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Abstract: Nanotechnology is a fast-evolving field focused on fabricating nanoscale objects for in-
dustrial, cosmetic, and therapeutic applications. Virus-like particles (VLPs) are self-assembled
nanoparticles whose intrinsic properties, such as heterogeneity, and highly ordered structural organi-
zation are exploited to prepare vaccines; imaging agents; construct nanobioreactors; cancer treatment
approaches; or deliver drugs, genes, and enzymes. However, depending upon the intrinsic features
of the native virus from which they are produced, the therapeutic performance of VLPs can vary.
This review compiles the recent scientific literature about the fundamentals of VLPs with biomedical
applications. We consulted different databases to present a general scenario about viruses and how
VLPs are produced in eukaryotic and prokaryotic cell lines to entrap therapeutic cargo. Moreover, the
structural classification, morphology, and methods to functionalize the surface of VLPs are discussed.
Finally, different characterization techniques required to examine the size, charge, aggregation, and
composition of VLPs are described.

Keywords: nanomedicine; nanotechnology; virus-like particles; preparation; characterization

1. Introduction

Nanotechnology is an interdisciplinary field devoted to engineering and developing
structures ranging from 1 to 500 nm. Structures that correspond to this scale are defined
as nanoparticles (NPs). NPs possess promising optical, chemical, and physical properties
attractive for biomedical purposes, such as diagnostic, chemical sensing, cellular imaging,
drug delivery, therapeutics, and tissue engineering [1].

Given the unique physical, optical, chemical, and therapeutic properties of NPs, there
has been an increasing interest in designing methods to develop and characterize them.
NPs are prepared through top-down and bottom-up approaches, including laser ablation,
sputtering, etching, and mechanical milling techniques. The latter encompasses spinning,
chemical reduction, molecular condensation, and green synthesis processes [2]. Instead
of reducing a bulk material into nanometric objects, bottom-up methods stimulate the
self-assembly of atoms into bioactive NPs. For example, in nanomedicine, the amino acid
side chains and functional groups of distinct proteins (e.g., collagen, elastin, gelatin, keratin,
silk, and zein) are used as scaffolds to induce the self-assembly of nanofibers, nanotubes,
and nanobelts to deliver drugs or develop materials for tissue engineering [3,4].

Among protein-based nanomaterials, virus-like particles (VLPs) are self-assembled
platforms commercially approved by the US Food and Drug Administration (FDA) since
the 1980s [5]. Since VLPs resemble the capsid morphology, structural organization, and cel-
lular tropism of wild-type viruses [6,7], they have been exploited to prepare monodisperse
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nanocarriers (20–500 nm) for drug delivery, enzyme delivery for enzymatic replacement
therapy [8,9], and gene therapy applications. In addition, they have been widely used to
construct human vaccines against various pathogenic viruses (e.g., human papillomavirus
and zika virus) and distinct types of cancer, such as colorectal, pancreatic, and cervical
cancer [5,10].

In contrast to other organic NPs, VLPs are convenient, because they exhibit higher
biocompatibility, the capacity for cell internalization, and ease of functionalization for cell
targeting. In fact, for the latter, they can be tailored by chemical or genetic methods with
various biomolecules (i.e., transferrin, folic acid, and single-chain antibodies) to enhance
their bioavailability and, herein, evoke both humoral and cellular immune responses [11,12].
However, these phenomena rely on the physicochemical and biochemical characteristics
of VLPs.

Nowadays, there is a constant effort to develop analytical methods that, alone or in
combination with others, enable scientists to assess the influence of physicochemical param-
eters in the biological activities of nanomaterials. For instance, the therapeutic performance,
stability, and morphology [13,14] of VLPs can vary in accord with pH ranges [15], choice of
the expression system [16,17], and purification procedures [18,19].

Since the novel coronavirus SARS-CoV-2, there has been an increasing interest in
reviewing VLPs as a powerful approach to producing vaccines and nanocarriers [20].
However, there is a need to complement those studies and recent ones [21], with basic
principles about expressing, manipulating, functionalizing, and characterizing VLPs.

Therefore, the literature regarding the structure classification, production, morphology,
and functionalization of VLPs for biomedical applications was consulted in this review.
The research engines PubMed, Google Scholar, Web of Science, and Wiley Online Library
databases were used to compile the literature. In addition, the same databases were used to
integrate the main aspects of viruses and how the geometry is indispensable to constructing
VLPs-based platforms.

2. Brief Description of Viruses

Viruses are entities characterized by the lack of machinery for self-replication and
energy production. Their replication relies on hijacking the cellular systems of the host cells
to produce the molecules necessary for their assembly and subsequent escape from the
cells. Infectious viruses that have not been internalized in the host cells (not in a replication
phase) and residing outside the cell host are called virions.

Viruses are ubiquitous entities containing a DNA- or RNA-based genome protected or
not by a protein shell known as a capsid and other accessory biomolecules, such as proteins
and membranes [22]. The capsid shell is assembled through covalent and electrostatic
interactions conferring a robust and flexible structure and made by small subunits known
as capsomers [23]. These capsomers are critical components of the VLPs and constitute the
basis for their self-assembly into complex structures [24].

The general structures of viral capsids show a diversity of conformations, including
icosahedral conformation. Icosahedral capsids comprise 20 triangular subunits, whereas
helical capsids are proteins assembled to form helical cylinders [25]. Despite the structural
variabilities between both shapes, the functions of the viral capsid rely on the packaging,
sequestering, and protection of the viral genetic material, preventing its degradation in the
environment or exposure to chemical hazards [25,26].

