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Abstract

The interferon (IFN) response is the major early innate immune response against invading viral 

pathogens and is even capable of mediating sterilizing antiviral immunity without the support of 

the adaptive immune system. Cumulative evidence suggests that the gut microbiota can modulate 

IFN responses, indirectly determining virological outcomes. This review outlines our current 

knowledge of the interactions between the gut microbiota and IFN responses and dissects the 

different mechanisms by which the gut microbiota may alter IFN expression to diverse viral 

infections. This knowledge offers a basis for translating experimental evidence from animal 

studies into the human context and identifies avenues for leveraging the gut microbiota–IFN–virus 

axis to improve control of viral infections and performance of viral vaccines.

The triangular relationship between the host, the gut microbiota, and viral 

pathogens

Coevolution of the intestinal microbiota (see Glossary) and the host innate immune system 

has resulted in a delicate balance of reciprocal interactions to maintain homeostasis in the 

gut. The microbiota plays a fundamental role in the induction, training, and maintenance of 

the host immune system [1]. At the same time, the immune system has evolved to constrain 
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and maintain a symbiotic relationship with these microbes [2]. A critical role for the gut 

microbiota in shaping host immunity becomes readily apparent in the context of eukaryotic 

viral infections. On the one hand, the gut microbiota can directly interact with virus particles 

and influence their infectivity. Numerous studies have described the mechanisms by which 

the gut microbiota is able to promote viral replication and pathogenesis (reviewed in [3,4]). 

On the other hand, the gut microbiota can prime and activate host antiviral immunity [5]. 

Together, the gut microbiota, host immunity, and viral pathogens interact in a complex 

triangular relationship to determine infection and disease outcomes.

One recurring mechanism by which the gut microbiota has been found to influence antiviral 

control is via modulation of the IFN response. IFNs are a class of cytokines, secreted by 

host cells upon viral infection, that have a potent antiviral activity [6,7]. IFNs have dual 

actions: first, they induce an immediate antiviral state in infected and neighboring cells, and 

second, they link the innate and adaptive immunity, mainly through priming of dendritic 

cells (DCs) [7,8]. Evidence to date indicates that the gut microbiota can either promote or 

suppress IFN signaling, depending on the specific virus and setting [9–19]. Interestingly, the 

influence of the gut microbiota on IFN responses appears to be conserved across a wide 

range of viruses and, in parallel, numerous bacteria in the microbiota and their byproducts 

can activate IFN signaling. Understanding how the microbiota controls IFN responses will 

be critical to inform novel antiviral and viral vaccination strategies.

This review provides a brief overview of IFN biology followed by a detailed delineation 

of how the gut microbiota has been shown to modulate antiviral IFN responses at both 

local and remote sites, discussing the specific mechanisms underlying microbiota and 

IFN interactions during viral infections. We focus on the gut microbiota, although these 

microbiota-driven mechanisms are likely at play across diverse anatomic sites, such as the 

lung and skin. Finally, the implications of these host–microbiota–viral pathogen interactions 

for antiviral therapies and viral vaccination strategies are explored.

Brief overview of IFN responses

The IFN cytokine family contains three distinct types of IFN – types I, II, and III – with 

antiviral activity associated mainly with type I IFN and type III IFN, which we focus upon 

here [20]. The type I IFN family consists of IFN-α, IFN-β, IFN-ε, IFN-κ, IFN-δ, IFN-ω, 

IFN-ζ (mice), and IFN-τ (ruminants), though IFN-α and IFN-β are the best studied [21]. 

These cytokines are broadly associated with protection against systemic viral infections and 

contribute to restriction of infection at mucosal sites [7]. Type III IFNs, consisting of four 

different subtypes of IFN-λ, play a more prominent role in the protection of mucosal sites 

such as the intestinal and respiratory tracts [22].

Upon viral infection, the expression of IFNs is triggered by the sensing of viral nucleic 

acid by a variety of pattern-recognition receptors (PRRs). Both extracellular receptors, 

such as the membrane-bound Toll-like receptors (TLRs), and cytosolic receptors, such 

as RIG-I-like receptors (RLRs) and DNA sensors [which include cyclic GAMP synthase 

(cGAS)], can activate the expression of IFNs [8]. Subsequently, released IFNs bind to 

their respective receptors in an autocrine manner (the infected cell itself) or a paracrine 
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manner (the neighboring cells) [23]. Type I IFNs bind to a heterodimer receptor complex 

composed of IFNAR1 and IFNAR2, while type III IFNs (or IFN-λ) bind to a heterodimer 

receptor complex comprised of IFNLR1 and IL-10RB. Despite distinct receptor complexes, 

type I and III IFNs share similar signaling cascades involving the phosphorylation of the 

JAK/STAT pathway and the translocation and binding of interferon regulatory factors (IRFs) 

to IFN-stimulated response elements (ISREs), inducing the expression of IFN-stimulated 
genes (ISGs) [24]. Expression of ISGs drives an antiviral state in infected and uninfected 

neighboring cells, resulting in direct interference with viral replication and dissemination 

[25].

Emerging paradigms suggest that type I and III IFNs each have unique and distinct roles in 

controlling viral infection. IFN-λ plays a more prominent role in the protection of mucosal 

sites, whereas IFN-α/β is more involved in the control of systemic infections. The localized 

function of IFN-λ results from the limited expression of IFNLR1 subunit of the type III IFN 

receptor to predominantly epithelial cells and only a subset of immune cells. By contrast, the 

receptor subunits for type I IFN, IFNAR1 and IFNAR2, are broadly expressed in nearly all 

nucleated cells [26]. Moreover, the IFN-α/β response is characterized by a rapid increase but 

also rapid decline of high-magnitude ISG expression, while ISG expression induced by IFN-

λ is of lower magnitude, more delayed, but more sustained [27]. The differential localization 

and kinetics of IFN-λ responses may confine antiviral responses to mucosal sites without 

inducing excessive inflammatory responses systemically, unless local responses fail to curb 

the infection [21]. Comprehensive comparisons between IFN-α/β and IFN-λ for specific 

viral infections are available elsewhere [8,24,28].

