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ABSTRACT Mycobacterium abscessus is an emerging pathogen that is often refrac-
tory to antibiotic control. Treatment is further complicated by considerable variation
among clinical isolates in both their genetic constitution and their clinical manifesta-
tions. Here, we show that the prophage and plasmid mobilome is a likely contributor
to this variation. Prophages and plasmids are common, abundant, and highly diverse,
and code for large repertoires of genes influencing virulence, antibiotic susceptibility,
and defense against viral infection. At least 85% of the strains we describe carry one or
more prophages, representing at least 17 distinct and diverse sequence “clusters,” inte-
grated at 18 different attB locations. The prophages code for 19 distinct configurations
of polymorphic toxin and toxin-immunity systems, each with WXG-100 motifs for export
through type VII secretion systems. These are located adjacent to attachment junctions,
are lysogenically expressed, and are implicated in promoting growth in infected host
cells. Although the plethora of prophages and plasmids confounds the understanding
of M. abscessus pathogenicity, they also provide an abundance of tools for M. abscessus
engineering.

IMPORTANCE Mycobacterium abscessus is an important emerging pathogen that is
challenging to treat with current antibiotic regimens. There is substantial genomic
variation in M. abscessus clinical isolates, but little is known about how this influen-
ces pathogenicity and in vivo growth. Much of the genomic variation is likely due to
the large and varied mobilome, especially a large and diverse array of prophages and
plasmids. The prophages are unrelated to previously characterized phages of mycobac-
teria and code for a diverse array of genes implicated in both viral defense and in vivo
growth. Prophage-encoded polymorphic toxin proteins secreted via the type VII secre-
tion system are common and highly varied and likely contribute to strain-specific
pathogenesis.
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Bacteriophages are characteristically specific for their bacterial hosts, with preferen-
ces that rarely traverse genus boundaries and are sometimes constrained to only a

subset of isolates within a bacterial species (1). Phage specificity is determined by
numerous factors, including receptor accessibility, restriction-modification, CRISPR-Cas,
and abortive-infection systems, many of which can be expressed from prophages or plas-
mids (2–6). Because prophages and plasmids are highly mobile, these are key contributors
to variations in phage infection among otherwise closely related bacterial strains. For using
phages therapeutically to control bacterial infections, this specificity is a double-edged
sword; it facilitates targeting of particular pathogens without gross microbiome disturb-
ance, but constrains the range of bacterial isolates sensitive to any particular phage (7).

A large collection of mycobacteriophages have been isolated on Mycobacterium
smegmatis and genomically characterized (8). They are genetically diverse and are cur-
rently grouped into 29 clusters (A to Z, AA to AC) according to overall sequence
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relatedness, many of which can be further divided into subclusters (e.g., A1, A2, A3,
etc.). Additionally, there are 10 “singletons,” each with no close relative (9–11). More
than 50% of these groups contain temperate phages, many of which code for pro-
phage-mediated phage defense systems that interfere with heterotypic (unrelated)
phages, often with exquisite specificity (3, 12, 13). A small subset of clusters/subclusters
(A2, A3, G, K) also infect Mycobacterium tuberculosis, suggesting these have broader host
ranges than the many that do not (14). Very few of the phages infect Mycobacterium
abscessus, but a cocktail of three phages within this subset were used for therapy of a dis-
seminated drug-resistant infection in a cystic fibrosis patient with a bilateral lung trans-
plant (15); two of the phages were engineered to convert from temperate to being obliga-
torily lytic (15) using a recombineering strategy (16).

Clinical isolates of M. abscessus differ greatly in their phage infection profiles, pre-
senting challenges in broadening phage therapeutic applications (17). However, the
phage infection profiles do not correlate with whole-genome phylogenies, and mobile
elements, including prophages and plasmids, are likely major contributors (18, 19). To
understand the potential roles of the mycobacterial mobilome in these properties, we
have characterized the prophages and plasmids of a recently genomically defined set of
82 recentM. abscessus clinical isolates with well-defined phage infection profiles (17).

RESULTS
Identification ofM. abscessus prophages and plasmids. Using a panel of 82 recent

clinical isolates of M. abscessus, we identified prophages using PHASTER (20) and man-
ual inspection to precisely map the prophage junctions with conserved common core
sequences at both attL and attR. We identified a total of 122 prophages, 80 for which
complete genome sequences could be extracted (Table 1). Each was given a
prophiGDxx-# designation according to the parental strain with a numerical suffix to
denote multiple prophages in a single strain (Table 1). There are several instances of
identical prophages present in different strains, and 67 unique prophage sequences
were identified (Table 1); 42 prophages are in multiple contigs, but sufficient sequence
information is available to indicate their relationships to other prophages (17). We also
extracted prophage sequences from M. abscessus subsp. abscessus ATCC 19977 (21)
and M. abscessus subsp. bolletii BDT (22); M. abscessus subsp. massiliense GO06 (23) is
prophage-free (Table 1). The prophage in ATCC 19977 was previously reported to be
81 kbp (21), but is about 20 kbp shorter. Identical prophages are present in strains
GD26, GD47, and GD40, and the attL and attR sites were confirmed by comparison to
lytically growing phage relatives (17). Twelve (15%) of the strains are prophage-free,
and the other 70 contain 1 to 6 prophages (Fig. 1A). The 75 complete prophages vary
in size from 39,188 bp (prophiGD62-1) to 80,793 (prophiGD86-1), with an average size
of ;55.3 kbp. Identical prophages are present in some strains from different origins
with phylogenetically distinct genomes, reflecting the high phage mobility within this
group of bacteria. We similarly identified resident plasmids, all of which are extrachro-
mosomal and circular with the exception of pGD21-2, which is linear (Fig. 1B; Table 2).
Approximately one-half of the strains are plasmid-free, and the others have 1 to 3 dif-
ferent plasmids (Fig. 1B).