Besides the capsids, viruses are surrounded or not by a viral envelope that facilitates
their fusion and infection of the host cell. In addition to the presence of proteins and
glycoproteins, this envelope can contain lipidic membranes acquired from the host. Viral
envelopes are necessary to protect the viral genome, increase the packaging capacity, confer
structural flexibility, and enable the new viruses to exit from their host cell and avert
immune responses [27].
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Viruses with envelopes are known as enveloped viruses, such as the varicella-zoster
virus [28], lymphocytic choriomeningitis virus, tick-borne encephalitis virus, human im-
munodeficiency virus 1 [29], and severe acute respiratory syndrome coronavirus [30,31].

3. Key Concepts about Virus-like Particles (VLPs)

The assembly of VLPs uses exclusively viral proteins and excludes the genetic material.
Thus, VLPs can be produced from a myriad of wild-type viruses, such as hepatitis B and E,
tobacco, and papaya mosaic viruses [32], and from the capsids of various bacteriophages
(Qβ, MS2, P22, and PP7) [33–36].

The production of VLPs using bacteria, mammalian cells, plants, yeast, and insect cell
lines is well-documented [37–39]. However, current efforts are devoted to understanding
their capsid self-assembly mechanisms to improve the cargo loading capacity, potency,
and efficacy.

The capsid self-assembly of VLPs is a spontaneous natural process by which highly
ordered structures arise from the interactions between protein monomers, also known
as building blocks. The self-association between building blocks is facilitated by a ther-
modynamic equilibrium based on van der Waals, hydrogen bonding, hydrophobic, and
electrostatic interactions during the nucleation and growth phases [40,41]. As a result,
VLPs can adopt different structural arrangements, such as helical, icosahedral, spherical, or
complex shapes [42,43] (Figure 1).
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The self-assembly of VLPs is assisted by small molecules such as scaffolding proteins
and nucleic acids [40]. In this regard, scaffolding proteins and nucleic acids can be used to
aid the in vitro capsid self-assembly process of many VLPs, such as the cowpea chlorotic
mottle virus, hepatitis C virus, bacteriophage MS2, simian virus 40, beak and feather disease
virus, and adeno-associated virus serotype 2 VLPs [40].

Since the self-assembly of VLPs can be perturbed by changes in the salt concentration,
denaturant agents, pH, and temperature [28], excipients such as polysorbate 80 are used
to avoid the aggregation and preserve the stability of the VLPs [40]. On the other hand,
molecules such as 2-phenoxyethanol have been used as a preservative agent to produce
licensed VLP-based vaccines such as the Engerix®-B hepatitis B vaccine [44]. Comparably,
buffering agents such as L-histidine and sodium borate have been used to manufacture the
Gardasil® human papillomavirus vaccine [44].

VLP-based nanocarriers could be produced by producing viruses in their natural host,
followed by virion purification, disassembling, and nucleic acid removal (see Figure 2).
Then, the disassembled coat proteins are transferred into assembling conditions in the
presence of any cargo to be encapsulated. Finally, the VLPs containing the load could be
functionalized with any ligand or chemical moiety and covered with polymers or other
compounds to reduce or enhance their immunogenicity or facilitate cell internalization.
Molecules used to decorate the VLP surface include T-cell receptor ligands; polysaccharides;
enzymes (e.g., α-glucosidase); and canonical amino acids (i.e., aspartic acid, cysteine,
glutamic acid, lysine, and tyrosine); among others [45–48].
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The coat proteins of the VLPs can be heterologously produced and purified from an
industrial microorganism and reconstituted under suitable conditions in the presence of
their cargo. In this regard, the cargo loading could be obtained by simple encapsulation
when the charges of the inner portion of the VLP and the cargo surface are complementary.
However, as described in detail below, the loading could also be reached by chemical or
genetic modification of the coat protein on both the inner and outer surfaces.

Although most VLPs are deficient in viral genetic material, they retain properties
from the native virus from which they are produced. These features include their affinity
for cellular receptors, host cell entry mechanisms, and immunogenicity [49]. As native
viruses, VLPs elicit both humoral and cellular responses in the host system. These re-
sponses are stimulated by VLP-based systems due to their repetitive antigenic epitopes,
resembling pathogen-associated molecular patterns (PAMPs), and low polydispersity [50].
The introduction of antigens (e.g., proteins or small peptides) on the VLP surface is nec-
essary to enhance the immune response and is achieved through chemical and genetic
approaches [51–53]. It is worth mentioning that the immune response only occurs against
the antigen, not the rest of the nanostructure produced [54].

Functionalized VLPs can trigger an immune response by activating PAMPs. These pat-
terns are conserved molecular motifs associated with pathogen infections [55]. PAMPs are
recognized by pattern–recognition receptors (PRRs), nucleotide-binding oligomerization
domain-like receptors, and Toll-like receptors (TLRs) on the surface of phagocytic cells [56].
Due to the similarity of VLPs with wild-type viruses, the morphology of these NPs stimu-
lates adaptive and innate immune responses, including cellular uptake. For example, VLPs
can be taken up by enterocytes, specialized intestinal epithelial cells, dendritic cells (DCs),
and macrophages [57]. This process depends upon the size, shape, and surface charge of
the VLPs [58].