In addition to directly inducing an antiviral state, IFNs are also important regulators of the 

adaptive arm of the immune system. Nearly all immune cells express IFNAR1 and IFNAR2 

and are therefore responsive to type I IFN. Conventional DCs (cDC) in particular rely 

on cues from type I IFNs for functional maturation and migration [29]. Functional cDCs 

are important in the priming of both T cells and B cells. Type I IFNs can also directly 

signal T cells to become activated and proliferate [30]. The formation of germinal-center 

B cells and subclass distribution of IgG also depends on IFN-α/β signaling [31]. The role 

of IFN-λ in regulating adaptive immunity is only beginning to be understood. The extent 

to which human immune cells express IFNLR1, and thereby respond to IFN-λ stimulation, 

remains controversial. Naïve B cells are responsive to IFN-λ and require IFN-λ signaling 

to differentiate into plasmablasts and become functionally active, permitting cytokine release 

and antibody production [32]. CD8+ T cells do not directly respond to IFN-λ but still 

require IFN-λ to modulate the activation, antigen uptake, and migration of lung DCs [33]. 

In addition, IFN-λ can indirectly regulate T cell and B cell responses through the thymic 

stromal lymphopoietin (TSLP) axis, a cytokine produced by M cells that is important 

for adaptive immune regulation [34]. In summary, IFNs are powerful antiviral cytokines, 

playing a central role in orchestrating innate and adaptive immune responses to viral 

infection.

Wirusanti et al. Page 3

Trends Microbiol. Author manuscript; available in PMC 2022 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The gut microbiota modulates IFN responses locally and remotely

The gastrointestinal tract houses the body’s most densely populated microbiota, and thereby 

signals from the gut microbiota influence mucosal immune responses to enteric virus 

infections [35]. However, it is also widely accepted that the gut microbiota can influence 

sites remote from the gastrointestinal tract. Correspondingly, the gut microbiota modulation 

of IFN responses occurs not only locally but also at extraintestinal compartments (Box 1). 

The means by which the resident intestinal microbiota influences distal sites remains an 

active area of study. There are at least two possible mechanisms: (i) commensal bacterial 

products or metabolites enter the systemic circulation and reach distal sites where they prime 

residing immune and epithelial cells; and (ii) circulating immune cells sample components 

of the gut microbiota in the intestine then migrate to other parts of the body to influence 

the local immune response. Further defining the mechanisms of crosstalk between the gut 

microbiota and immune response will be essential to harnessing the potential of the gut 

microbiota in antiviral immunity.

Potential mechanisms underlying gut microbiota–IFN–viral interactions

Prior studies have uncovered a variety of mechanisms by which the gut microbiota 

modulates IFN responses, delineating different components of the bacterial microbiota that 

contribute to these interactions. Here, we outline three key mechanistic themes underpinning 

microbiota–IFN interactions in relation to viral infections: microbiota-mediated control 

of homeostatic IFN; microbiota-derived PRR ligands that induce IFN activation; and 

microbiota-derived metabolites that regulate IFN expression (Figure 1, Key figure). It is 

important to note that these mechanistic themes do not work in isolation but rather they are 

interconnected and overlapping with each other. Homeostatic IFN production, for instance, 

may be maintained by bacterial ligands and/or metabolites. In turn, these ligands and 

metabolites can influence and alter microbiota composition as well [36].

The gut microbiota controls homeostatic IFN and ISG expression

Current evidence points to a role of the microbiota in influencing and maintaining 

IFN responses before infections occur [10,18,19,37]. The gut microbiota modulates the 

expression of ‘homeostatic IFN expression’, a constitutive basal IFN expressed at a very 

low level that is crucial for timely activation of IFN antiviral activity upon infection 

[10,18,19,37]. Often, homeostatic ISG expression is used as a surrogate for IFN expression 

due to the extremely low and difficult-to-detect levels of IFNs in this basal state [37]. 

Germ-free (GF) or antibiotic-treated mice devoid of residing gut microbiota have altered 

basal type I and type III IFN expression and signaling, predisposing these mice to defective 

or delayed viral clearance following infection [10,18,19,37].

Plasmacytoid DCs (pDCs) are a subclass of DCs that are particularly important for the 

production of type I IFN. The bacterial microbiota can play a role in controlling the 

expression of homeostatic type I IFNs by pDCs, which is required for transcriptional, 

epigenetic, and metabolic programming of cDCs [10]. cDCs isolated from GF mice, when 

compared to cDCs isolated from control specific-pathogen-free (SPF) mice, lack numerous 

H3K4me3 epigenetic markers (indicative of transcriptionally active regions) for type I 
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IFNs and ISGs. As a consequence, when cDCs from GF mice are stimulated with poly 
I:C (viral antigen) or LPS (bacterial antigen), transcription factors downstream of PRR 

activation can translocate to the nucleus but fail to bind to the promoter regions of these 

genes [18]. Impaired cDC programming and maturation therefore likely leads to an inability 

of cDCs to optimally prime CD8+ T cell and natural killer (NK) cell responses.

Similarly, macrophages also depend on instructive signals from the bacterial microbiota to 

maintain homeostatic IFN responses. In murine models of lymphocytic choriomeningitis 

virus (LCMV) or influenza infection, depletion of the gut microbiota results in 

macrophages that are unresponsive to virus or IFN-β stimulation [19]. Further, genome-wide 

transcriptional analysis of these macrophages reveals that IFN-related genes, including 

PRRs and ISGs, are downregulated. This impaired homeostatic IFN signaling translates 

to defects in induction of adaptive immune responses when mice are infected with 

either LCMV or influenza virus, such that CD8+ T cell function and antigen-specific 

antibody production are both impaired [19]. Similar observations have been made for 

encephalomyocarditis virus (EMCV) infection, wherein antibiotic-treated mice display 

unresponsive macrophages, along with impaired NK cell toxicity and decreased type I 

IFN and ISG expression, with reduced survival and exacerbated disease phenotypes [15]. 

