
cells (MDSCs). Interleukin-10 (IL-10), cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), and vascular endothelial growth factor (VEGF) are inhibitory factors
released from cancer cells, Tregs, and MDSCs, respectively. IL-10 is also released from MDSCs and macrophage type 2 (M2) cells. Tregs impede DC maturation
through CTLA-4 and IL-35. Immature DCs are signal transducer and activator of transcription 6 (STAT6)+ and take tumor-promoting activities, mediated via
enhancing Treg proliferation and stimulating T cell anergy. By contrast, mature DCs are STAT1+ and stimulate CD8+ T cell priming and NK cell effector function.
Cancer cells release high levels of prostaglandin E2 (PGE2) upon exposure to hypoxia. PGE2 hampers maturation of NK cells. By contrast, maturation of NK cells is
promoted by IL-15, released from DCs and M1 cells. NK cells further release IL-21 for promoting stem-like memory CD8+ T cells.
January 2022 | Volume 11 | Article 813897
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like state in T cells is preferentially effective before their adoptive
transferring (70). Krishna and colleagues performed a study
evaluating CD8+ T cell states as a response to the question why
some patients respond effectively to adoptive cell therapy (ACT),
while others do not. The authors have come with important
findings in which in patients responsive to the ACT a subset of
cells with stem-like features were detected. Such stem-like cells
were CD39-CD69- and low in number but were efficient to cause
complete regression of cancer and to maintain the fraction of
tumor-infiltrating lymphocyte (TILs). By contrast, the presence of
terminally differentiated CD39+CD69+ cells was linked to the weak
TIL persistence (71). Patients in the convalescent phase of
infectious diseases are also found to display polyfunctional T
cells and stem-like memory CD8+ T cells. Such early
differentiated memory cells possibly bring protection against the
Frontiers in Oncology | www.frontiersin.org 6
virus (72). Therefore, preserving stem-like memory cells of CD8+

T progeny can offer a therapeutic opportunity in cancer patients.
The fraction of stem-like progenitor cells is expanded in

patients receiving immune checkpoint inhibitors (ICIs) (73). T
cell transcription factor 1 (TCF-1) is a transcription factor that is
placed downstream of Wnt signaling. The activity of this
transcription factor is essential for development and maturation
of T cells (74). PD1+TCF1+ T cells are memory progenitor cells
that can provide T effector cells, whereas PD1+TCF1- T cells are
terminally differentiated (73). TCF-1+TIM-3− CD8+ T cells are
progenitor exhausted and display a relatively high proliferative
ability, while TCF-1−TIM-3+ CD8+ T cells show terminally
exhausted phenotypes (75).

Exhausted CD8+ T cells expressing TCF1 preserve their
effector function upon encountering chronic viral infection
FIGURE 3 | The impact of (im)maturity on final functional state in tumor immune ecosystem. Natural killer (NK) cells, dendritic cells (DCs), and cytotoxic T
lymphocytes (CTLs) in a mature cellular state will strengthen immune proficiency against cancer. Stem-like immune niches exist in tumors, strengthening of which will
lead to the more effective cancer immunotherapy. Monocytes and neutrophils in an immature state will form myeloid-derived suppressor cells (MDSCs), which act as
strong suppressors of the immune system. Similarly, immature endothelial cells (ECs) form aberrant vasculature, which aids tumor progression and relapse. This is
also inferable for mesenchymal (M+) tumor cells (cancer stem cells [CSC] in particular) that represent high resistance and tumor-promoting activities. This contrasts
with cells with epithelial-like (E+) phenotype. *Antigen-presenting cells (APCs) including DCs and macrophages.
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(74). However, terminally exhausted CD8+ T cells do not
respond to ICI. Fusion protein for IL-10–Fc has found to
promote metabolic reprogramming toward oxidative
phosphorylation and revitalizing terminally exhausted cells
more responsive to immunotherapy (75).