Like other NPs, the surfaces of VLPs can be modified with various ligands to improve
their therapeutic efficacy, bioavailability, and cellular interactions. The introduction of mul-
tiple molecules on the VLPs surface is known as multivalence. Then, VLPs are multivalent
engineered nanoplatforms that form independent ligand–receptor bonds, elicit therapeutic
responses, and mitigate endemic diseases. For example, Garg and coworkers developed
a VLP-based multivalent vaccine (CJaYZ) against four arboviruses, including the zika,
chikungunya, yellow fever, and Japanese encephalitis viruses. Even though the CjaYZ
vaccine promoted a neutralizing antibody response against the four viruses in Balb/c mice
models, further studies are required to assess the precise antigen amount of individual
VLPs and their efficacy in other animal models [59]. The general features of VLPs are
depicted in Figure 3.
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4. Structure Classification of VLPs

Given the structural diversity of VLPs, they have been categorized into three main
groups: enveloped, nonenveloped, and chimeric. For example, enveloped VLPs (eVLPs)
are expressed using eukaryotic systems and as wild-type viruses. eVLPs are complex
structures that own a host–cell-derived membrane and one or more glycoproteins. The
viral envelope in eVLPs can be engineered to display heterologous adjuvants and antigens;
however, this process might alter their downstream processing due to the possible presence
of host cellular contaminants [60].

As vaccines, eVLPs stimulate immune responses and are manipulated with chemical
or genetic methods. In this regard, a handful of eVLPs have been produced from pathogenic
viruses for vaccine development. Some examples include eVLPs derived from the West
Nile virus (WNV), dengue virus (DENV), JEV, Rift Valley fever virus (RVFV), and Ross
River virus (RRV), among others [61,62]. For drug delivery applications, Rous sarcoma
virus (RSV) eVLPs displaying a single-chain variable fragment (scFv) of humanized CC49
antibody (hCC49) have been expressed on silkworm larvae to deliver doxorubicin into
human colon carcinoma cells [63]. In addition, doxorubicin was loaded into hCC49 scFv-
displaying RSV VLPs by electroporation.

Non-eVLPs are single or multiple capsid protein nanoconstructs that lack cell mem-
branes. Members of this category are produced on eukaryotic or prokaryotic expression
systems. The surfaces of non-eVLPs can also be manipulated with chemical and genetic
approaches to display epitopes or peptides on their surfaces and, herein, elicit wider im-
munological responses [64]. For instance, non-eVLPs derived from the coxsackievirus B3
antigen have enhanced humoral immune responses and protected murine models against
myocarditis [65]. Additionally, rotavirus non-eVLPs (Ro-VLPs) were produced in Nicotiana
benthamiana plants. The immunogenicity and tolerance of Ro-VLPs were evaluated in
adults, toddlers, and infants [66].

Chimeric VLPs (cVLPs) are nanoplatforms from structural components originating
from at least two different viral serotypes [67]. In these nanoplatforms, the VLP core can
be modified with antigens that cannot self-assemble or present polyproteins from distinct
viruses [68]. In contrast with the other two categories of VLPs, cVLPs are useful to present
foreign epitopes; entrap multiple therapeutic or diagnostic molecules; and target cells,
tissues, or organs [42]. However, the production of cVLPs depends upon various factors,
such as the type of conjugation between proteins, glycosylation patterns, cell type, length
of the fused antigen, and steric effects.

For biomedical purposes, cVLPs have been prepared from major structural compo-
nents of influenza viruses (e.g., M1 protein) and human immunodeficiency virus type-1
(HIV-1) (e.g., Group-specific antigen; Gag) to target colon carcinoma cell lines and for
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vaccination purposes [69]. In another study, murine polyomavirus cVLPs were manipu-
lated to elicit CD8+ and CD4+ T cells and antibody responses [70]. The immune response
against other cVLPs has also been evaluated recently, specifically for the foot-and-mouth
disease virus cVLP vaccine, based on the co-expression of the HIV-1 Gag protein and rabies
glycoproteins [71].

5. Expression of VLPs

Recombinant proteins are derived from the expression of recombinant DNA within
living cells. Once a DNA fragment is inserted into cell lines, the cells are induced to express
the protein of interest.

An expression vector is used to introduce genetic materials into cells. This vector
contains sequences upstream of the cloned gene that controls its transcription and transla-
tion [72]. Non-viral expression vectors are DNA plasmids that can be delivered into the cells
(transfection) as naked DNA or in association with biomaterials (e.g., polymers or cationic
lipids) [73]. These vectors can be introduced to cells using photoporation, hydroporation,
sonoporation, and electroporation [58].

On the other hand, viral vectors are optimized platforms able to transfer genetic mate-
rial into host cells [74]. Various expression systems have been developed to deliver genetic
material to hosts, such as Escherichia coli, Bacillus subtilis, Pichia pastoris, baculovirus/insect
cells, plant cells, and mammalian cells [75]. For clinical purposes, recombinant proteins
like interferons, growth factors, thrombolytic drugs, and hormones have been produced
in E. coli, Chinese Hamster Ovary cells, Saccharomyces cerevisiae, murine myeloma cells,
etc. [76]. Some of these systems have already been tried to treat diabetes, multiple sclerosis,
congestive heart failure, cancer, anemia, and asthma [77].