Diversity of M. abscessus prophages. The M. abscessus prophages are consider-
ably diverse and can be assorted into 17 clusters (e.g., MabA, MabB, etc.), representing
distinct genome sequences (with,35% shared gene content) (Fig. 1C to E, Table 1).
Clusters MabA and MabE are sufficiently diverse to warrant division into subclusters
(Fig. 1C to E, Table 1). Although most of the prophages are generally not closely related
to the thousands of genomically defined M. smegmatis phages, cluster MabI and clus-
ter MabJ prophages are organized similarly to cluster M (24) and A (25) mycobacterio-
phages, respectively; both share sufficient gene content to warrant inclusion in these
clusters (Fig. 1E). Cluster MabA prophages are the most prevalent and are residents of
the major clade of closely related M. abscessus subsp. abscessus strains (26); however,
they are also present in some M. abscessus subsp. bolletii and massilliense strains
(Table 1). Twelve clusters have 6 or fewer members, and four have only a single
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TABLE 1 Prophages resident inM. abscessus genomes

Prophagea Clusterb attBc Coordinatesd Length (bp)e ORFs tRNA (tmRNA) Accession no.f M’phageg

prophiATCC19977-1 MabA1 attB-5 1754373–1816169 61,797 113 0 CU458896 –
prophiGD26-1 MabA1 attB-5 C2 475612–537408 61,797 113 0 CP063319
prophiGD47-1 MabA1 attB-5 C3 292175–353971 61,797 113 0 JADWXG000000000
prophiGD40-1 MabA1 attB-5 C3 292175–353971 61,797 113 0 JADWXE000000000

prophiGD11-1 MabA1 attB-5 C5 181029–253263 62,235 115 0 MW584152 –
prophiGD15-1 MabA1 attB-5 C2 233283–162702 70,582 124 0 MW584180 –
prophiGD41-1 MabA1 attB-5 C2 292146–362727 70,582 124 0 CP065283
prophiGD59-1 MabA1 attB-5 C2 292146–362727 70,582 124 0 CP065274

prophiGD17-2 MabA1 attB-5 1784635–1847562 61,797 113 0 MW584161 –
prophiGD20-1 MabA1 attB-5 1737838–1806869 69,032 129 0 MW584158 –
prophiGD21-2 MabA1 attB-5 209421–147437r 61,985 117 0 MW584204 –
prophiGD22-1 MabA1 attB-5 1753803–1814377 60,575 118 0 MW584171 –
prophiGD27-1 MabA1 attB-5 C3 308161–367705 59,545 116 0 MW584196 –
prophiGD43A-1 MabA1 attB-18 1665669–1727971 62,303 118 0 MW584179
prophiGD57-2 MabA1 attB-5 1753840–1813851 60,012 117 0 MW584164 –
prophiGD102-1 MabA1 attB-5 429593–366359 63,235 117 0 MW584211 –
prophiGD02-2 MabA2 attB-15 C2 220134–280685 60,552 115 0 MW584199 –
prophiGD90-1 MabA2 attB-15 C15 62013–1462r 60,552 115 0 MW584176 –
prophiGD91-2 MabA3 attB-5 1820105–1884312 64,208 117 0 MW584188 –
prophiGD08-2 MabB attB-2 C14,108963–68889r 40,071 63 0 MW584184 –
prophiGD11-2 MabB attB-2 C14,108999–69045r 39,951 63 0 MW584151 –
prophiGD16-1 MabB attB-2 C9, 46031–86086 40,056 59 0 MW584149 –
prophiGD21-1 MabB attB-2 C10 36362–77136 40,775 63 1 MW584205 –
prophiGD34-2 MabB attB-2 C13 109092–69049 40,044 63 0 MW584210 –
prophiGD42-2 MabB attB-2 C14 35327–75397 40,071 63 0 MW584200 –
prophiGD43A-2 MabB attB-2 567429–607575 40,147 61 0 MW584198 –
prophiGD62-1 MabB attB-2 C4 254446–293633 39,188 59 0 MW584194 –
prophiGD89-1 MabB attB-2 C12 48033–88524 40,492 63 0 MW584193 –
prophiGD13-2 MabC attB-13 C1 743264–794604 51,341 70 0 MW584212 –
prophiGD33-1 MabC attB-12 C4 300386–351461 51,076 71 0 MW584203 –
prophiGD39-2 MabC attB-13 C1 414064–361484r 52,581 71 0 MW584154 –
prophiGD43A-3 MabC attB-13 4129439–4180188 50,750 71 0 MW584182 –
prophiGD44-1 MabC attB-13 C1 275695–222635r 53,061 76 0 MW584156 –
prophiGD51-1 MabC attB-13 C1 756876–808079 51,204 77 0 MW584163 –
prophiGD52-1 MabC attB-13 C2 403351–453146 49,796 73 0 MW584208 –
prophiGD57-1 MabC attB-13 4001908–4054497 52,581 73 0 MW584181 –
prophiGD91-1 MabC attB-13 4267862–4317619 49,758 72 0 MW584192 –
prophiGD100A-2 MabC attB-12 617106–667933 50,828 71 0 MW584150 –
prophiGD100B-2 MabC attB-12 617106–667933 50,828 71 0 CP065183

prophiGD104-2 MabC attB-12 1019283–1068838 49,556 73 0 MW584162 –
prophiGD05-1 MabD attB-10 3676892–3737783 60,892 95 0 MW584169
prophGD12-2 MabD attB-10 C1 575019–629478r 54,460 87 0 MW584207 –
prophiGD14-2 MabD attB-10 C1 769184–714725r 54,460 87 0 JADWWX000000000

prophiGD17-1 MabD attB-3 1082962–1134147r 51,224 88 0 MW584165 –
prophiGD25-1 MabE1 attB-4 1888601–1949296 60,696 79 0 MW584148 –
phophiGD04-1 MabE1 attB-4 C2 449800–510231 60,432 78 0 MW584209 –
prophiGD53-1 MabE1 attB-4 C2 573757–513326r 60,432 78 0 CP065033
prophiGD111-1 MabE1 attB-4 C2 272204–60432 60,432 78 0 JADWYH000000000