Stem-like memory CD8+ T cells is induced by IL-21, their
differentiation is induced by PD-1 inhibitors (76), but their
terminal differentiation is induced by IL-2 (77). Thus, IL-21
can be fused to the anti-PD-1 antibody and is an effective strategy
for increasing the anti-tumor activity of tumor-specific T cells
(76, 78). IL-21 fusion to anti-PD-1 antibody has found to
promote generation of stem-like memory T cells with higher
proliferative activities (76). It is interesting to note that H9T
which is an engineered partial agonist of IL-2 can promote CD8+

T cell expansion without causing their terminal differentiation.
Incubation with H9T caused sustained expression of TCF-1 and
induced mitochondrial fitness, favoring sustained stem-like state
of CD8+ T cells. CD8+ T cells exposed to H9T represent strong
anti-tumor activity, as reported in a mouse model of
melanoma (70).

CTLA-4 and PD-1 are inhibitory members of the CD28
family receptors (79). CTLA-4 interaction with CD80/CD86
promotes immune regulation, whereas interaction between
CD28 with CD80/CD86 promotes immune activation. CD28
acts in the promotion of T cell stemness and proliferation. In
fact, T cells upon maturation will lose CD28 (80). A different
path occurs in DCs. CD80/CD86 is also expressed on DCs (81).
Potentiating the expression of co-stimulatory molecules CD80/
CD86 in DCs is positively related to their maturation. Reducing
the expression of these receptors is a mechanism by which IL-35
impedes maturation of DCs (82). IL-35 is expressed by Tregs
(83), and its activity is considered a hallmark of immune
regulation in cancer (84). It seems that in patients receiving
CTLA-4 inhibitors, such as ipilimumab, the binding sites on
these receptors will be reopened for CD28 and further induction
of DC maturation and activity, along with the promotion of T
cell-mediated immunity against cancer.
4 FACTORS RELATED TO THE
DIFFERENTIATED CELLULAR STATE IN
TUMOR IMMUNE ECOSYSTEM

4.1 Agonists of All-Trans Retinoic Acid
All-trans retinoic acid (ATRA) is a derivate of vitamin A that
plays a key role in cellular proliferation, differentiation, and
apoptosis (85). ATRA acts to reduce the number of MDSCs and
the immunosuppressive genes expressed by these cells, such as
programmed death-ligand 1 (PD-L1) and TGF-b. ARTA induces
a differentiation program in MDSCs, an outcome of which is
reduced MDSC fraction (42). ARTA was used by Rao and
colleagues in mouse tumor models, which causes higher
induction of inflammatory macrophages that resulted in lower
radio-resistance (86). Administration of ATRA also overcomes
chemoresistance in breast cancer (87).
Frontiers in Oncology | www.frontiersin.org 7
4.2 Agonists of TNF-Related Apoptosis
Induced Ligand-Receptor-2
TNF-related apoptosis induced ligand (TRAIL) is a homotrimeric
protein that its main role is for modulating immune responses
(88). Expression of TRAIL on T and NK cells is important for
controlling tumor immune surveillance (89). TRAIL type 2
receptor (TRAIL-R2) (also called death receptor 5/DR5) is a
membrane-bound death receptor (90) that is expressed mainly
on endothelial cells (ECs) and immune cells (88). Selective
targeting of MDSCs is applicable using TRAIL-R2 agonists.
TRAIL-R2 agonists are not acting on mature myeloid and
lymphoid cells. DS-8273a is a TRAIL-R2 agonist that its
application in clinical trials has shown impressive effects on
tumoral MDSC fraction and improving clinical outcomes, but
the effects are temporal and depended on the time factor (91).