For VLP production, heterologous gene expression is used to clone the gene(s) of
interest (e.g., virus coat proteins). For example, the heterologous expression has been
used to produce VLPs derived from the coat proteins of (1) single- and double-stranded
DNA viruses (e.g., human adenovirus B (type 3), canine parvovirus, and JC polyomavirus;
(2) single-stranded RNA positive-sense viruses (e.g., Lassa virus, H9N2 avian influenza
virus, and Ebola virus); (3) single-stranded RNA negative-sense viruses (e.g., Flock house
virus, cytomegalovirus, and papaya mosaic virus); and (4) double-stranded RNA viruses
(e.g., rotavirus and infectious bursal disease virus).

6. Morphology and Manipulation of Viral Capsids

The Caspar-Klug theory (CK theory) dictates the symmetry of the viruses. This theory
assumes that most viruses adopt icosahedral arrangements that vary in size from 20 nm
to 800 nm, dictated by the number of protein–protein and protein–nucleic acid interac-
tions [78,79]. These events promote the arrangement and maturation of the capsomers,
receptor binding, cell uptake, and release of genetic material. However, the structural
architecture and symmetry of viral capsids are dictated by the triangulation number (T).
This triangulation number is important, because the higher this value is, the more the diam-
eter of the capsid and its loading capacity and number of interactions will increase [78,80]
(Figure 4). For example, the capsomers of an icosahedral capsid contain either pentagonal
(pentons) or hexagonal (hexons) subunits, and the T number defines their symmetry and
location. The T number is defined as the subdivision of the 20 triangular shapes that
conform to an icosahedron.
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Figure 4. Several triangulations and diameters of viral entities. AAV, adeno-associated virus; CCMV,
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bursaria Chlorella virus.

The simplest capsomers are T = 1, built by 60 T subunits. In contrast, more complex
structures result in higher T values. The interpretation and manipulation of these values
allow the modification of the VLP diameter, rigidity, and the number of interactions
between the capsid subunits [80]. Previous studies on the protein organization in capsomers
demonstrated the presence of complementary proteins such as scaffold proteins (e.g., the
proteins gp8, gp9, and gp10), which prevent the formation of incorrectly folded structures,
stimulating growth, stability, and maturation of the capsid [81]. Moreover, other factors
also affect the folded structures, such as the nature of the amino acids, the peptide chain
structure, the pH, the load, the temperature, the salt concentration, and the presence of
denaturing agents (see Figure 5) [82].
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Likewise, it has been explained how the self-assembly of capsomers considers the
formation of covalent bonds (e.g., disulphide bridges and interactions with Ca++), as well as
weak interactions (e.g., van der Waals forces and ionic and hydrogen interactions) between
the amino acid residues and the capsomers located in the structure. However, interactions
may occur between the capsomers [83]. Therefore, manipulating the interactions and
the other elements mentioned above can be used to improve the changes related to the
resistance, stability, and hardness of the viral particles in ex vivo models [84].

VLPs have three available interfaces to be manipulated, either chemically or genet-
ically. These include the external interface, the interface between protein subunits, and
the internal interface. The last of these structures has been used to encapsulate materials
of therapeutic interest from enzymes [85], genes [86], imaging agents [87], and DNA or
RNA [88]. Thus, the molecular precision offered by the combination of nanotechnology and
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chemical bioconjugation techniques allows the intrastructural modification of capsomers
through the insertion or extension of amino acid fragments (e.g., lysine, cysteine, aspartate,
glutamate, and tyrosine residues) [89]. The result is an entirely sophisticated nanometric
platform at the end of the process regarding its tropism and cell uptake [74].

In this regard, remarkable improvements are achieved regarding the capacity for
therapeutic cargo, plasmids, mRNAs, siRNAs, antibodies, and peptides delivery [90].

For more than a decade, the design of drug delivery systems has been considered
successful, especially during the encapsulation of chemotherapeutic agents from materials
designed by nanotechnology [91,92]. For example, successful results were obtained when
doxorubicin was entrapped upon an extensive modification of many modularized peptides
(i.e., tumor-targeting peptide, lipophilic peptide NS5A1-31, and 6xhis tag) from the internal
face of the VLP derived from the hepatitis B virus [93]. Likewise, studies have focused on
using MS2 VLPs modified with the SP94 peptide to release siRNA cocktails (<150 pM); ricin
toxin A-chain (RTA) (100 fM); and chemotherapeutic drugs such as doxorubicin, cisplatin,
and 5-fluorouracil (<1 nM) into human hepatocellular carcinoma and human epidermoid
carcinoma cell lines [94].

7. Functionalization of the VLPs

The surface modification of VLPs can be achieved with covalent, noncovalent, and
genetic approaches. Figure 6 illustrates this classification and possible ligands used to func-
tionalize VLPs. In the covalent approach, canonical amino acids (i.e., aspartic acid, cysteine,
glutamic acid, lysine, and tyrosine) are incorporated to act as reactive side chain moieties
able to form biocompatible bonds with the VLP surface [48]. In the case of noncovalent
methods, electrostatic interactions include antigens and adaptors to decorate the surfaces
of VLPs [75]; however, these approaches might lead to unstable VLPs during storage.
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In genetic procedures, small or entire proteins are accommodated on the VLP surface
via loop insertion, N-terminus/C-terminus (N/C-ter) modification, or the mutation of
amino acid residues. In loop insertion approaches, epitopes are introduced into the surface-
exposed loops of capsid proteins from VLPs to induce strong neutralizing responses [95].
During N/C-ter modification, foreign peptides are introduced into the N/C-ter of the cap-
sid proteins from VLPs without altering their immunogenicity or structure; this approach
is commonly implemented during cVLP production (see Figure 6) [95]. The mutation of
amino acids has been performed to add chemical reactivity to specific sites of the VLP sur-
faces, modify their immunogenicity [47], and evaluate their self-assembly and stability [96].
In this regard, genetic methods have been used to redesign the surfaces of VLPs with drug
delivery and in vivo imaging applications [97]. Nevertheless, such approaches have also
helped construct VLPs to treat lysosomal storage diseases [47].
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Post-translational modifications (PTMs) are biochemical events that change the proper-
ties of a protein after translation [78]. In such biomolecules, PTMs occur from enzymatically
adding groups to one or more specific amino acids in the protein. The chemical moieties
added during this process include acetyl, glycosyl, phosphoryl, methyl groups, etc. [98].
Although incorporating such molecules might compromise the activity, physicochemi-
cal properties, conformation, stability, and localization of proteins [99], they might also
increase the pharmacological properties of peptides and drive their proper folding into
three-dimensional structures [100,101].