Interestingly, signals from the gut microbiota of conventional mice are able to limit EMCV 

replication in distal target cells in the brain to protect them from neurological pathogenicity 

[15]. Altogether, these studies underscore the likely importance of gut microbiota-derived 

signals in influencing homeostatic type I IFN responses and viral control at extraintestinal 

sites.

At mucosal sites, nonhematopoietic epithelial and stromal cells contribute significantly to 

the maintenance of mucosal immunity alongside immune cells. Nonhematopoietic cells are 

also equipped with PRRs to sense pathogens and produce cytokines [38,39]. Lung stromal 

cells, for example, respond to tonic type I IFN during homeostasis and produce basal ISGs 

in a microbiota-dependent manner. The source of type I IFN in the lung remains an open 

question. Type I IFN signaling in the lung induces basal ISG expression in both stromal 

and hematopoietic cells; when the gut microbiota is absent, ISG expression is disrupted in 

lung stromal cells but not in immune cells for unclear reasons [11]. It is possible that the 

regulation of baseline IFN and ISGs in mucosal compartments and systemic compartments 

is distinct. However, given the heterogeneity in microbiota models (antibiotic-treated versus 

GF mice), it also possible that differences in experimental models have led to observed 

discrepancies.

There is currently limited knowledge of the role of the gut microbiota in homeostatic IFN-λ 
signaling. Only one study so far has evaluated IFN regulation of basal ISG expression in 

the intestinal tract of mice [37]; it found that, in an antibiotic-treatment model, microbiota-

associated IFN-λ signaling drives expression of homeostatic ISGs in a nonuniform manner 

along the intestinal epithelium. Specifically, IFN-λ-driven tonic ISG expression is localized 

to the tips of the intestinal villi, suggesting preferential expression of homeostatic ISGs by 

mature enterocytes. The physiological relevance of this preferential localized expression of 

microbiota-induced homeostatic ISGs remains to be further investigated but does appear to 

be required to mount a timely and robust antiviral response against enteric viruses that target 
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mature enterocytes, such as MRV [37]. To date, no study has assessed homeostatic IFN-λ 
expression in airway epithelia. Considering the significance of IFN-λ in antiviral defense 

against respiratory pathogens, and the capacity of the gut microbiota to induce type I IFN 

expression at extraintestinal sites, homeostatic IFN-λ expression in the airway in response to 

microbiota-derived signals is an important area for future investigation.

The gut microbiota provides PRR ligands that can lead to IFN induction

Just like viruses, components of bacterial cells contain molecular patterns that can activate 

PRR signaling. Five different types of PRR can sense bacterial patterns, including TLRs, 

RLRs, NOD-like receptors (NLRs), DNA sensors, and AIM2-like receptors (ALRs). These 

bacterial PRRs are involved mainly in the induction of antibacterial signaling pathways, but 

a subset of these PRRs also induce IFN production during bacterial infection [40,41].

A recent study showed that TLR4 sensing of the outer membrane of Bacteroides fragilis, 

specifically the polysaccharide A (PSA) domain, leads to the induction of IFN-β by DCs 

in the colon lamina propria [9]. In vitro incubation of bone-marrow-derived DCs with 

PSA prior to vesicular stomatitis virus (VSV) infection results in a reduced percentage of 

infected DCs and increased cell viability. Oral administration of PSA to antibiotic-treated 

mice protects mice against infection with VSV or influenza A virus, increasing their 

survival in comparison to untreated controls [9]. This ability of the PSA of B. fragilis to 

induce protective TLR4-dependent IFN-β activity is distinct from TLR4 activation by the 

canonical Escherichia coli LPS ligand, which often leads to the induction of (excessive) 

proinflammatory responses [42,43]. Another nontoxic TLR4 ligand is the biopolymer 

poly-γ-glutamic acid (ϒ-PGA), which is produced by Bacillus sp. Similar to PSA, ϒ-

PGA induces IFN-β which can inhibit MNV entry and replication in vitro, while oral 

administration of ϒ-PGA to MNV-infected mice results in increased serum IFN-β and 

reduced MNV levels in Peyer’s patches and mesenteric lymph nodes [44]. Altogether, 

these studies highlight the potential of microbiota-derived PRR ligands to induce protective 

IFN antiviral responses.

Intracellular sensing machinery was previously considered irrelevant for extracellular 

commensal bacteria and thought to be reserved for detection of invasive pathogens. 

However, several in vitro studies suggest that intracellular PRRs are also able to sense the 

nucleic acid of commensal bacteria and thereby lead to the induction of IFN-β expression. 

TLR3, which detects double-stranded RNA, is discriminately activated by commensal lactic 

acid bacteria (LAB), but not by pathogenic bacteria. dsRNA is uncommon in bacteria and is 

synthesized only by specific species under certain conditions, a potential explanation behind 

the specific capacity of LAB to induce TLR3 activation [45]. In a separate study, LAB have 

been shown to induce IFN-β via cGAS-stimulator of interferon genes (STING) and RLR 

mitochondrial antiviral signaling protein (MAVS) activation in human macrophages. Both 

sensors recognize cytosolic DNA and RNA, respectively, and are classically associated with 

viral infections [46]. Intriguingly, the ability of individual strains of LAB to induce type I 

IFN is inversely correlated with their ability to induce NF-κB, suggesting strain specificity 

in inducing pro- or anti-inflammatory responses [47]. Further work is required to determine 
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whether these findings hold in in vivo experimental systems and if induction of IFN by 

intracellular sensors can provide protection against viral infections.

The involvement of bacterial microbiota ligands in the induction of IFN-λ is currently 

understudied. Early evidence, derived from in vitro stimulation of mouse bone-marrow-

derived DCs and human epithelial cell lines with a variety of bacterial TLR ligands, has 

shown that ligands of commensal bacteria can induce type III IFN expression, especially 

through TLR5 [48]. Thus, the possibility that the gut microbiota signals through TLRs to 

induce type III IFN merits further investigation.