prophiGD54-1 MabE1 attB-4 1852862–1913557 60,696 79 0 MW584189 –
prophiGD68-1 MabE1 attB-4 1673431–1733862 60,432 78 0 MW584157 –
prophiGD102-2 MabE1 attB-4 C1 505277–444582r 60,696 79 0 MW584173 –
prophiGD91-4 MabE2 attB-16 3720180–3778677 58,498 84 0 MW584206 –
prophiGD08-3 MabF attB-3 C7 175238–227838 52,601 77 0 MW584201 –
prophiGD11-3 MabF attB-3 C2 175238–229977 54,740 81 0 MW584155 –
prophiGD62-2 MabF attB-3 C3 66030–120339 54,310 82 0 MW584175 –
prophiGD03-1 MabG attB-11 C1 1175908–1230728 54,821 85 0 MW584190 –
prophiGD21-3 MabG attB-11 C1 311838–258956r 52,874 79 0 MW584178 –
prophiGD24-2 MabG attB-11 C1 260970–313844 52,875 80 0 MW584172 –
prophiGD58-1 MabG attB-11 C11 101001–157085 56,085 83 0 MW584168 –
prophiGD05-2 MabH attB-8 3164547–3208415 43,869 68 0 MW584191 –
prophiGD36-2 MabH attB-8 C2 289068–332653 43,586 70 0 MW584170 –
prophiGD54-2 MabI attB-9 3370859–3447429 79,047 134 21 (1) MW584202 M

(Continued on next page)
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member (these are assigned to clusters rather than classed as singletons, as there are
relatives in the large number of M. abscessus genomes in public databases) (Fig. 1E).
The M. abscessus prophages are at least as, if not more, diverse than an equivalent
number of M. smegmatis phages (10).

Genomic maps of prophages prophiGD21-3 and prophiGD54-2 (Fig. 2) illustrate some of
the interesting and unusual genomic features of these prophages, and detailed genomes of
prophages are shown at https://phagesdb.org/documents/categories/14/. ProphiGD21-3, a
member of cluster MabG (Fig. 2A), is organized with most of the genes rightward-tran-
scribed, with the notable exceptions of a cassette adjacent to attR containing a polymor-
phic toxin (PT), a corresponding immunity protein (27), and an ESAT-6-like WXG-100 pro-
tein (Fig. 2A). The PT contains an N-terminal WGX-100 motif and is likely exported by the
host type VII secretion system. The PT contains a C-terminal domain related to the tubercu-
losis necrotizing toxin (TNT), which facilitates immune evasion byMycobacterium tuberculo-
sis (28), thus implicating this prophage in success of M. abscessus in vivo. These PT-Imm
cassettes are common in the prophages but highly varied, as discussed in detail below. A
second feature of note is genes 20 and 23, which are predicted to be expressed early in
lytic growth and code for proteins with motifs common to cysteine dioxygenases and
phosphoadenosine phosphosulphate (PAPS) reductases, respectively. It is unusual for
these to be phage encoded, but PAPS reductase-like proteins are similar to DndC,
which participates in phosphorothioate DNA modifications that are common in M.
abscessus (29, 30); gp20 is also implicated in cysteine metabolism.

ProphiGD54-2 (cluster MabI) is organized similarly to cluster M mycobacteriophages
(24). It integrates with a serine-integrase and codes for an array of 21 tRNA genes and a
tmRNA, as well as a release factor (Fig. 2B), suggesting substantial translational reprogram-
ming during lytic growth. However, like prophiGD21-3 (Fig. 2A), prophiGD54-2 also codes
for a PT-Imm cassette, although it is located proximal to attL (Fig. 2B). The PT also contains
an N-terminal WXG-100 motif and has a C-terminal motif distantly related to the AvrE-fam-
ily of secreted effectors; the Imm protein is a predicted LpqN-like lipoprotien and is likely
to be cell wall associated.

TABLE 1 (Continued)

Prophagea Clusterb attBc Coordinatesd Length (bp)e ORFs tRNA (tmRNA) Accession no.f M’phageg

prophiGD86-1 MabI attB-17 C7 147871–228663 80,793 144 20 MW584160 M
prophiGD24-3 MabJ attB-7 C6 248150–303034r 54,885 90 4 MW584159 A
prophiGD43A-4 MabJ attB-7 2688955–2634523 54,433 91 2 MW584197 A
prophiGD43B-4 MabJ attB-7 C4 19238–73670 54,433 91 2 CP065278

prophiGD43A-5 MabK attB-1 233518–310058 76,541 116 1 MW584167 –
prophiGD43B-2 MabK attB-1 C7 187106–263646 76,541 116 0 CP065278

prophiBoletti-1 MabL attB-10 3445614–3524876 79,288 126 0 AP014547 –
prophiGD43A-6 MabL attB-10 3745170–3678804 66,367 97 0 MW584174 –
prophiGD43B-1 MabL attB-10 C1 1282056–1348442 66,367 97 0 CP065278

prophiGD88-1 MabL attB-10 C9 21158–87513 66,356 93 0 MW584166 –
prophiGD05-3 MabM attB-11 3814819–3759328 55,492 76 0 MW584185 –
prophiGD53-3 MabN attB-13 C1 1154581–1196507 41,918 72 0 MW584183 –
prophiGD62-3 MabN attB-13 C1 257844–215194r 42,642 68 0 MW584177 –
prophiGD69-1 MabN attB-13 C12 39118–81768 42,642 68 0 CP065269

prophiGD108-1 MabN attB-13 192650–150009r 42,642 68 0 MW584186 –
prophiGD91-3 MabO attB-14 4808642–4854248 45,607 73 1 MW584187 –
prophiGD51-2 MabP attB-6 C10 89165–141002 51,838 64 0 MW584195 –
prophiGD79-1 MabQ attB-4 C2 158082–234229 76,148 108 0 MW584153 –
aProphages are designated prophiGDXX-1, with GDXX denoting the strain in which it resides and the suffix indicating different prophages in the same strain. Prophages
with 100% nucleotide sequence identity are indented related to the identical prophages above them.

bProphages are grouped into clusters (MabA, MabB, etc.) with closely related prophages in the same cluster. Some clusters are divided into subclusters (MabA1, MabA2, etc.)
reflecting sequence relationships.

cattB integration sites are indicated as shown in Fig. 3A.
dSequence coordinates are shown for completely sequenced genomes. For genomes with WGS sequences, the contig number (e.g., C1, C2 etc.) is shown and the
coordinates within that contig. Prophage sequences are similarly oriented and those reverse-complemented are indicated with an “r” suffix.