For VLPs, PTMs depend upon the expression system used and are convenient for
enhancing their immunogenicity, antigen stability, and therapeutic properties. For example,
a Qβ bacteriophage VLP-based vaccine produced in E. coli has been phosphorylated at
Thr181 to reduce the aggregation of hyperphosphorylated pathological Tau (pTau) in non-Tg
and rTg4510 mice [102]. In another study, VLPs vaccines expressed on Nicotiana benthamiana
displayed influenza hemagglutinin (HA) glycoproteins and elicited immunoglobulin G
(IgG) and immunoglobulin E (IgE) responses in 34% of subjects without hypersensitivity or
allergic reactions [103].

In contrast, baculovirus expression systems (BES) have permitted other PTMs on VLPs,
such as acylation, mannosylation, and disulphide bond formation. Such modifications
have enabled the expression of multiple VLPs sharing functional similarity, structural
arrangements, and antitumor response enhancement [104,105]. In plant expression sys-
tems, the stability and proper folding of VLPs are attained with N- and O-glycosylation
patterns. These PTMs are entailed during cell adhesion, protein targeting, and immune
responses [106].

8. Characterization

Considering that VLPs are NPs, we can characterize them following the standard
techniques used to reveal the morphology, size distribution, zeta potential (ζ-potential),
molecular weight (Mw), and elemental composition of NPs [107]. Examining such features
is relevant to promoting their interaction with cells, designing nanoplatforms for biomedical
applications, or averting their toxicity [108].

The particle morphology of VLPs can be examined with transmission electron mi-
croscopy (TEM) and scanning electron microscopy (SEM). However, other types of electron
microscopy (EM), such as cryo-EM, have been used to report the morphology of influenza
HA VLPs and visualize their interactions with murine DCs [109].

For VLP-based vaccines, TEM has been used to confirm the size and morphology
of many VLP-based vaccines, for example, spherical porcine encephalomyocarditis virus
(EMCV) VLPs (30–40 nm) [110], HPV VLPs (40–60 nm) [111], and mutated Bombyx mori
cytoplasmic polyhedrosis virus VLPs (50–70 nm) [112].

In the case of SEM, the size, shape, and surface composition can be analyzed. For VLPs,
this tool has been applied in combination with TEM to observe the size and corroborate
the morphology of SARS-CoV-2 VLPs [113], influenza H7N9 VLPs (120 nm) [114], and
Macrobrachium rosenbergii nodavirus VLPs (27-30 nm) targeting epidermal growth factor
receptor (EGFR)-positive colorectal cancer cells [115]. In addition, the distribution of the
sizes of NPs is complemented with other characterization techniques such as dynamic light
scattering (DLS).

DLS, also known as photon correlation spectroscopy (PCS) or quasi-elastic light scatter-
ing (QLS), is a noninvasive tool used to measure the Brownian motion of macromolecules
in a solution [115]. A DLS analysis has been used to study NP size distribution—from sub-
micron to nanometers—and detect conformational changes of nucleic acids or to study the
sizes of various nanoformulations [115–117]. This method is widely used for protein-based
nanomaterials to detect aggregates in macromolecular solutions, the size of proteins, or
to monitor the binding capacity of ligands [118]. For VLPs, DLS has been established as a
simple method suitable for uncovering the size and aggregation of VLPs. For example, it
has been used as a powerful method to detect the aggregation of VLP-based vaccines, such
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as quadrivalent HPV VLPs [119]. In combination with other characterization techniques,
such as circular dichroism (CD) and UV–Vis spectroscopy, DLS has been used to monitor
the hydrodynamic size and stability of Norwalk virus (NV) VLPs at variable temperatures
and pH conditions [120,121].

DLS is also used to determine the ζ-potential of NPs. The ζ-potential, also known
as the electrokinetic potential, is the potential at a colloid particle’s slipping/shear plane
moving under an electric field. The ζ-potential reflects the potential difference between
the electric double layer of electrophoretically mobile particles and the dispersant layer
around them at the slipping plane. The magnitude of the ζ-potential indicates the degree of
electrostatic repulsion between adjacent, similarly charged particles in a dispersion. Thus,
the ζ-potential is an important indicator of the stability of colloidal dispersions. A high ζ-
potential value (+ or −30 mV) will confer stability, and the solution or dispersion will resist
aggregation. This value is affected and could be modulated by the VLP functionalization.

To assess the magnitude of the ζ-potential, DLS instruments require minimal sample
preparation and low-cost laboratory materials. DLS instruments are provided with a laser,
light detector, and sample holder. For ζ-potential measurements, particles suspended in the
medium scatter the incident laser light in all directions, and hence, the scattering intensity
is recorded by the detector [115]. Since the frequency between the scatter and original light
are different, they are optically mixed, deduced from the Doppler shift, and the ζ-potential
is calculated by different equations [122].