The gut microbiota produces metabolites that can induce IFN production

Alongside being the source of PRR ligands, the gut microbiota produces a broad repertoire 

of metabolites that can act as key mediators of microbiota–host interactions. These 

metabolites are either a product of cometabolism of a dietary compound between the host 

and the gut microbiota or synthesized de novo in bacterial cells [49]. The potential of 

microbial metabolites to regulate host immunity is well recognized and has been reviewed 

comprehensively elsewhere [50,51]. Here, we discuss two classes of metabolites, short-chain 

fatty acids (SCFAs) and bile acids (BAs), that have been shown to modulate viral replication 

through IFN responses. Another microbial metabolite, desaminotyrosine (DAT), is also 

capable of inducing IFN responses resulting in reduced disease pathology despite negligible 

alteration in viral titer [52]. We anticipate that future research will uncover more relevant 

classes of microbiota-derived metabolites that can act as IFN modulators.

SCFAs—SCFAs are the product of fermentation of nondigestible dietary fiber by the gut 

microbiota. The composition of both host diet and anaerobic bacteria in the gut determine 

the SCFA profile of an individual. Acetate, propionate, and butyrate are the best-studied 

examples of SCFAs, and their role in shaping host immunity and physiology has been 

extensively described [53,54]. The immunomodulatory properties of SCFAs are ascribed 

to their function as histone deacetylase (HDAC) inhibitors, G-protein-coupled receptor 

(GPCR) agonists, and autophagy regulators [55].

SCFAs can modulate IFN responses to viral infections. Microbiota-derived acetate shows 

antiviral activity against RSV by increasing IFN-β in a GPR43-dependent manner. 

Mice administered either an SCFA-producer (species of the family Lachnospiraceae) 

or exogenous acetate exhibit reduced RSV pulmonary viral load, reduced migration 

of inflammatory cells into the lung, and overall improved survival [17]. Butyrate and 

propionate have been shown to have similar protective effects [17]. While the link between 

GPR43 engagement and IFN-β production needs further clarification, NF-κB activation has 

been implicated as evidenced by increased NF-κB p65 translocation to the nucleus following 

acetate supplementation [17].

Contrary to the capacity of acetate to restrict RSV replication in the mouse model, an 

in vitro study showed that butyrate supports the increased replication of several viruses 

[influenza A virus (IAV), reovirus, HIV, human metapneumovirus (hMPV), VSV] by 

reprogramming the expression of specific ISGs. The ability of butyrate to suppress ISG 

induction is suspected to be secondary to the HDAC-inhibitor properties of butyrate since 
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treatment with a synthetic HDAC inhibitor also suppresses ISG expression, and a histone 
acetyltransferase (HAT) inhibitor reverses this suppression [16]. These contrasting proviral 

and antiviral effects may arise from different types of SCFA and virus tested. The use of 

immortalized cell lines may also drive divergence in research findings as transformed cells 

may have altered signaling pathways.

Bile acids—Primary BAs, such as cholic acid (CA) and chenodeoxycholic acid (CDCA), 

are synthesized by the host in the liver. Primary BAs undergo conjugation with either 

glycine or taurine to become water-soluble before being excreted to the small intestine. 

In the small intestine, the gut microbiota remove these amino acid groups and transform 

primary BAs to secondary BAs such as lithocholic acid (LCA) and deoxycholic acid (DCA) 

[36]. Therefore, commensal bacteria help to shape the composition of BAs in the gut 

through their biotransformative activity. In addition to having important functional roles 

in digestion and lipid absorption, BAs can signal through numerous metabolic pathways. 

The two best-described BA receptors are the Farnesoid-X-receptor (FXR), a nuclear 

receptor preferentially activated by primary BA, and Takeda-G-protein receptor 5 (TGR5), a 

membrane-bound receptor preferentially activated by secondary BAs [56,57].

Evidence describing BA modulation of IFN signaling pathways and subsequent viral 

infection is conflicting. Some studies have reported that BAs can negatively regulate 

induction of IFN signaling pathways, facilitating viral replication. For example, BAs are 

required components in calicivirus cell culture propagation systems owning to their ability to 

suppress STAT1 activation and thereby facilitate calicivirus replication [58]. BA treatment of 

hepatitis C virus (HCV) cell culture systems, using autonomously replicating HCV replicons 

in hepatoma cells, similarly reduces IFN-α/γ anti-viral activity and thereby increases HCV 

RNA and protein expression [59]. In contrast, BAs have been reported to block chikungunya 

virus (CHIKV) and MNV replication in vivo using mouse models through the induction 

of type I and III IFN, respectively [13,14]. Colonization of antibiotic-treated or GF mice 

with the commensal bacterium Clostridium scindens, which produces DCA, results in 

suppression of CHIKV viremia in serum and blood leukocytes in a type I IFN-dependent 

manner. Oral administration of purified DCA is sufficient to recapitulate this protective 

effect of C. scindens colonization, highlighting the involvement of secondary BAs in 

inducing IFN responses [14]. Similarly, antibiotic-treated mice colonized with C. scindens 
or supplemented with DCA exhibit induction of IFN-λ signaling that protects against MNV 

infection in the proximal gut [13].

How the signals from BAs integrate into IFN signaling pathways is currently unclear. 