eProphage lengths include two copies of the attachment core sites, at the left and right ends of each genome.
fCluster designations of similarly organized mycobacteriophages (M’phages) are shown, if any; “–“ if not.
gGenome lengths and the number of ORFs are not available (NA) for incompletely assembled prophages.
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FIG 1 Diversity of M. abscessus prophages and plasmids. (A and B) Distributions of prophages (A) and plasmids (B) in 82 recent M. abscessus clinical
isolates. (C) Phylogenetic network representation of M. abscessus prophages based on shared gene content, as described elsewhere (9, 63). Individual
prophages are represented at the nodes, and colored circles indicate groups of phages forming clusters. Scale marker indicates substitutions/site. (D)
Dotplot comparison of M. abscessus prophages, comparing one example of each cluster and subcluster, and indicated on both axes. Individual genes
are noted at the top. (E) Characteristics of M. abscessus prophages showing the numbers of members in each cluster/subcluster group (the number of
additional incomplete prophage sequences are shown in parentheses), average genome size in kbp, average G1C% content, presence of a tyrosine-
family (Int-Y) or serine-family (Int-S) integrase, and distantly related mycobacteriophage (M’phage) clusters. (F) Characteristics of M. abscessus plasmids
showing examples, the numbers of members in each cluster, average genome size in kbp, average copy number, and the predicted incompatibility (Inc)
group.
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Diversity ofM. abscessus plasmids. Although plasmids are not as prevalent as pro-
phages in these clinical isolates and are only present in ;50% of the strains, they are
also quite diverse (Table 2, Fig. 1F). There are eight clusters (pA to pH) and nine single-
tons, each without close relatives in this data set, of which three (pGD58, pGD104, and
pGD21-1) are large and are not fully assembled (Fig. 1F). The smallest are cluster pA
plasmids (9.5 kbp), but the cluster pH and singleton pGD104 plasmids are over 90 kbp.
All are present at low copy number, typically fewer than 5 copies/cell on average
(Table 2; Fig. 1F). Comparison of these plasmids with the extant publicly available
(;1,500) M. abscessus sequences shows that although some plasmid-borne genes are
prevalent, there are few examples of near-full-length sequence matches. Notable
exceptions are M. abscessus subsp. bolletii plasmid 2 (31) and M. abscessus pJCM30620
(32), which are similar to pGD58 (each with 99% identity spanning 92% coverage), and
plasmid Mycobacterium sp. djl-10 plasmid djl-10_3 (accession number CP016643.1)
that is very similar to pGD25-3. Detailed genome maps of the plasmids are available at
https://phagesdb.org/documents/categories/14/.

TABLE 2 Plasmids ofMycobacterium abscessus clinical isolates

Namea Clusterb Length (bp) c ORFsd Copy number e Commentsf

pGD08 pA 9547 11 2.9 Mobilizable
pGD42-2 pA 9,547 11 2.6 Mobilizable
pGD18, pGD62-1, pGD69-1, pGD95-1,
pGD108A, pGD108B

pB 25,000 37 1.9 Mobilizable

pGD23 pB 25,002 37 1.8 Mobilizable
pGD36-1, pGD47 pB 24,995 37 2.7 Mobilizable
pGD42-1 pB 24,993 38 3.0 Mobilizable
pGD72 pB 24,985 37 1.1 Mobilizable
pGD87 pB 24,994 37 3.0 Mobilizable
pGD22-2, pGD24, pGD34, pGD75,
pGD100A, pGD100B

pC 18,117 16 1.9 Mobilizable

pGD39 pC 18,117 16 1.5 Mobilizable
pGD62-2 pC 18,612 17 2.5 Mobilizable
pGD69-2, pGD95-2 pC 18,611 17 1.9 Mobilizable
pGD19 pD 18,605 20 3.1 Mobilizable
pGD45-2 pD 19,406 21 3.1 Mobilizable
pGD85 pD 23,374 26 2.4 Mobilizable
pGD33 pE 25,996 33 1.8 Mobilizable
pGD36-2 pE 24,259 34 5.0 Mobilizable
pGD02 pF 30,963 36 2.2 NA
pGD25-1, pGD54, pGD102-1 pF 31,413 32 2.5 NA
pGD86-1 pF 31,343 32 3.1 NA
pGD25-2 pG 27,424 36 2.5 Mobilizable
pGD45-1 pG 27,427 36 3.9 Mobilizable
pGD86-2 pG 27,424 36 2.3 Mobilizable
pGD102-2 pG 27,425 36 3.9 Mobilizable
pGD58 pH 92,821 122 1.2 Conjugative
pGD13 pSin 21,881 29 1.7 Mobilizable
pGD21-1 pSin 112,633 150 1.1 Conjugative
pGD21-2 pSin 155,609 233 1.3 Linear
pGD22-1 pSin 19,694 21 1.6 Mobilizable
pGD25-3 pSin 23,599 26 5.2 Mobilizable
pGD51 pSin 23,656 27 3.6 Mobilizable
pGD52 pSin 22,216 20 3.2 Mobilizable
pGD104 pSin 96,413 144 1.3 Conjugative
pATCC19977g pSin 23,319 29 NA Mobilizable
aPlasmids are named according to their parent strains (e.g., pGD22). If there is more than one plasmid in a strain, a -1 or -2 suffix is appended. Plasmids with identical
sequences are shown in the same row.

bCluster designation (pA, pB, etc.) is indicated. Singleton plasmids with no close relatives are indicated as pSin.
cPlasmid DNA length is shown in base pairs (bp).
dThe predicted numbers of open reading frames (ORFs) are listed.
ePlasmid copy numbers are calculated as the fold-difference between the average number of sequence reads mapping to the plasmid relative to the corresponding
genome. If there is more than one plasmid, the average is reported.
fPlasmids are predicted to be mobilizable if they code for a conjugative type relaxase, and conjugative if they contain an ESX operon.
gPlasmid pATCC19977-1 is the same as the previously reported plasmid in this strain (20).
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FIG 2 Genome organization of prophiGD21-3 and prophiGD54-2. The organizations of prophageGD21-3 (A) and prophiGD54-2 (B) are shown, with the
genes represented as boxes above and below the genome rulers indicating rightward and leftward transcription, respectively. Genes are colored according