In terms of the sample analysis, DLS measurement conditions must be defined to
avoid variabilities on the resultant ζ-potential; the factors that influence this value are
temperature, solvent ratio (e.g., organic solvents), pH, presence or not of surfactants, the
existence of ions in a solution, and ionic strength [123–125]. In addition, the DLS analysis
must consider the intrinsic features of the produced NPs to report the acquired ζ-potential;
these characteristics include their size, shape, sedimentation, polydispersity, and presence
of conjugates [126,127].

For VLPs, DLS instruments have been used to record the ζ-potential of various prepa-
rations, such as VLPs derived from GI.1 and GII.4 noroviruses and the feline calicivirus
at different pHs, temperatures, and ionic strengths [128]. In another study, the ζ-potential
of the Physalis mottle virus (PhMV) VLPs used as nanocarriers of photosensitizers (i.e.,
Zn-EpPor) and drugs (i.e., doxorubicin and mitoxantrone) was studied using DLS [87].

CD remains one of the gold standards for evaluating the secondary structure, inter-
molecular interactions, folding, ligand-binding properties, and stability of proteins [129].
The structural behavior of such biomolecules is reflected in the CD spectra, which are
divided into two regions. The first region is referred to as far-ultraviolet (UV) (190–250 nm),
and the second one is termed the near-UV (250–320 nm) region [130]. In this sense, the
former is used to characterize protein secondary structures, and the latter provides an
insight into the tertiary structure of various proteins [131].

Despite the differences between such regions, both have been useful in understanding
the stability of protein structures against variable conditions. For VLPs, the CD has been
performed to evaluate the influence of temperature, pH, and ionic strength on the stability
of VLPs derived from the noroviruses GI.1 and GII.4 [132]. Another study has used it to
estimate the secondary structure (α and β-sheet contents) and thermal stability at 52 ◦C of
prawn nodavirus capsid VLPs displaying the HBV ‘a’ determinant [133]. However, other
spectroscopic techniques, such as UV–Vis spectroscopy and nuclear magnetic resonance
(NMR), are also recommended.

UV–Vis spectroscopy is another absorption spectroscopy technique used to character-
ize organic and inorganic samples. In this method, the absorption of UV–visible radiation
causes the excitation of electrons from lower to higher energy levels and is based on the
Beer–Lambert law. In proteinaceous samples, the UV absorption occurs from 180 to 230 nm
due to π → π∗ transitions in the peptide bonds; this phenomenon is based on the capac-
ity of aromatic side chains (tryptophan, tyrosine, and phenylalanine) to absorb UV–Vis
radiation [134]. For the characterization of NPs, UV–Vis spectroscopy is a suitable method
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because of its optical features that are sensitive to concentration, size, shape, and agglom-
eration [135]. For VLPs, this tool has been used to evaluate the enzymatic activity and
aggregation index of glutathione produced on P22 VLP nanoreactors [136]. In addition,
UV–Vis spectroscopy has been employed to detect the conjugation ratio and confirm the
functionalization with a glycosylated mucin-1 peptide of breast cancer VLP-based vaccines
derived from RHDV [137].

As aforementioned, NMR spectroscopy is used during the characterization of VLPs.
NMR is a reproducible and nondestructive technique that describes the response of nuclei
(i.e., 1H, 13C, 5N, and 31P) to an applied magnetic field [138]. At an atomic resolution
level, the NMR spectroscopy analysis yields information about protein complex interac-
tions, conformational changes, self-assembly, and thermodynamics in near-physiological
conditions [139,140]. For NPs, this technique is used to examine their formation, morphol-
ogy, and physical properties in solution or solid states [141]. In the case of VLPs, NMR
spectroscopy has been used to monitor the disassembly process of Qβ-VLPs labeled with
19F in cell lysates and combined with microscopy techniques (i.e., confocal fluorescence
microscopy) to observe their cellular internalization [142]. However, this event can be
influenced by the Mw of such nanoplatforms.

The Mw of polymeric NPs influences their cargo capacity, the release profile of thera-
peutic molecules, and the cell internalization process [143]. There are multiple methods to
separate NPs through their Mw. For instance, the size and charge by gel electrophoresis,
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), capillary elec-
trophoresis (CPE), isoelectric focusing, etc. [144]. Electrophoresis is performed to separate
complex protein samples from cells and immunoprecipitate, column fractions or subcel-
lular fractions [145]. In this method, two electrodes of opposite charges connected by a
supporting medium (e.g., cellulose acetate, agarose, starch gel, and polyacrylamide gel) are
used to induce the migration and separation of charged particles.

For protein-based NPs, some of these methods have been useful in assessing the Mw
and purity of NPs directed at the tumor microenvironment [146]. For VLP separation, CGE
has been manipulated to characterize the process and formulation of the component protein
sizes and ratios of VLP-based vaccines derived from Western, Eastern, and Venezuelan
equine encephalitis (WEVEE) viruses [147]. Moreover, microfluidic gel electrophoresis has
been used to characterize Qβ-VLP mutants (i.e., K16F and K16Y), who manifested varying
degrees of self-assembly and interactions with plasma membrane components [148]. The
Mw of VLPs is inspected with other analytical techniques such as charge detection mass
spectrometry (CDMS).