4.3 Granulocyte-Macrophage Colony
Stimulating Factor
Granulocyte-macrophage colony stimulating factor (GM-CSF) is
a growth factor of hematopoietic cells that promotes
macrophage, DC, and neutrophil development. GM-CSF also
induces maturation and activation of DCs and their further
recruitment into the tumor area (43, 92, 93). Results of pre-
clinical trials with GM-CSF were promising for rendering a more
immunogenic tumor contexture (92). Clinical trials for
application of GM-CSF in human cancers are numerous. In
CRC, administration of GM-CSF was found to induce anti-
tumor CTL responses (94). GM-CSF encoded to the herpes
simplex virus in advanced melanoma patients caused a
meaningful objective response rate (ORR) (28%) (95). GM-
CSF cell-based vaccine (GVAX) is suggested as an appropriate
combination to go with ICI therapy of pancreatic cancer (96).
Finally, administration of nab-paclitaxel and GM-CSF in
platinum resistant ovarian cancer patients has been found to
result in an ORR of 72% (partial and complete responses in 43%
and 29% of cases), but the outcomes were not durable (43). In
animal models of cancer, a link between G-CSF (97) or GM-CSF
(98) with increased MDSC recruitment into the tumor area were
reported. There is also a report of a positive link between GM-
CSF with M2 recruitment toward tumor cells of BRCA1-IRIS
over expressing (IRISOE) triple-negative breast cancer (99). Such
effects are possibly occurring at high GM-CSF levels, however
needing more research in order to make clearer the real effect of
this glycoprotein in solid tumors.
5 FACTORS RELATED TO THE
IMMATURITY IN TUMOR IMMUNE
ECOSYSTEM

5.1 Programmed Death-Ligand 1/
Programmed Death-1 Receptor
PD-L1 is a checkpoint molecule that acts via interaction with
programmed death-1 receptor (PD-1). The activity within PD-1/
PD-L1 axis is considered as a main co-inhibitory checkpoint
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pathway for modulating immune evasion in cancer patients
(100). PD-1 is expressed on the surface of CTLs, DCs, and NK
cells, while PD-L1 is expressed by Tregs, MDSCs, M2 cells, and
cancer cells, in particular (101). PD-1+ NK cells harvested from
healthy cells were found to show a mature phenotype (CD56dim

phenotype) (102). A rate of PD-1 expression on anti-tumor
immune cells is appropriate for their functionality. By contrast,
high expression of PD-1 attracts more inhibitory ligands from
TME, thus turning them into a state called dysfunctionality or
exhaustion. Therefore, PD-L1 overexpression is related to the T
cell dysfunctionality and is deemed as poor tumor prognosis
(101, 103–105). Blocking the activity of PD-1/PD-L1 axis will
restore T cell functionality, mediated through reinvigorating
cancer antigen–specific T cells (106, 107). PD-1 ligation
suppresses long-lived effector T cell functionality. Altered
metabolic reprogramming is a mechanism by which PD-1
determines T cell differentiation (108). Monotherapy with PD-
1 inhibitors will shift the metabolic profile toward glycolysis, the
outcome of which is the terminal differentiation of T cells. Such
cells are functional but short-lived and undergo quick apoptosis.
By contrast, combination of PD-1 inhibitors with metabolic
regulators, such as Bezafibrate, will increase oxidative
phosphorylation, the result of which is long-lived functional T
cells (109). Mature T cells also show mutations in JAK and
STAT3, so that inhibitors of JAK and STAT3 will hamper PD-L1
expression (106), which is possibly indicative of a role for PD-L1
inhibitors for promoting maturation of T cells.

Blocking the activity of PD-1/PD-L1 axis will restore T cell
functionality, mediated through reinvigorating cancer antigen–
specific T (106, 107). Of notice, PD-L1+ cancers show higher
responses to ICI compared with PD-L1- tumors. This indicates
the importance of PD-L1 as a marker of tumor response to the
immunotherapy. This, however, is not effective for patients with
cold immunity in which solo PD-L1 is not considered as a
biomarker of response to the ICI therapy. For such patients, PD-
L1 expression along with the rate of T cell infiltration and/or
tumor mutational burden (TMB) is considered as a biomarker of
response (101).