(Continued on next page)
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Plasmids in different clusters share fewer than 35% of their genes, but most code
for one of four sequence types of a RepA replication protein, the exceptions being the
large plasmids pGD58 (cluster pH), pGD21-1, and pGD104, for which no RepA was
identified. RepA sequences of pA, pC, pD, pE, and pF plasmids are sufficiently similar
(.64% pairwise amino acid [aa] identity) that they likely form a single incompatibility
(Inc) group (IncMabI) (Fig. 1F). Clusters pB, pG, and singletons pATCC19977, pGD13,
pGD22-1, pGD51, and pGD52 have a second group of related RepA proteins (.75%
pairwise aa identity), potentially forming a second Inc group (IncMabII), and although
10 strains have two plasmids, none have two plasmids of the same Inc type. GD25 has
three plasmids and singleton pGD25-3 likely represents a third Inc group (IncMabIII),
although it shares 78% aa identity with IncMabII plasmid pGD25-2 (MabG). GD21 has
two plasmids, pGD21-1 and -2, the latter of which is linear and represents a fourth Inc
group (IncMabIV) (Fig. 1F).

Prophage locations and prophage integration. All of the prophages are chromo-
somally integrated, and many are expected to impact host physiology; no plasmidial
prophages were identified (33). They are inserted at 18 different positions and are dis-
tributed broadly around the M. abscessus genome (Fig. 3A); the number and variety of
attB sites is greater than those used by 1,800 sequenced phages of M. smegmatis (34).
Phages in most of the clusters use a tyrosine integrase (Int-Y), with the exceptions of
clusters MabI and MabJ, which both use serine integrases (Int-S) (Fig. 1E). Of the 15
attB sites used by Int-Y, 10 overlap host tRNA genes, a common organization for these
integration systems (35); however, 5 do not (Fig. 3A). MabG and MabM phages use an
attB site (attB-11) located within the host tmRNA gene (Fig. 3B). The common core
sequences (shared by attB and attP) are typically 25 to 76 bp for the tRNA-attB sites
(Table S1), with the phage-derived sequences reconstructing the 39 end of the host
tRNA gene (e.g., attB-1; Fig. 3B); the exceptions are the MabA1 phages that unusually
reconstruct the 59 end of the tRNAMet gene at attB (e.g., attB-5; Fig. 3B). For all of these,
no host genes are lost upon integration, although the tRNAMet gene (Mab_t5028) must
be expressed from a phage promoter following MabA1 phage integration at attB-5
(Fig. 3A and B). Int-Y phages integrating at the four non-tRNA attB sites (attB-14, attB-
12, attB-13, and attB-8) typically have shorter core sequences (3 to 25 bp), but the con-
sequences of integration are more complex (Fig. 3B). At attB-14, the integration is
intergenic (MAB_4442-4443) and flanking gene expression is likely unaltered following
integration. However, at attB-12 and attB-13, the common core overlaps the ribosome-
binding site and translational start site of MAB_3824 and MAB_3947 (fatty acyl-CoA re-
ductase), respectively, such that transcription of these genes must originate within the
prophages (Fig. 3B). The attB-8 site is within the 39 end of MAB_2979, with the cross-
over site positioned seven codons from the translation stop codon (Fig. 3B), and,
although integration results in replacement of the C-terminal seven amino acids with
eight prophage-derived residues, the protein likely retains functionality (Fig. S1).

Three attB sites (attB-9, attB-7, and attB-17) are used by Int-S systems and have
characteristically short common core sequences (5 to 8 bp) (36, 37). All integrate within
open reading frames which they disrupt, as described similarly for Bxb1 integration
into the groEL1 gene of M. smegmatis (36, 38). The cluster MabJ phages integrate at
attB-7 located within MAB_2445, which encodes an AraC-like regulator, with potential
for wholesale changes in host gene expression. attB-9 and attB-17 are both used by
MabI phages and are located within MAB_3230 and MAB_3265, respectively (Fig. 3B).
Mab_3230 contains a SnoaL_4 domain and is related to an oxidoreductase of Streptomyces
(39). MAB_3265 encodes a dienelactone hydrolase family protein, although its specific role is
not known.

FIG 2 Legend (Continued)
to the sequence “phamilies” they are assigned to, and tRNAs are represented as black bars. Putative gene functions are indicated above the genes. Genes
5 to 43 of prophiGD21-3 and 57 to 133 of prophiGD54-2 are predicted to be transcribed early in lytic growth, with genes 44 to 76 and 20 to 50,
respectively, coding for virion structure and assembly proteins that are expressed late in lytic growth.
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FIG 3 M. abscessus prophage integration and immunity. (A) Location of attB sites in the M. abscessus genome. The 5-Mbp M. abscessus
ATCC 19977 circular genome is represented, with the location of the 18 attB sites (attB-1 to attB-18) indicated inside the circle. Outside

(Continued on next page)
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Superinfection immunity and integration-dependent immunity. There is consid-
erable variation in the sequences of immunity repressors, including within clusters of
otherwise closely related prophages (Fig. 3C, Table S1). At least 30 distinct immunity
groups are predicted, reflecting a broad capacity to influence phage infection profiles
by repressor-mediated superinfection immunity (Fig. 3C, Table S2). With the exceptions
of the cluster MabI and MabJ phages, the repressors are divergently transcribed from
putative cro-like genes and closely linked to the int; they vary considerably in length
and sequence, but most contain putative DNA-binding motifs. In the cluster MabJ
phages, the repressor is distal from the integrase, reflecting the organization common
to cluster A mycobacteriophages. The repressor location in the cluster MabI is unclear.

Nine of these prophages, corresponding to six attB sites (attB-1, attB-2, attB-8, attB-
12, attB-13, and att-14), use integration-dependent immunity systems (40). These sys-
tems are unusual in that attP is located within the repressor gene such that the viral-
and prophage-encoded gene products differ at their C termini. The virally encoded
repressor gene product typically has a C-terminal ssrA-like degradation tag and does
not confer immunity, and integration is required for removal of the degradation tag
and expression of a functional repressor (40). Clusters MabB, MabC, MabH, MabK,
MabN, and MabO all have attP within their repressor genes and integrative recombina-
tion leads to a 20 to 35 residue shorter gene product truncated at its C terminus due
to a translation stop codon at attL (Fig. 3D, Fig. S1). For the MabC, MabK, MabN, and
MabO phages (using attB-1, attB-12, attB-13, and attB-14), the stop codon is formed by
juxtaposition of the first base of bacterial sequence to the phage sequence at attL. In
the MabB phages, seven amino acids are added from the bacterially derived sequence
(Fig. S1). For MabB and MabK phages, the attB site overlaps the 39 ends of tRNA genes
such that the tRNA is transcribed toward the truncated repressor (Fig. 3D).