CDMS is a quantitative method that provides information about the Mw of DNA
fragments, natural products, peptides, and proteins [149]. This technique is based on
producing ion fragments separated according to their mass-to-charge ratio (m/z) [150].
For the interested reader, the fundamentals of this tool, types, and potential applications
have already been reviewed by Glish and Vachet [151]. For NP characterization, CDMS
contributes to understanding their elemental, molecular, chemical state, and structural
information. Therefore, it has been applied to characterize various nanostructures, such
as metal nanoclusters containing gold or silver [152,153]. For VLPs, some modalities of
MS, such as native electrospray ionization MS, have been used to assess the Mw of VLPs
derived from Norovirus West Chester GI.1., CPMV, and bacteriophages P22 and T5 [154].
In another study, charge detection MS (CDMS) has been mentioned as a robust method that
can provide the mass distribution of antigens, their masses, and the presence of impurities
on VLP-based vaccines [155].
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9. Discussion

In nature, proteins participate as catalysts, cellular and molecular processes mediators,
and building blocks in eukaryotic and prokaryotic living forms. In biotechnological re-
search, proteins are used to manufacture novel molecules (e.g., antibodies, hormones, and
enzymes) able to modulate immune responses, diagnose diseases, and deliver therapeutic
compounds [156]. Given their functions, proteins can be used to design biodegradable,
stable, safe, and effective nanomaterials with therapeutic activities [157].

VLPs are a special class of protein-based nanomaterials that resemble the architecture
and symmetry of wild-type viruses. As mentioned in previous sections, the symmetry of
VLPs is dictated by their T number; the larger this number is, the larger their size and cargo
capacity (see Figure 4). This parameter is controlled by modulating the media conditions,
such as pH and salt concentration. It is of great importance to understand, as it can be
manipulated to display epitopes, improve the packaging capacity of bioactive molecules,
and enhance the interaction of VLPs with immune cells such as B cells [158].

Another interesting feature of VLPs is that they are expressed in eukaryotic and
prokaryotic cells. Table 2 denotes that expression systems, such as bacteria strains, plants,
mammalian cells, and insect cells, have been used to produce VLP-based vaccines against
cancer or viral infections. Each system is selected based on its cost, reproducibility, scala-
bility, and purpose of the study. In addition, their advantages and disadvantages are key
aspects to consider. For example, bacteria cells (e.g., E. coli strains) are preferred because
of their growth rate, high expression yield, and ease of scaling-up. Similarly, the use of
other expression systems such as yeast cells (e.g., S. cerevisiae, P. pastoris, and H. polymor-
pha) can be scalable, cost-effective, and intrinsically, they functionalize (partially) VLPs
by PTMs [159,160]. In contrast to bacteria expression systems, mammalian cells are not
cost-effective, but they are special, as they can be used to express eVLPs and non-eVLPs for
the mass production of glycosylated products [160,161].
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Table 1. VLPs with biomedical applications: expression systems, structure, and features.

Name Expression System Shape Features and Biomedical Applications Reference

tHBcAg VLPs

Icosahedral
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Table 2. VLPs with biomedical applications: expression systems, structure, and features.

Name Expression System Shape Features and Biomedical Applications Reference

HBcAg-wDIII VLPs

Spherical

• Like other Flaviviruses, wDIII induces both protective immunity
and neutralizing antibody responses.

• N. benthamiana leaves yield ~95 homogeneous VLPs.
• 25 µg HBcAg-wDIII VLPs elicited immunological responses in

BALB/c mice.
• The produce nanoplatform is low-cost and effective against

infections caused by WNV.

Nicotiana benthamiana
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Regarding the use of plants to produce these platforms, they have been reviewed
as a low-cost scalable system to express well-assembled VLPs in high quantities [165].
However, given the capacity of plant cells to decorate the surfaces of VLPs with distinct
glycoforms at different patterns, the produced VLPs can induce diverse side effects [166].
Finally, insect cells (e.g., Sf9 or High FiveTM) can contribute significantly to VLP production
because of their high protein expression levels and capacity to express numerous proteins
simultaneously, which is convenient for constructing eVLPs, non-eVLPs, and cVLPs for
vaccine development [167]. However, the presence of host–cellular contaminants can be
laborious to remove and may interfere with the interaction between the produced VLPs
and their cellular targets; this event is translated into lower immune responses.

In addition to the processes from which eukaryotic or prokaryotic cells express the
coat proteins of VLPs, the heterologous expression of the coat proteins allows genetic ma-
nipulation to improve the VLP properties, such as drug delivery [168,169], enzyme delivery
for enzymatic replacement therapy [8,9], enzymatic nanoreactors [15,170], nanoreactors
for drug activation [171,172], immunotherapy for cancer treatment [168,173], and medical
imagenology [87,174]. Interestingly, no information on using VLPs to entrap bioactive
compounds such as natural products could be found in the literature. Thus, this area must
be explored to further strengthen the applications of VLPs.

Functionalization procedures are the cornerstone to enhancing the drug release, inter-
action with cells, and efficacy of NPs. According to our review, the surfaces of VLPs are
decorated with genetic and chemical methods. The former is applied to construct VLPs as
nanoreactors or drug delivery systems, whereas the latter is implemented to fabricate VLPs
as nanocarriers of genetic material, drugs, magnetic resonance imaging (MRI) agents, pho-
tosensitizers, vaccines, and NPs [48,175]. However, their implementation could represent
some disadvantages that are noteworthy to mention.