5.2 Vascular Endothelial Growth Factor
Vascular endothelial growth factor (VEGF) is a pro-angiogenic
factor that is overexpressed in tumors, and its persistent hyper-
release in TME promotes vascular immaturity and abnormal
angiogenesis, delineated by leaky (or permeable) vessels (110).
Cancer-associated fibroblasts (CAFs), M2 cells, cancer cells, and
ECs are the four key sources of VEGF in TME (111). VEGF
overexpression acts as a promoter of an immature vascular net
(112), and that development of such immature vessels has a
profound impact on tumor progression, mediated through
promoting immunosuppression and therapy resistance (111).
VEGF has an inhibitory effect on maturation of MDSCs into
APCs (113). Maturation (or differentiation) of DCs is also
precluded by VEGF (114, 115), a result of which is impaired
effective T cell priming (116) and inactivation of CTLs (115). In
addition, VEGF impairs the migration ability and function of
mature DCs (12). Patients with microsatellite stability CRC show
low baseline infiltration of T cells, and the existing cells are
Frontiers in Oncology | www.frontiersin.org 8
undergoing a dysfunctional state called exhaustion. Exhausted T
cells are formed due to hyper-functionality and are ineffective to
work against cancer. VEGF is a key driver of such exhaustive
state (117). Exhausted CD8+ T cells in hypoxic conditions secrete
VEGF-A, and it has found that secretion of this pro-angiogenic
factor is linked to their terminally exhausted state. This is an
outcome of an in vitro study by Bannoud and colleagues.
Terminally exhausted T cells due to representing a terminal
differentiation position do not recover their effector functionality
using ICIs (118).

Targeting VEGF by bevacizumab in cancer patients reduces the
number of immature circulatory DCs (119). VEGF-trapping
approach is a strategy to inactivate VEGF within the extravascular
space and in the bloodstream. Fricke and colleagues in a study used
VEGF-trap for a number of advanced-stage cancer patients and
found the efficacy of this strategy in improving DC maturation;
however, the efficacy of this approach cannot be achieved unless
reducing the number of MDSCs as well (114). VEGF targeting
therapy has also been approved to be used in combination with ICI
for human cancers (120). The immune suppressive effect of VEGF
on APCs and immune effector cells, and the positive impact of
immunosuppressive cells for driving angiogenesis create a vicious
cycling of impaired immune functionality. This will justify
application of anti-angiogenic therapy in combination with ICI
for strengthening effector immune activity against cancer and
reducing the rate of immune escape by tumor (121). A suggested
strategy is to use vascular normalizing agents to go with ICI for
improving the efficacy of immunotherapy (122).

5.3 Hypoxia and Hypoxia Inducible Factors
Hypoxia is an O2 low condition that is presented within TME
due to higher cellular proliferation rate compared with blood
supply. Hypoxic tumors are more aggressive and are more prone
to developing resistance and metastasis (5, 9, 111, 123–126).
Hypoxia influences the fraction of immune infiltrates and the
spatial association between tumor and immune cells (127). The
immunosuppressive effect of hypoxia is a barrier for efficacy of
therapy in patients receiving ICI therapy. Elevated oxidative
metabolism by tumor cells will lead to a rise in intra-tumoral
hypoxia and a fall in the fraction of CD8+ T cells (128).

Hypoxia inducible factor (HIF)-1 plays a vital role in the
hypoxic TME. HIF-1 inhibits the activity of innate and adaptive
immunity against cancer (129). Under inflammatory conditions
the activity of HIF-1a promotes the maturation of DCs and their
subsequent activity (130). In tumoric conditions, by contrast,
maturation of both DCs and NK cells is inhibited (129). Hypoxia
suppresses differentiation of T effector cells (131). Hypoxia can
be targeted as a way for retaining the effector function of NK cells
(126, 132). IFN-I stimulates DC maturation, and thereby
supports CTL activity. IFN pathway is downregulated by
hypoxia both transcriptionally and translationally, which is a
reason for hypoxia-mediated immunosuppression in tumors
(133). The immature DCs upregulating HIF-1a undergo early
apoptosis (134). Constitutive activation of HIF-1 in tumors at
advanced stages maintains elevated levels of MDSCs (135).
Increased MDSC arginase activity is promoted under exposure
to HIF-1a (131). There is a report that arginase-1-expressing
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MDSCs infiltrated into the tumor area are predominantly
immature and have a monocytic subtype (136). HIF-1 is also
related positively with B cell immaturity, which will lead to a
decrease in the number of mature B cells within peripheral
blood (137).