The Imm-7, Imm-9, Imm-8, and Imm-24 virally encoded repressors have C-terminal
sequences (-AA) consistent with degradation by the ssrA system and, with the excep-
tion of Imm-24, their integrases also have -AA C termini (Fig. 3D), similar to the previ-
ously described systems in mycobacteriophages (40). The MabC, MabN, MabO, and
MabH repressors do not have ssrA-like tags and presumably use other signals for deg-
radation, similar to phage BPs (40). The integrases of MabC, MabK, MabN, MabO, and
MabH also do not have ssrA-tags (Fig. 3D).

Prophage-encoded polymorphic toxin-Imm systems. The presence of PT-Imm
cassettes in prophiGD21-3 and prophiD54-2 was noted above (Fig. 2), but related cas-
settes are prevalent in these prophage genomes. Prophages in 14 clusters code for a
remarkably diverse set of PT-Imm systems, all implicated in bacterial virulence (41)
(Fig. 4A, Table S3). These systems code for a large (;50 kDa) member of the polymor-
phic toxin (PT) family, and an immunity protein (Imm) that protects from toxicity (41).
All of the prophage-encoded toxins include an N-terminal WXG-100 motif targeting
the PT for export by the type VII secretion system (TSS), together with a small
ESAT6-like protein with a WXG-100 motif that likely forms a heterodimer to pro-
mote PT export (Fig. 4A). The variation among the prophage-encoded PTs is consid-

FIG 3 Legend (Continued)
the circle the coordinate of the site in ATCC 19977 is shown in red, the associated M. abscessus ATCC 19977 gene name is shown in
blue, and the prophage clusters using each attB are shown in black. (B) attB locations and consequences of integration. Ten examples of
attB site locations are shown (black bars) relative to the M. abscessus ATCC 19977 genes for reference; rightward and leftward
transcribed genes are shown as green and red boxes, respectively, with their ATCC 19977 gene number. An integrated prophage
example is shown for each attB site, with the corresponding attL and attR sites shown to reflect the orientation of integration. The attB
sites not shown (attB-2, attB-3, attB-4, attB-6, attB-10, attB15, attB-16, and attB-18) all overlap the 39 end of a host tRNA gene, as
illustrated for attB-1. Systems using Int-Y or Int-S are indicated. (C) Superinfection immunity groups of M. abscessus prophages.
Phylogenetic relationship of putative prophage repressors are shown with designation of immunity groups (Imm-1, Imm-2, etc). (D)
Integration-dependent immunity systems. Examples are shown of nine distinct immunity groups (boxes a to i), each of which uses an
integration-dependent immunity system in which the attP site (aqua-colored box) is located within the repressor gene (Rep). Each code
for a tyrosine family integrase (Int-Y) either immediately downstream of Rep or separated by 3 to 5 genes (//). Integration results in a
truncated but active form of the repressor due to a closely linked translation stop codon at attL (blue/aqua box). The six C-terminal
amino acid residues of Int and Rep are shown, showing that many of the rep and int genes have ssrA-like degradation tags (XXXAA-C-
term), whereas others do not and presumably use alternative degradation systems.
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FIG 4 Polymorphic toxin-immunity regions of M. abscessus prophages. (A) Fifty of the complete M. abscessus prophages identified carrying a region
coding for a polymorphic toxin, immunity protein, and WXG-100 genes organized into 21 distinct arrangements (labeled a to u). In each arrangement

(Continued on next page)
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erable, including at least 10 different sequence groups of the PTs, with additional
diversity among their C-terminal regions. For example, prophages prophiGD57-1,
prophiGD08-3, prophiGD21-3, prophiGD43A-5, prophiGD43A-6, prophiGD05-3, and
prophiGD03-1 code for related PTs, but the C-terminal regions code for different
motifs, including Tox-REase-5, tuberculosis necrotizing toxin (TNT), Endo-NS2, and
Ntox-15 motifs (Fig. 4A, a to g). The putative Imm proteins immediately down-
stream of the PTs are also highly diverse and are predicted to interact directly with
the toxin (42), and likely coevolve with the PT C-terminal domain (Fig. 4A). Thus,
although there are seven different configurations with a toxin related to that in
prophiGD57-1 (Fig. 4A), the four different putative Imm proteins correspond to the C-ter-
minal variation of the toxin (Fig. 4A). We note that several of the putative Imm proteins are
predicted lipoproteins (Fig. 4A, i, k, and s). Secretion of the PT likely utilizes either the M.
abscessus Esx-3 or Esx-4 type VII secretion systems, both of which are important for growth
in vivo (43, 44). These prophage-encoded PT-Imm systems are predicted to contribute to
M. abscessus in vivo growth and infection via multiple mechanisms.

All of these PT-Imm systems are encoded close to the attachment junctions and adjacent
to bacterial genes (Fig. 4A), a common location for prophage-expressed genes amongmyco-
bacteriophages (13, 15). Transcriptome sequencing (RNAseq) shows that most pro-
phage genes are transcriptionally silent, but the PT-Imm systems are expressed in
several lysogens with transcription initiation originating from prophage promoters
(Fig. 4B). The Imm genes are expressed at higher levels than the PT genes, presum-
ably to optimize immunity from the PT prior to export (Fig. 4B). This is in contrast to
the MuF-related toxins within the virion structural genes of several Escherichia coli
phages, which are secreted by type VI systems (27, 45). We note, however, that PT-
Imm expression is not observed in all lysogenic strains, as shown by prophiGD21-1,
in which the repressor is the sole lysogenically expressed gene product (Fig. 4B). It
is plausible that some PT-Imm systems are expressed only in host cells.