BA receptors FXR and TGR5 are the most obvious suspects given the involved signaling 

pathways. Infections by some viruses, such as LCMV, herpes simplex virus type 1 (HSV-1) 

and Sendai virus (Sev), can induce the expression of BA transporters, leading to BA 

accumulation in both hepatic and nonhepatic cell types [60–62]. This accumulation of 

BAs can subsequently induce type I IFNs through FXR and TGR5 activation. During 

LCMV infection in a murine model, CD8+ T cell-mediated destruction of LCMV-infected 

hepatocytes results in the release of BAs which then engage with FXR receptors in 

neighboring hepatocytes to induce the production of type I IFNs. In the absence of 

FXR receptors, type I IFN gene expression decreases, BAs accumulate, and immune 
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cell migration is disturbed, all leading to a failure of LCMV control [62]. Similarly, 

intracellular BA accumulation following infection with HSV-1 and SeV in THP-1 cells 

activates the TGR5–β-arrestin–sarcoma (SRC) kinase pathway. Subsequently, SRC kinase 

phosphorylates important components of the IFN signaling pathways, including RIG-I, 

MAVS, STING, TBK1, and IRF3, and thereby induces the expression of IFN-β [61]. It has 

been suggested that TGR5 may itself be an ISG because its expression is increased upon 

viral infection or IFN-β stimulation in a STAT-1-dependent manner [60]. In contrast, a study 

using microbiota-derived BA showed that DCAs directly prime IFN-λ activation during 

stimulation with poly(I:C) or MNV infection, and that coincubation of DCAs and synthetic 

FXR agonists results in abrogation of DCA-dependent enhancement of IFN-λ [13]. TGR5 

involvement was not tested in this system. More studies are needed to further clarify the 

roles of different BA receptors in the IFN response.

DAT—DAT is a product of commensal bacteria degradation of plant-derived polyphenol 

compounds (flavonoids) [63]. Administration of DAT into mice infected with influenza A 

virus protected mice from infection-associated mortality and morbidity but did not reduce 

viral titers [52]. DAT treatment reduced lung tissue immunopathology by augmenting the 

type I IFN response of phagocytic cells. Oral gavage with Clostridium, the commensal 

bacterium producing DAT, offered a similar protective effect [52]. Importantly, DAT 

treatment appears only to be protective when administered before infection occurs. DAT 

administration post-infection exacerbated disease outcomes instead [52].

Perspective: translating gut microbiota–IFN–viral interactions to a human 

context

The past several decades of research have transformed the understanding and appreciation 

of the numerous roles that the gut microbiota can have in the host defense against viral 

pathogens. Divergent microbiota profiles associate with both resistance and susceptibility 

to viral infections [64]. Similarly, the composition of the gut microbiota is an important 

factor in modulating the immune response to viral vaccination [65,66]. Full understanding 

of how the human microbiota can protect hosts from viral disease is needed to harness 

the microbiota’s therapeutic potential – either through antiviral therapies or through 

improvements in viral vaccine responses. Currently, research linking the gut microbiota 

to viral infections in humans is sorely lacking, with a preponderance of correlative studies 

in which microbiota-dependent mediators of immune responses to protection from viral 

infection remain largely unknown. Mechanistic insights from in vitro and animal studies 

can help to guide the exploration of microbiota-dependent antiviral immunity in the human 

context. It is also important to note that the human gut microbiota is a complex environment 

with numerous kingdoms of microbes beyond bacteria which can also strongly regulate 

IFN responses (Box 2). In addition, other nonintestinal compartments also have their 

own microbiota communities that may modulate local and distal immune responses. The 

microbiota composition of the lower respiratory tract, for instance, is a better predictor of 

clinical outcomes in severe acute respiratory virus coronavirus 2 (SARS-CoV-2) infection 

than the composition of the gut microbiota [67,68]. Thus, in clinical settings, it is important 
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to consider the contribution of both the intestinal and extraintestinal microbiota in shaping 

host immunity.

IFN responses have a long history as therapeutic targets for human viral disease. IFN-α/β 
has been used as an antiviral treatment for HCV and hepatitis B virus (HBV) infection, 

though drug resistance and drug toxicity are of concern [69,70]. IFN-λ has been compared 

to IFN-α/β in clinical trials as a potentially less toxic but therapeutically equivalent 

treatment for chronic HCV (NCT01001754i) and HBV infections (NCT01204762ii) [71,72]. 

In addition, IFN has been explored as a potential vaccine adjuvant. In preclinical testing, 

HSV-2 and HIV vaccines adjuvanted with IFN-λ confer improved protection against 

challenge with relevant viruses [73,74]. In light of the recent SARS-CoV-2 pandemic, there 

has been substantial interest in exploring both type I and III IFN as antiviral treatments (Box 

3).

We propose that there may be several advantages to using microbiota-dependent induction 

of endogenous IFN responses in antiviral therapies and as vaccines adjuvants: (i) microbiota-

induced IFN is localized; (ii) predefined microbiota stimulants may be able to augment 

IFN responses to specific virus infections; and (iii) microbiota-induced IFN expression may 

result in fewer side effects due to endogenous feedback loops controlling IFN production. 

However, before translation into human applications is possible, several basic science 

questions remain to be addressed.

The first key needed research area is the age-dependency of IFN responses. An example 

is with rotavirus infections. IFN responses to MRV infection are quite distinct between 

neonatal and adult mice: whereas neonatal mice require both IFN-λ and IFN-α/β to 

control infection, adult mice require IFN-λ only [75]. Considering that human infants 

and the elderly are the most susceptible to life-threatening respiratory and gastrointestinal 

virus infections, and that the microbiota changes dramatically with age [76–78], in-depth 

understanding of the maturation of IFN responses and the microbiota over the course of the 

human lifespan is crucial.

The second key needed research area is understanding the risk for autoimmunity. The gut 

microbiota may excessively prime IFN responses, resulting in unwanted T cell responses 

to harmless peripheral or self-antigens [10], manifesting as allergy or autoimmunity. 

The delicate balance between sufficient priming for robust antiviral response versus 

overstimulation resulting in autoimmune pathogenesis needs further study and fine-tuning.