In hypoxic TME lactate dehydrogenase A (LDHA) shows
increased expression (as a response to the high HIF-1a activity).
Upregulation of LDHA results in more lactate production and is
seemingly linked with CD8+ T cell senescence and exhaustion. A
combination of LDH inhibition along with IL-21 has been found
to be a useful strategy for strengthening CD8+ T cell stemness
(77). Hypoxic TME induces tumoral cell expression of
prostaglandin (PG)-E2 (138), high presence of which
suppresses maturation of NK cells (139). In hypoxic CRC,
HIF-1 bonds to the glutaminase 1 (GLS1) promoter and
increases the conversion of glutamine to glutamate. Such
reduction in the glutamine extracellular concentration is linked
to deregulated T cell differentiation, inhibiting differentiation of
Th17 and Th1 whereas maintaining differentiation of Tregs
(126). VEGF expression in tumor stroma is induced by
hypoxia (110), which links hypoxia with aberrant angiogenesis,
as discussed elsewhere (111, 140). This is indicative of the
importance of vascular normalization strategies as an effective
way for alleviating tumor hypoxia (141, 142). Hypoxia also
regulates tool-like receptors (TLRs) for influencing maturation
of immune cells. TLRs are members of pattern recognition
receptors (PRRs) that take both pro- or anti-tumor activities in
a context dependent manner (143). DC maturation, for instance,
is promoted by TLRs (144). TLRs promote a metabolic
shift toward glycolysis, which is considered as a required step
for DC maturation. This will allow survival of the cells after
activation (145).

5.4 Transforming Growth Factor-b
TGF-b is a multi-tasking cytokine that acts in an important role
during development and in tumorigenesis. The activity of TGF-b
in normal tissues is for promoting differentiation of epithelial
cells, whereas in established tumors it acts for initiating cell self-
renewal and epithelial-mesenchymal transition (EMT), namely
promoting an immature state in tumoral cells (146). TGF-b
activity is important for all stages of tumorigenesis (147), and its
high levels is associated with immune escape and tumor
metastasis (146). TGF-b can thus be a desired target in the
area of cancer therapy (148).

Development and differentiation of NK cells is influenced
tightly from TGF-b signaling (149). Marcoe and colleagues in a
study on mouse immunity development have found a link
between TGF-b activity with NK cell immaturity. TGF-b is
responsible for inefficient NK cell responses early in life. By
contrast, a pool of NK cells undergo maturity in the absence of
this signaling (150). Hampering NK cell maturity in the presence
of TGF-b will make the host more susceptible to viral infections
(149) and tumor progression. Elevated levels of TGF-b also block
the differentiation of naïve T cells into Th1 effector cells, instead
promoting their conversion into Treg subset (151, 152). TGF-b
inducible effect on Foxp3+ Treg expansion suppresses
differentiation of Th17 cells through antagonizing RORgt (153).
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Monocytic MDSCs are highly expanded under the influence
of TGF-b. When TGF-b is presented in the area, IL-6 is the most
potent stimulator of MDSC functionality, whereas G-CSF is
strongly active in the absence of TGF-b (154). The efficacy of
ICI is also enhanced when TGF-b signaling is blocked in the
tumor area (155). To explain, TGF-b inhibitors are acting as
immune modulatory agents that when used in combination with
ICI, will render more effective outcomes. A summary of the
factors related to the (im)maturity cellular immune states is
represented in Figure 4.
6 CANCER STEM CELLS

Cancer stem cells (CSCs) are cells that their number is increased
at the time of tumor progression. An increase in the number of
these cells will give a tumor more chance to resist and relapse
(124). CSCs can acquire a transient, hybrid phenotype enabling
them to have control over normal tissue nearby and to neutralize
the hazardous impact of the nearby environment. It is interesting
to note that even committed (differentiated) cells in healthy
tissues can reinstate a feature of undifferentiated state upon
encountering a harm condition. This occurs when the reservoir
of stem cells is not sufficient to exert a complete response. Acute
wounds occurring in the body are good examples in which a
cellular differentiation state is affected in order to retain the
healing potentials. Cancers are chronically wounded, which gives
them extra potentials, delineated by packs of CSCs or tumor cells
with stemness features (5, 156, 157).