Prophage-encoded toxin-antitoxin systems. Prophages can encode and express
multiple functions other than repressor-mediated immunity that prevent phage infec-
tion, often with considerable specificity and against genomically unrelated phages (3,
5). Among these are toxin-antitoxin (TA) systems and several are located in att-linked
defense loci of mycobacteriophages and are prophage expressed (3). Nineteen M.
abscessus prophages code for at least nine different TA systems, although only two (in
prophiGD12-2 and prophiGD04-1) are proximal to an attachment site (Fig. 5A). The
others are located within early lytic genes but often transcribed on the opposite strand
(e.g., prophiGD79-1, prophiGD91-4, prophiGD43A-5, and prophiGD12-2) (Fig. 5A).
RNAseq of several lysogens carrying MabA1 phages shows that the TA pair is strongly
transcribed, contrasting with the flanking phage (Fig. 5B). These genes are thus impli-
cated in influencing bacterial physiology and likely promote defense against viral
infection.

Potential roles of M. abscessus plasmids. The M. abscessus plasmid repertoire is
diverse and replete with functions predicted to influence bacterial physiology, includ-
ing antibiotic resistance, phage defense, and virulence. Most of the plasmids are likely
mobilizable and code for conjugative-type relaxases, perhaps using the host TSS sys-

FIG 4 Legend (Continued)
these genes are close to either an attR (a to h, l to u) or attL (i to k) attachment junction (designated according to the attB site used; see Fig. 2A, Table
S3) and phages genes are shown as colored boxes above or below genome rulers reflecting rightward and leftward transcription, respectively; black
arrows indicate a host gene adjacent to the attachment, designated with the corresponding gene number in M. abscessus ATCC 19977. The genomes
are aligned by 59 end of the toxin gene (a to h, l to u) where transcribed leftward inside attR, and similarly for the three configurations adjacent to attL
(i to k), where the genes are transcribed rightward. Genes are colored according to their designated assignment into groups of related proteins
(phamilies). All of the polymorphic toxin genes have an N-terminal WXG-100 (WXG) motif common to the type VII secretion system but have variable C
termini. A schematic representation is shown in the box at top right indicating the organization of the polymorphic toxin domains and the proposed
interaction between the toxin and a protective immunity protein. (B) Expression of the PT-Imm loci. RNAseq profiles for prophiGD43A-5, prophiGD43A-
2, prophiGD43A-3, and prophiGD43A-6 show lysogenic expression of the PT-Imm loci; most of the rest of the prophages are transcriptionally silent. RNA
was prepared from M. abscessus strain GD43, and only sequence reads mapping uniquely are shown. Also shown is a profile of the entire prophiGD21-1
prophage, in which only the repressor is expressed. RNA was prepared from M. abscessus strain GD21 and RNAseq reads mapping to forward (red) and
reverse (purple) strands are shown.
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FIG 5 Prophage- and plasmid-borne genes. (A) Toxin-antitoxin (TA) systems in M. abscessus prophages. Genome maps for prophage segments are
displayed as described in Fig. 2, with the location of TA genes indicated. (B) RNAseq profiles showing lysogenic expression of TA modules. RNA was
isolated from GD22, GD17, and GD43A and strand-specific reads were mapped to prophage regions (prophiGD22-1, prophiGD17-2, and prophiGD43A-1).
Read mapping to forward (red) and reverse (purple) strands are indicated. (C) Organization of cluster pE plasmids pGD33 and pGD36-2. Both plasmids
encode plasmid replication (RepA, ParA, and ParB), site-specific recombination (Recomb), and mobilization (Relaxase, TraM-like) functions, as well as type VII
secretion genes (WXG), lipoprotein (LpqN), porin (MspA), and TA systems. pGD33 also codes for a VirB10-like factor. (D) Genome organization of the Esx
loci of large plasmids pGD58 and pGD104; only the rightmost 30 kbp of the genomes are shown. Components of the TSS Esx systems are indicated.
Pairwise nucleotide sequence similarity is displayed by spectrum color shading between the genomes, with violet as most similar and red as least similar.
Genes are shown as boxes either above or below the genome, indicating rightward and leftward transcription, respectively. Gene boxes are colored
according to gene phamilies in which they are assigned.

M. abscessus Prophages and Plasmids ®

March/April 2021 Volume 12 Issue 2 e03441-20 mbio.asm.org 13

https://mbio.asm.org


tems for mobilization that are implicated in distributive conjugation (46). We note that
clusters pC, pD, and pE plasmids also code for several proteins with WXG-100 domains
that are likely also exported through the TSS system, as well as toxin-antitoxin and abi
systems (47) implicated in viral defense (Fig. 5C). Abi genes (47) are present in clusters
pA, pB, pC, pD, pF, and the singletons pATCC19977, pGD25-3, and pGD104, and TA
systems are in plasmids in clusters pD, pE, pH, and singletons pGD104 and pGD21-
2. However, we note that of the 28 strains that are not infected by phages, 19 are
plasmid free, and the overall phage susceptibility profiles are likely determined by
complex combinations of prophage, plasmid, and bacterially encoded functions
(17).There are also a variety of genes associated with transport systems, including
the MmpL proteins (coded by pB plasmids), MFS-like transporters, and several
metal resistance and iron regulators, specifically. These strains are resistant to many
different antibiotics and the plasmids are strongly implicated in these resistance
phenotypes.

The large (.92 kbp) plasmids (pGD58, pGD104, pGD21-1, and pGD21-2; Table 2)
are notable in that they have large (25 to 30 kbp) ESX regions coding for type VII secre-
tion systems that are implicated in conjugative plasmid transfer (Fig. 5D); these ESX
systems are similar to that in M. bolletii 50594 plasmid 2, designated ESX-P cluster 3
(48). Related plasmids are reported to be quite widespread (49), but are not highly
prevalent in M. abscessus strains; pGD58 and pGD104 each have only ;20 closely
related plasmids in over 1,500 sequenced M. abscessus strains (50). The three strains
carrying these large plasmids are all M. abscessus subsp. massiliense, two of which have
smooth morphotypes, suggesting that abundant surface GPLs do not interfere with
plasmid transfer by conjugation.