The final key needed research area is a better understanding of microbiota interactions with 

IFN-λ. IFN-λ was discovered only in 2004, and studies relating to its fundamental biology 

and interactions with the microbiota have been limited. IFN-λ may be preferred as a human 

therapeutic over IFN-α/β owing to its ability to induce highly localized responses with less 

risk for proinflammatory excess. Major research gaps include whether induction of IFN-λ 
by PRR ligands from commensal bacteria is possible and sufficient to protect from viral 

infection. Further, the mechanism(s) by which microbiota-dependent IFN-λ is linked to 

adaptive immunity, especially in its potential role as a vaccine adjuvant, requires further 

investigation.
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Concluding remarks

IFN modulation by the gut microbiota represents an exciting opportunity to harness 

microbiota-based therapeutic approaches for viral control. However, both basic and 

translational questions remain to be addressed before this vision can be realized (see 

Outstanding questions). The specific microbiota-derived signals that interact with IFN 

signaling pathways have been partially identified. Nonetheless, the possibility that other 

microbial components and metabolites, and even other kingdoms of the gut microbiota, may 

also induce a protective IFN response is deserving of further exploration. The regulation 

and function of microbiota-dependent IFN-λ in particular needs to be better understood. In 

addition, there is an urgent need for the field to move towards translation into the human 

setting. Recent advances in both computational approaches and experimental models (Box 

4) have enabled more direct investigation of gut microbiota–host IFN–viral interaction in the 

human context, which can be leveraged in the near future for additional insights (Figure 2). 

The potential of microbiota-based therapy for viral control is promising, and IFN responses 

may serve as an important microbiota-regulated antiviral immunity component. The ability 

to regulate IFN responses in a specific and precise manner will allow the actualization of this 

promise.
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Glossary

Epigenetic markers
alterations in gene activity and expression that do not involve alteration in the DNA 

sequence but rather the ‘packaging’ of the DNA. Epigenetic markers include, but are not 

limited to, DNA methylation and histone modification

Histone acetyltransferase (HAT)
an enzyme involved in the acetylation of the histone tail, a mechanism for gene regulation. 

In general, acetylated histone is a marker of increased gene transcription

Histone deacetylase (HDAC)
the opposite of HAT, this enzyme is involved in the deacetylation of the histone tail, a 

mechanism for gene regulation. In general, deacetylated histone is a marker of reduced gene 

expression

Human organoid model
a three-dimensional tissue culture system, derived from stem cells of donated human tissue 

or differentiated pluripotent stem cells, thereby closely recapitulating the in vivo physiology 

and function of the represented organ
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IFN-stimulated genes (ISGs)
an array of genes whose expression is induced upon activation of the IFN signaling pathway. 

Expression of ISGs leads to the activation of an antiviral state in infected and neighboring 

cells

Intestinal/gut microbiota
the trillions of microbes, composed of bacteria, viruses, archaea, fungi, protozoa, and 

helminths, that reside in the gastrointestinal tract of the host and serve important functions in 

regulating host physiology and metabolism

Lipopolysaccharide (LPS)
the main component of the outer membrane of Gram-negative bacteria. LPS is considered a 

bacteria-associated molecular pattern and is often used as a proxy for bacterial infection

M cells
a type of epithelial cell, found in mucosal tissue, that has a specialized immune surveillance 

function

Mesenteric lymph node
a secondary lymphoid organ, located in the connective tissue that attaches the intestine to 

the abdominal wall (mesentery), which functions to drain (filter) lymphoid fluid from the 

intestinal tract

Pattern-recognition receptors (PRRs)
receptors commonly found in sentinel cells such as macrophages and dendritic cells. The 

function of PRRs is to recognize molecular patterns of pathogens and initiate inflammatory 

signaling cascades as a response. Nonimmune cells are also equipped with PRRs to a lesser 

extent

Peyer’s patches
one of the lymphoid tissues in the gastrointestinal tract which consists of aggregated 

lymphoid follicles. Peyer’s patches are important for immune surveillance and induction 

of immune tolerance

Poly I:C (polyinosinic:polycytidylic acid)
an analog of double-stranded RNA, often used as a synthetic ligand for numerous PRRs and 

as a proxy for viral infection

Systems immunology
an approach using mathematical and computational modeling to integrate multiple types 

of - omics data (such as metabolomics, transcriptomics, and metagenomics) to investigate 

the interconnected immune components and their interactions in a certain disease or 

environment

Systems vaccinology
a subset of system immunology where the integration of multiple omics data is used to 

unravel the complex molecular signatures of vaccine immunity
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Box 1.

Examples of local and distal IFN antiviral activity modulated by the gut 
microbiota

The gut microbiota can modulate IFN-λ within the gastrointestinal tract during enteric 

viral infections [12,13,37]. One of the mechanisms is that the bacterial microbiota 

maintain the expression of a homeostatic tonic IFN-λ-mediated signature in intestinal 

epithelial cells (IECs). This is seen in murine rotavirus infections where depletion of the 

gut microbiota results in the loss of homeostatic tonic IFN-λ expression, limiting the 

host’s capacity to control murine rotavirus (MRV) infection [37]. In the proximal gut, 

commensal bacteria limit murine norovirus (MNV) infection, an inhibition associated 

with the production of microbiota-derived bile acids that prime IFN-λ [13]. Disruption 

of Ifnlr1 (the receptor for IFN-λ) also limits MNV’s dependence upon bacteria, again 

implicating IFN-λ in antiviral regulation in the intestine [12]. Interestingly, the gut 

microbiota can also promote MNV infection in the distal intestine through an as-yet 

unclear mechanism [13]. A hypothesis is that the gut microbiota may express histo-blood 

group antigens (HBGAs) that are required for MNV infection [79]. These studies suggest 

that patterns of microbiota-induced IFN-λ expression may be location-dependent, but 

ultimately support a model in which the gut microbiota maintains or supports IFN-λ 
induction to limit enteric viral infection.

Gut microbiota modulation of type I IFN signaling at distal sites has been demonstrated 

in numerous murine studies in both germ-free (GF) and antibiotic-treated mice. A 

variety of extraintestinal virus infections have shown enhanced viral pathogenesis in 

the absence of microbiota-induced type I IFN. Reduced survival in antibiotic-treated 

mice upon infection with either LCMV [19] or VSV [9] is associated with reduced 

ISG expression in the spleen, a representation of the systemic immune compartment. 