Targeting signals of stemness is a way for controlling the
fraction of CSCs within a tumor. A suggested strategy to pose
durable anti-tumor responses is to recall signals of differentiation
in CSCs. Ronen and colleagues in a study found loss of invasion
and metastasis of breast tumor when cancer cells with EMT
phenotype were transdifferentiated into post-mitotic functional
(mature) adipocytes (158). Immature adipocytes are contributed
to the augmentation of CSC fraction (159). Chemotherapy
preferentially acts on proliferative cancer cells, so trans-
differentiation of CSCs in dormancy into mature proliferative
cells will allow their further elimination by chemotherapy (160).
De-differentiation is a process by which tumor cells can retain
stemness profile when they are under exposure to the conditions
like hypoxia and is contributed to tumor relapse after therapy.
Thus, a suggested strategy could be targeting mediators or
promoters of de-differentiation (161).
7 FACTORS INFLUENCING (IM)MATURITY
OF TUMOR CELLS

7.1 Aberrant Angiogenesis and Vascular
Abnormality
Aberrant angiogenesis is an important step for cancer progression,
which is linked to the tumor growth and metastasis (162). Aberrant
tumor vessels can be a route for highly invasive tumor cells (163).
Such weakly functional tumor vessels promote hypoxia and
January 2022 | Volume 11 | Article 813897

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mortezaee and Majidpoor (Im)maturity in Tumor Ecosystem
immunosuppression, thereby causing tumor progression (164).
Carbonic anhydrase 9 (CA9) is a hypoxia-induced enzyme
responsible for regulation of pH in hypoxic solid cancers. CA9
can be targeted in order to turn an abnormal (immature) tumor
vasculature into normal (mature) vessels (165). A normal mature
vasculature allows more infiltration of effector T cells, while an
immature vessel restricts penetration of these anti-tumor immune
cells (166). Vascular normalization is a strategy to reduce
immunosuppression and CSC resistance in tumors (111).
Kashiwagi and colleagues evaluated the efficacy of eribulin in
metastatic breast cancer patients and noticed EMT reversion and
vascular remodeling in response to this microtubule dynamic
inhibitor. They noticed negative conversion of CA9 and durable
responses to such therapy (165), highlighting the importance of
vascular normality in tumor targeted therapies.

7.2 DNA Damage Response
DNA damage response (DDR) and aberrations in gens related to
DDR is representative of a metastatic cancer. DDR occurs as a
response to high reactive oxygen species (ROS) (not ROS
overloading) in TME, and is a trigger for cancer cell
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reprogramming into CSCs with EMT phenotype, thereby
increasing the number of therapy resistance CSCs (156).
Olaparib is an inhibitor of poly(ADP-ribose) polymerase
(PARP)1/PARP2, known as the key DDR-related genes.
Olaparib was administered to metastatic prostate cancer patients
with aberrant DDR genes. Mateo and colleagues in this study
noticed an improvement in endpoint responses, delineated by low
circulatory tumor cell (CTC) fraction (167). However, Zuo and
colleagues in a recent study reported a positive link between
Olaparib with an increase in the number of immature myeloid
cells; such cells create an immunosuppressive milieu and act for
augmenting the rate of metastasis (168). Therefore, myeloid-
targeting agents are requested in patients receiving Olaparib.