For instance, genetic methods must consider the size of the biomolecule to be in-
serted, as it can induce detrimental effects on the assembly and stability. In addition, the
resemblance of the VLP-based preparation to the native virus from which it was produced
can be disrupted [176]. On the other hand, chemical methods are unspecific and can be
expensive and require complex purification procedures. Furthermore, the successful incor-
poration of chemical ligands can be difficult to analyze, since they might not be completely
incorporated in VLP surfaces [177,178]. Even though these differences can impede VLP
applications, the successful incorporation of ligands and their effects on VLP morphology,
size, and composition must be determined by characterization methods.

In nanomedicine, the characterization of nanomaterials is a major concern required to
understand their interaction and fate in biological systems and their safety and therapeutic
efficacy [179]. Features such as the size, shape, and biochemical properties of NPs can vary
against methodological (i.e., synthesis method), environmental (i.e., storage time), and
commercial (i.e., laboratory supplier) factors [180].

VLP-based preparations are rigorously characterized by several analytical techniques
commonly used in inorganic nanotechnology and protein chemistry. For vaccine develop-
ment, the size of VLPs is a crucial first step to decide, since this parameter influences their
interaction with immune cells and, hence, the immune response that VLPs provoke. Com-
parably, controlling their geometry and molecular patterns by modifying the temperature,
pH, and salt concentration can result in nanoplatforms with different capacities to induce
humoral immune responses and side effects [181].

In view of the importance of the size, shape, and arrangement of VLPs, we reviewed
the fundamentals and applications of DLS, TEM, UV–Vis, CD, MS, and NMR techniques to
study such parameters, as well as their composition, Mw, and assembly.

For NP characterization, spectroscopy techniques such as DLS allow the detection
of agglomerates, size analysis, and yield information about the possible shape of the pro-
duced nanoplatform. This method is extremely advantageous, since it is easy to perform
for homogeneous samples, cost-effective, and does not require elaborate sample prepa-
ration procedures. However, its use can represent significant limitations; for instance,



Int. J. Mol. Sci. 2022, 23, 8579 16 of 24

samples must undergo constant Brownian motion during the analysis to avoid variabilities
throughout data acquisition. Moreover, since numerous calculations are performed in the
interface of DLS instruments, various assumptions are made regarding the shape of the
NPs, which usually is assumed to be spherical [107]. Therefore, the morphological analysis
of the nanomaterials must be complemented with TEM.

Since the development of TEM in the 1930s, it has been a powerful technique widely
used to examine, individually, the qualitative features of many biological samples and
NPs at a high-resolution capacity [182]. However, special training is needed to manage
its operating system and complex sample preparation methodologies. In addition, it has
been reviewed that the sample drying process is critical and that, if TEM is not operated
carefully, the sample can be degraded at high voltages [183].

Regarding the use of other visualization techniques, new protocols for cryogenic
electron microscopy (Cryo-EM) can be advantageous in determining the actual structure
of VLPs in aqueous systems [184]. Facilitated by recent advances, Cryo-EM has become a
powerful tool to routinely solve near-atomic resolution three-dimensional protein structures
preserved by embedding them in an environment of vitreous water. However, since
biological samples (e.g., viral proteins, organelles, and tissues) are sensitive to radiation,
and this technique can lead to poor image quality due to sample heterogenicity [185].

On the other hand, when developing specific protocols for analyzing VLP-based
preparations by liquid chromatography-tandem mass spectrometry (LC-MS/MS), this tech-
nique is a versatile, robust, and sensitive methodology used to characterize many protein
molecules [186]. However, the use of MS can be limited by the ionization process, incom-
plete ionization, and interference. These problems can be resolved by considering other
ionization techniques, such as time-of-flight MS (TOF-MS) or ion capture MS. Developing
unique strategies can improve the precision, accuracy, and sensitivity of MS detection.

According to the experience of our group in NMR analyses [187,188], we consider
that their use in NP characterization must be strengthened in certain aspects. For example,
even though NMR is a distinguished laboratory technique among organic chemists, its
utilization requires training and expertise in data curation, especially for scientists who
actively participate in nanomedicine research fields [141]. In addition, knowledge about
instrumentation and sample preparation before a NMR analysis must be mandatory.

Nowadays, there are excellent reports regarding the production of VLPs. However,
we consider that this work complements the importance of considering additional factors
(i.e., T number, limitations of characterization techniques, and large-scale application)
to use VLPs as vaccines or nanocarriers for therapeutic applications. Moreover, for the
interested reader, this review provides insight into the basic principles of the common
characterization techniques used in nanomedicine. Therefore, this work can be followed
not only by specialists but also by students involved in the biomedical field.

10. Conclusions

This review discusses the VLPs as self-assembled sophisticated nanometric systems
resembling wild-type virus structural and biological properties, showing great potential
in the biomedical field. VLPs are constituted by different structural components that
make them suitable to present antigens or deliver drugs, genes, or imaging agents into
experimental models.

This work compiled the recent scientific literature about expressing VLPs in different
organisms and cell lines to prepare vaccines or nanocarriers for biomedical purposes. In
addition, an insight into other analytical techniques to assess the chemical and physical
composition of VLPs derived from various viruses is provided. However, in contrast to
conventional protocols for nanosized materials and protein chemistry, new and specific
protocols for VLP characterization should be developed. Finally, new analytical techniques
could be established to improve the VLP-based preparations to understand better and
modulate the encapsidation processes.
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Further studies must assess their safety, stability, integrity, potential toxicity, and
medical potency against variable temperatures and pHs.
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