During chikungunya virus (CHIKV) infection, viral loads in the spleen and serum of 

GF and antibiotic-treated mice are higher due to defective production of type I IFN 

by pDCs [14]. Similarly, absence of the gut microbiota leads to higher viral loads and 

lower type I IFN expression in the lung following infection of antibiotic-treated mice 

with influenza A virus [9,11] or respiratory syncytial virus (RSV) [17]. The influence of 

microbiota-induced type I IFN reaches as far as the brain, where reduced expression of 

IFN-β and ISGs in peripheral blood cells and spleen of antibiotic-treated mice leads to 

increased EMCV viral titers in the brain [15].
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Box 2.

Contributions of other members of the gut microbiota to IFN signaling

The gut microbiota includes more than just bacteria, and the roles of nonbacterial 

kingdoms in shaping host immunity are currently understudied. Evidence is emerging 

that nonbacterial microbes can strongly modulate antiviral immune responses. The 

gut virome – the enteric viral community containing viruses that infect prokaryotes 

(bacteria) and viruses that infect eukaryotic cells – has been the most researched. 

Recent work suggests that Enterovirus B or Cosavirus coinfection correlates with reduced 

immunogenicity to live attenuated rotavirus vaccines in African infants [80]. Virome 

modulation of IFN responses may be mechanistically important as the virome regulates 

IFN responses in a manner that parallels the bacterial microbiota [81]. Depletion of 

the gut virome through antiviral treatment can reduce TLR3 and TLR7 activation, 

ultimately impairing production of IFN-β by pDC [82]. Chronic MNV infection, a 

resident commensal virus in immunocompetent mice, can replace the function of the 

commensal bacteria, reversing abnormalities in intestinal morphology and gut mucosal 

immunity in GF and antibiotic-treated mice through type I IFN activation [83]. Murine 

astrovirus can protect immunocompromised mice (deficient in B and T cells, innate 

lymphoid cells, and gut-associated lymphoid tissue) against MNV and MRV infection by 

inducing IFN-λ signaling [84]. These findings highlight that the eukaryotic virome, just 

like bacterial microbiota, has significant immunomodulatory properties that ultimately 

determine host susceptibility to disease and infection.

Viral motifs derived from bacteriophages also trigger IFN production. Pseudomonas 
aeruginosa bacteriophages Pf induces IFN-β secretion that favors persistent infection 

of their bacterial host [85]. Whether bacteriophage-induced IFN production impacts 

eukaryotic virus infection warrants future investigation.

Commensal fungi, namely Candida albicans and Saccharomyces cerevisiae, can also 

recapitulate functional benefits of the bacterial microbiota through tonic signals 

calibrating immune responses to influenza A infection [86]. Debaryomyces hansenii, 
a fungus commonly found in the wounds of Crohn’s disease patients, is known to 

impair wound healing by inducing chemokine CCL5 through type I IFN axis [87]. Thus, 

commensal fungi likely also alter IFN-mediated immunity, shaping antiviral responses.

Enteric helminths are also key members of the gut microbiome, modulating microbiome 

composition and host immunity [88]. Murine helminth Heligmosomoides polygyrus 
provides protection against RSV infection by inducing type I IFN expression in both 

the intestine and the lung [89]. Together, these studies emphasize the importance of 

characterizing interkingdom interactions within the gut microbiota and host as they may 

ultimately be strong determinants of IFN responses to viral infections.
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Box 3.

Lessons learned from the COVID-19 pandemic on IFN’s antiviral potential

SARS-CoV-2 and the COVID-19 pandemic have broadened our understanding of IFN’s 

potential as an antiviral therapeutic. Studies have had divergent findings. Some studies 

suggest that severe COVID-19 is associated with reduced and delayed IFN responses 

[90,91], while other studies implicate type I IFN, together with TNF and IL-1β, in 

hyperinflammation and progression to severe COVID-19 [92].

Clinical trials evaluating type I and III IFN therapies for patients hospitalized 

with COVID-19 have generally shown no or minimal clinical benefit [93–96]. The 

DISCOVERY trial (NCT04315948iii), the largest randomized controlled trial testing 

subcutaneous IFN-β1a in 2063 hospitalized COVID-19 patients, showed no mortality 

benefit compared to placebo [97]. However, in trials with smaller sample sizes, both type 

I (NCT04276688iv) [94] and type III IFNs (NCT04354259v) [95] appear to shorten the 

duration of viral shedding. To date, IFN therapy has not been broadly used in clinical 

COVID-19 practice.

Just as for other COVID-19 therapeutics, IFN’s clinical benefit may depend upon 

appropriate timing, route of administration, and use in appropriate patient populations 

[98]. Administering IFN early in disease was associated with a lower mortality in a 

retrospective cohort study [99]. A small randomized controlled trial of inhaled IFN 

treatment (NCT04385095vi) showed higher odds of improved clinical improvement than 

placebo [96]. Older adults infected with SARS-CoV-2 may benefit more from IFN 

therapy as they have a disturbed IFN expression pattern, consisting primarily of IFN-α, 

IFN-β, and IFN-λ2, in contrast to infected children, who predominantly express IFN-λ1 

[100]. Type III IFN may also offer a more protective response compared to type I IFN. 

The IFN profile of patients with milder COVID-19 is dominated by expression of IFN-λ1 

and IFN-λ3, while patients with more severe disease have higher type I IFN and IFN-λ2 

[102]. Moreover, the antiviral state induced by type III IFN is confined to mucosal sites, 

potentially preventing excessive proinflammatory responses that may be induced by type 

I IFN [103].

Finally, as an alternative to exogenous IFN administration, fine-tuning endogenous IFN 

production by modulating the gut microbiota composition may hold potential. The human 

gut microbiome has the capacity to modulate the production of inflammatory cytokines 

[104], and enhanced inflammatory cytokines in severe COVID-19 patients has been 

suggested to be induced by systemic bacterial products [105]. Thus, modulating the gut 

microbiota composition to favor the production of protective IFN responses may be an 

alternative for the control of SARS-CoV-2 infection.
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Box 4.