7.3 Epithelial-Mesenchymal Plasticity
7.3.1 Epithelial-Mesenchymal Plasticity in
Tumor Cells
Epithelial-mesenchymal plasticity (EMP) is a highly flexible cellular
state that is mainly presented in the context of cancer stemness and
resistance (169), defining a route for cancer heterogeneity (170,
171). Carcinoma cells including CSCs will take EMT and the
FIGURE 4 | Mediators of (im)immaturity. Vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-b, programmed death ligand-1 (PD-L1), and
epithelial-mesenchymal transition (EMT) are mediators of immaturity that contribute to the tumor progression and relapse. By contrast, agents like all-trans retinoic
acid (ATRA), granulocyte-macrophage colony stimulating factor (GM-CSF), and TNF-related apoptosis induced ligand-receptor2 (TRAIL-R2) are mediators of maturity
that are contributed to cellular differentiation. Agonists of maturity mediators can be an appropriate supplement in the area of immunotherapy. Controversies,
however, exist for the use of GM-CSF, which require more research in the area. DC, dendritic cell; MDSC, myeloid-derived suppressor cell; and mAb, monoclonal
antibody. *DS-8273a is a TRAIL-R2 agonist.
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reversed process mesenchymal-to-epithelial transition (MET) in
order to adopt the environment nearby (170) and to take invasive
behavior and to promote resistance (172). Tumor cells will take
MET in order to develop a macrometastasis tumor in secondary
sites (171, 173). Activation of an EMT program in mammary
epithelial cells will thus expand the generation of chemo- and
immune-resistant CSCs (174). EMT gives the cells increased
motility potential and cellular dissemination toward the
circulatory system. TWIST1, SNAIL, and ZEB are transcription
factors related to EMT (172). Acquiring an EMT profile is a
response to active signaling, such as TGF-b (175).

Oliphant and co-workers found a direct link between
upregulation of genes related to the pluripotency with late
metastasis of breast tumor cells. They reported that recalling an
embryonic stem program by factors like Six2 will bring higher
potencies to the early-detached tumor cells (176). EMP is a capacity
that is designated to the poorly differentiated cells. A study by
Shinde and colleagues showed that overexpression of tissue
transglutaminase-2 (TG2) in breast tumor cells is sufficient for
augmenting the development of metastatic niches and promotion of
distant metastasis, whereas TG2 depletion suppresses metastasis.
TG2 is a gene that emerges solely in metastatic cells undergoing
EMT induction/reversion. The outcome of this study represents
how inter-conversions between the two different cellular states,
namely epithelial and mesenchymal cells allows tumor cells to
shape a metastatic fate (177). Agents targeting EMP will yield a
strong and wide class of therapeutic drugs (173). Targeting EMP
will increase responses to the ICI and enhance the duration of
responses (170). TGF-b is contributed to the activation of SNAIL1
and induction of ZEB proteins (172), so it can be a promising target
for reducing the risk of resistance and metastasis.

7.3.2 Epithelial-Mesenchymal Plasticity in Circulatory
Tumor Cells
A high number of CTCs is reflexive of the progressive disease,
and their fraction in a tumor like breast cancer can be a reflective
of the total tumor burden (178). CTCs represent monoclonal and
polyclonal (CTC clusters) metastasis. CTC clusters represent a
hybrid EMT, which indicates the presence of both epithelial
(following cells) and mesenchymal cells (leader cells) in such
clusters. Leader cells in the cluster show a mesenchymal
phenotype, while most of the following cells represent an
epithelial state (3).

Triple negative is the most aggressive breast cancer subtype
(101), which represents high fraction of mesenchymal (M+)
CTCs. High M+ CTC fraction is linked to the shorter
progression-free survival (PFS) in patients with breast cancer
(178). Targeting EMT can reduce the number of CTCs. Yang and
colleagues in a phase 2 study evaluated the role of low-dose
aspirin on metastatic CRC and noticed an increase in the number
of epithelial-type (E+) CTCs while a decrease in the M+ CTC
fraction (179). Liquid biopsy can be made for evaluation of M+

CTCs and E+ CTCs. In the metastatic breast cancer (178) and
CRC (179), for instance, evaluation of M/E CTCs is considered as
a well-established prognostic marker and a valuable tool for
predicting responses to therapy. A point here is that monoclonal
CTCs delineated by single cell migration of invasive tumor cells
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are more killed by NK cells compared with CTC clusters (3). To
explain, cell-to-cell adhesion among the following cells in the
CTC clusters reduces the expression of NK cell activating ligands
(180). Therefore, for a tumor taking a metastatic phase it is
suggested to address EMP instead of solo targeting of stemness.