DISCUSSION

M. abscessus is an important emergent pathogen and widespread antibiotic resist-
ance presents substantial clinical challenges. Elucidating its pathogenic capacity is
complicated by its genetic variability, much of which could be driven by its expansive
mobilome of prophages and plasmids, many of which code for genes predicted to
influence survival and growth in vivo as well as antibiotic- and phage-resistance pro-
files (Fig. 4, Fig. 5). Defining these strain differences and their pathogenic behaviors is
of considerable importance (17). Most studies of M. abscessus have focused on type-
strains such as ATCC 19977, but this strain is poorly representative of the pathogenic
potential and physiology of most clinical strains, whose mobilomes are revealed to be
highly diverse, with individual strains having different properties depending on the va-
riety of prophages and plasmids they carry. Understanding clinical responses to M.
abscessus infection will require a much broader understanding of these strain differen-
ces and their phenotypic consequences.

The widespread antibiotic resistance of M. abscessus clinical isolates is a substantial
impediment to genetic manipulation, as it greatly limits the use of selectable markers for
transformation. The diverse prophage and plasmid repertoires offer a multitude of oppor-
tunities for advancing the genetic systems. For example, the numerous superinfection im-
munity systems are a resource for use as genetically selectable markers that circumvent
the use of antibiotics (51). Several of the prophages have been propagated lytically and it
is likely that many more can be (17, 52). For each of these, a cloned repressor gene can be
adapted as a selectable gene using lytic phage derivatives as selective agents. We note
that for the integration-dependent immunity systems (40), it is critical that the truncated-
but-active prophage-encoded repressor must be used, not the inactive virally encoded
form.

There are relatively few plasmid replicons available for vector development for M.
abscessus. The plasmids described here represent at least four incompatibility groups
(Fig. 1F), each of which could be used to develop low-copy-number extrachromosomal
vectors for combinatorial use. There is also considerable potential for construction of
additional integration-proficient plasmid vectors taking advantage of the abundance
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of newly identified attB sites (Fig. 3A). We note that the commonly used integrative
vectors based on mycobacteriophage L5 (53) use a conserved attB site overlapping M.
abscessus tRNAGly gene (t5027), which is not occupied by any of the prophages
described here (Fig. 3B), and therefore should be broadly applicable.

MATERIALS ANDMETHODS
Bacterial strains and media. M. smegmatis mc2155 was grown as previously described (14). M. absces-

sus strains were grown in 10ml of 7H9 medium with oleic acid-albumin-dextrose-catalase (OADC) and 1mM
CaCl2 for ;72h at 37°C with shaking. For some M. abscessus strains, several individual isolates were recov-
ered either at different times or different morphotypes, including strains GD54, GD35, and GD64, which were
designated GD54H, GD35B, and GD64A, respectively. For some isolates, both rough and smooth colony mor-
photypes were recovered, and designated accordingly (e.g., GD68A, GD68B). GD43A and B have different
numbers of prophages in them and they are therefore treated as separate strains. Bacterial DNA was
prepped from 1ml of log-phase culture using standard phenol-choloroform-isoamyl alcohol extraction and
ethanol precipitation. Phage DNAs were isolated using similar methods as reported previously (9).

Genomics. Genomic DNAs were prepared for sequencing using NEB Ultra II FS kits and then pooled
and run on an Illumina MiSeq using v3 reagent kits to generate 300-base paired-end reads. In some
cases, Oxford Nanopore sequencing libraries were also constructed from genomic DNA using Rapid
Sequencing Barcoding kits, and then pooled and run on a MinION device using FLO-MIN106D flowcells.
Illumina reads for each strain were trimmed and quality-controlled using Skewer (54). Trimmed Illumina
reads were then assembled using Unicycler (55), incorporating Nanopore reads when available.

In the case of complete genomes, assemblies were viewed, stitched, corrected, and finalized using
Consed version 29 (56, 57). GraphMap (58) was used to align long Nanopore reads to provisional assemblies
and resolve repetitive regions. The first base and orientation of each complete circular chromosome was
chosen to match those of the ATCC 19977 strain and/or to align with the first base of the dnaA gene.

Prophage and plasmid identification. Prophages were detected initially by searches using PHASTER
(20) followed by careful manual inspection. PHASTER often identifies potential regions with prophages
but does not accurately identify attachment junctions. Precise prophage positions were determined by
genome comparisons with strains lacking those prophages, and identifying the short repeated sequen-
ces corresponding to the common core at the attL and attR sites. Related copies of prophages were
identified by extensive sequence searches and genome comparisons. Each prophage sequence was
extracted, including the common core sequence at both ends of the prophage genome. Prophages
were designated according to the strain in which they reside, i.e., prophiGDXX-1, with suffixes used to
denote multiple prophages in the same genome.

Potential plasmids were identified primarily as small circularized contigs in genome assemblies,
although one linear plasmid was also identified. These contigs were manually inspected to ensure they
were valid, complete, and not contaminants. Complete circular plasmids were oriented and cut so that
base 1 was the first base of a predicted repA gene whenever possible.

Other bioinformatics. Phylogenies were constructed using neighbor joining with ClustalX and
NJPlot, or were created using CSI Phylogeny 1.4, a SNP-based concatenated alignment, available on the
DTU server (https://cge.cbs.dtu.dk/services/CSIPhylogeny/) (59). A prophage network phylogeny based
on gene content was constructed using Splitstree (60) similarly to as was described previously (9).
Phamerator (61) databases “Actino_prophage_15” and “Mycobacterium_prophages_5” were con-
structed for comparative genomic analyses.

RNAseq. Total RNA was isolated from logarithmically growing M. abscessus cells. Removal of DNA
was completed using a Turbo-DNase-Free kit (Ambion) according to the manufacturer’s instructions.
The depletion of rRNA was completed using QIAseq FastSelect (Qiagen). The libraries were constructed
using the NEBNext Ultra RNA library kit (New England BioLabs) and verified using a BioAnalyzer. The
libraries were multiplexed and 4 were run on an Illumina MiSeq for each run. Analysis of the data was as
described previously (62). Only unique reads were mapped to each genome set. All RNAseq data have
been deposited in Gene Expression Omnibus (GEO) repository (GSE161710).

Data availability. The data that support the RNAseq findings of this study have been deposited in
Gene Expression Omnibus (GEO) with number GSE161710. The completed and WGS genome sequenc-
ing data for M. abscessus clinical isolates, including plasmids and prophages, are available in GenBank,
and a complete list of accession and project numbers are provided in the accompanying manuscript
(17).
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