Tools for studying microbiota–host IFN–viral interactions in the human 
context

The emerging fields of systems immunology and systems vaccinology offer promising 

approaches to identify relevant microbiota targets that interact with and influence 

human antiviral and vaccine immunity. Via a systems vaccinology approach, IFN 

reponse was identified as an important early innate immune signature correlating with 

strong vaccine-induced antibody production for both the seasonal influenza vaccine 

[106] and the BNT162b2 mRNA SARS-CoV-2 vaccine [107]. However, microbiota 

modulation through antibiotic treatment appears to have only minimal effects on systemic 

IFN regulation following seasonal influenza virus vaccination [108]. Future studies 

are warranted to investigate whether more subtle microbiota modulation impacts IFN 

responses for other vaccines. It is possible that the gut microbiota may be more tightly 

interlinked with enteric and mucosal vaccine immunity, and thus IFN responses at 

mucosal sites following viral vaccination warrant further investigation.

The emergence of human organoids as a model system for studying host–virus 

interactions has dramatically enhanced scientists’ capacity to study IFN responses in 

mucosal compartments in a human context. Both human intestinal and lung organoid 

systems have been deployed to study the antagonism between IFN responses and 

numerous viruses, including human norovirus [109], adenovirus [110], astrovirus 

[111], enterovirus 71 [112], human rotavirus [113], and SARS-CoV-2 [114]. Efforts 

are currently underway to increase the complexity of intestinal organoid models by 

integrating gut microbiota components, immune cells, and the enteric nervous system in 

order to better mimic the human intestinal environment [115,116]. These models provide 

a platform by which the triangular interactions of gut microbiota–host IFN response–viral 

infection can be investigated, permitting therapeutic translation to human contexts.
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Highlights

The gut microbiota modulates antiviral type I and III IFN responses, ultimately regulating 

viral infection outcomes.

The gut microbiota is capable of modulating the IFN antiviral response both in the 

gastrointestinal tract and at extraintestinal sites.

The gut microbiota controls homeostatic IFN tone in the infection-naïve state, preparing 

the host for timely activation of antiviral responses upon infection.

Both commensal bacteria-derived ligands and metabolites signal to different cell types to 

regulate IFN signaling pathways and thereby indirectly control viral infection.

The gut microbiota–IFN–virus axis holds therapeutic promise for antiviral therapies and 

viral vaccines in humans, but extrapolation to humans remains to be demonstrated.
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Outstanding questions

What is the role of the gut microbiota in regulating IFN-mediated immunity in humans? 

How does human microbiota variation contribute to differential responses to viral 

infection?

How do IFN responses develop along the trajectory of human life, and how does the gut 

microbiota contribute to this development?

What are the roles of other microbiota kingdoms, such as the virome, in the regulation of 

IFN antiviral immunity?

How can we delicately regulate endogenous expression of IFN for sufficient antiviral 

protection without overstimulation that can lead to autoimmune pathogenesis?

What are the benefits of endogenous stimulation by the gut microbiota as opposed to the 

use of exogenous IFNs for antiviral therapy and viral vaccine performance?
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Key figure. Figure 1. Potential mechanisms underlying microbiota regulation of interferon (IFN) 
antiviral immunity
(A) The gut microbiota regulates basal homeostatic IFN expression. The gut microbiota 

can induce homeostatic type I IFN expression (shown in blue) from macrophages and 

plasmacytoid dendritic cells (pDCs) and homeostatic type III IFN (shown in orange) from 

intestinal epithelial cells (left panel). Type I IFN from macrophages is required for the 

priming of natural killer (NK) cell and CD8+ T cell function [18] (left panel). Type I IFN 

from pDCs is required for epigenetic programming of conventional dendritic cells (cDCs) so 

that they can prime NK cells and CD8+ T cells [19] (middle panel). When the gut microbiota 

is depleted, signals from the gut microbiota are diminished, leading to the reduction of 
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basal homeostatic type I [18,19] and type III IFN, and impaired priming and functionality 

of cDCs, NK cells, and CD8+ T cells (right panel) [37]. (B) Gut microbiota-derived 

pathogen recognition receptor (PRR) ligands activate IFN expression. Components of the 

commensal gut microbiota generate molecular patterns that can bind to PRRs. For instance, 

Bacillus spp. poly-γ-glutamic acid [44] and Bacteroides fragilis polysaccharide A (PSA) 

[9] bind to TLR4, while the nucleic acids of lactic acid bacteria (LAB) can bind to either 

TLR3 [45], RIG-I-like receptors (RLRs) or cGAS [47]. This pattern recognition results in 

downstream signaling and type I IFN production. Depending on the type of PRR ligands 

and the PRR sensors, type I IFN production has been shown to block viral replication. 

(C) Gut microbiota-derived metabolites activate IFN expression. Gut commensals, such as 

members of the family Lachnospiraceae, can produce short-chain fatty acids (SCFAs) that 

can activate type I IFN expression in a GPR43-dependent manner to block the replication 

of respiratory syncytial virus (RSV) [17]. Clostridium scindens can transform primary bile 

acids (BAs) into secondary BAs. These secondary BAs can activate both the expression 

of type I IFN from pDCs to inhibit chikungunya virus (CHIKV) replication [14] and 

type III IFN from intestinal epithelial cells (IECs) to inhibit murine norovirus (MNV) 

replication [13]. cGAS, cyclic GMP-AMP synthase; IRFs, interferon regulatory factors; 

MAVS, mitochondrial antiviral-signaling protein; MYD88, myeloid differentiation primary 

response 88; TRIF, Toll–IL-1 receptor domain-containing adaptor inducing IFN-β; STING, 

stimulator of interferon genes. See references [9,11,15,18,19,30,38,41,43]. The figure was 

created with BioRender.com.
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Figure 2. Future translation of microbiota–interferon(IFN)–viral interaction into the human 
context.
The triangular relationship between the gut microbiota–host IFN response–viral infections 

has been extensively described in animal models. However, the translation of these 

interactions into the human setting for therapeutic purposes remains a major challenge. 

Recent computational tools, such as the systems biology approach and experimental tools 

such as human organoid platforms, may aid further exploration of this interaction, paving 

the way to microbiota-based therapies in viral control and viral vaccination. The figure was 

created with BioRender.com.
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