7.4 Hypoxia-Inducible Factor 1
HIF-1 acts as a key role for CSC generation and maintenance
(181). Hypoxia possibly retains CSCs in an undifferentiated state,
and allowing only differentiation of cancer cells (182). Bulle and
colleagues in a study evaluated the impact of the anti-septic drug
acriflavine on xenograft pancreatic cancer. Acriflavine is drug
that suppresses dimerization of HIF-1a and HIF-1b. Application
of this drug for such a model considerably inhibited tumor
growth only in a moderately differentiated cancer model, but not
in a fast growing EMT high model (183).
8 INTRA-TUMORAL MESENCHYMAL
STEM CELLS AND TUMOR STEMNESS

Generally, body organs tend to recall poorly differentiated cells
upon encountering harmful conditions. This, in fact, serves as a
compensatory mechanism to refill damaged cells. Mesenchymal
stem cells (MSCs) from bone marrow are among the cells
responding to signals rendered from injured organs. Normal
MSCs recruited into the tumor area may transition into
acquiring a CAF phenotype (184). One of the key roles of
CAFs is the generation of supportive stem niches for
protecting CSCs and promoting resistance (185).
9 CONCLUSIONS

The presence of immature cells in the tumor ecosystem is a turning
point in tumor evolution, being important from diagnostic and
therapeutic standpoints. Strategies for managing such potential in a
tumor will open new therapeutic windows. Agents act on
maturation of anti-tumor immune cells can thus be designed for
strengthening the power of the immune system against cancer. IL-2,
for instance, promotes maturation of T cells (186), and it can be a
key component of most of the immunotherapeutic approaches
(187) due to its effects on promoting the effector function of cells
like macrophages, NK cells, and CD8+ T cells (59). A point of value
here is that even when maturation occurs in a cell like DCs, it may
not be sufficient to induce a strong immunity (18), so agents
designed to act on maturation of anti-tumor immune cells must
also induce an effector functionality. Another point to add is that
maturity is not restricted to the tumor immunity. It can also include
other cells or structures within a tumor. Tumor vasculature, for
instance, is immature architecturally and functionally. Therefore,
strategies can be expanded by inducing vascular maturity. A virtue
of this approach is the more infiltration of anti-tumor immune cells,
as well as anti-tumor drugs into the tumor area for promoting
tumor killing activities. This will reduce immune escape and
resistance and enhance responses to therapy.
January 2022 | Volume 11 | Article 813897

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mortezaee and Majidpoor (Im)maturity in Tumor Ecosystem
AUTHOR CONTRIBUTIONS

KM gave the conceptualization. JM and KM wrote the initial
manuscript. Final revisions were made by KM. Articles were
selected by KM. Both authors approved the final draft.
Frontiers in Oncology | www.frontiersin.org 12
ACKNOWLEDGMENTS

The manu s c r i p t r e c e i v e d t h e E t h i c a l Cod e IR .
MUK.REC.1399 .209 from Kurdis tan Univers i ty of
Medical Sciences.
REFERENCES
1. Mortezaee K, NajafiM, Farhood B, Ahmadi A, Shabeeb D, Musa AE. NF-kb

Targeting for Overcoming Tumor Resistance and Normal Tissues Toxicity.
J Cell Physiol (2019) 234:17187–204. doi: 10.1002/jcp.28504

2. Najafi M, Majidpoor J, Toolee H, Mortezaee K. The Current Knowledge
Concerning Solid Cancer and Therapy. J Biochem Mol Toxicol (2021) 35:
e22900. doi: 10.1002/jbt.22900

3. Majidpoor J, Mortezaee K. Steps in Metastasis: An Updated Review. Med
Oncol (2021) 38:1–17. doi: 10.1007/s12032-020-01447-w

4. Okła K, Czerwonka A, Wawruszak A, Bobiński M, Bilska M, Tarkowski R, et al.
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