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A differential network with multiple 
gated reverse attention for medical 
image segmentation
Shun Yan , Benquan Yang * & Aihua Chen *

UNet architecture has achieved great success in medical image segmentation applications. However, 
these models still encounter several challenges. One is the loss of pixel-level information caused 
by multiple down-sampling steps. Additionally, the addition or concatenation method used in 
the decoder can generate redundant information. These limitations affect the localization ability, 
weaken the complementarity of features at different levels and can lead to blurred boundaries. 
However, differential features can effectively compensate for these shortcomings and significantly 
enhance the performance of image segmentation. Therefore, we propose MGRAD-UNet (multi-gated 
reverse attention multi-scale differential UNet) based on UNet. We utilize the multi-scale differential 
decoder to generate abundant differential features at both the pixel level and structure level. These 
features which serve as gate signals, are transmitted to the gate controller and forwarded to the 
other differential decoder. In order to enhance the focus on important regions, another differential 
decoder is equipped with reverse attention. The features obtained by two differential decoders are 
differentiated for the second time. The resulting differential feature obtained is sent back to the 
controller as a control signal, then transmitted to the encoder for learning the differential feature 
by two differential decoders. The core design of MGRAD-UNet lies in extracting comprehensive and 
accurate features through caching overall differential features and multi-scale differential processing, 
enabling iterative learning from diverse information. We evaluate MGRAD-UNet against state-of-
theart (SOTA) methods on two public datasets. Our method surpasses competitors and provides a new 
approach for the design of UNet.

Keywords  Medical image segmentation, Multi-scale feature extraction, Differential feature

Medical image segmentation plays a pivotal role in clinical applications. With the advancement of convolu-
tional neural networks (CNNs)1, various segmentation models have been developed, such as UNet2, FCNs3, etc. 
Among them, UNet has been widely used in medical image segmentation. It adopts symmetric encoder-decoder 
components with skip connections to accomplish medical image segmentation tasks. The encoder extracts deep 
features through convolution and downsampling, while the decoder upsamples and fuses encoder features from 
different scales to mitigate low-level features information loss.

With such excellent structural design, UNet has achieved great success in various medical imaging applica-
tions. Later, various improved algorithms based on UNet have been proposed. The improvements are reflected 
in following aspects: Some methods4–7 have utilized multi-scale feature fusion mechanism. Unet++7 introduces a 
novel architecture that improves feature fusion through modified skip connections and cascaded UNet modules. 
It decreases the semantic disparity between encoder and decoder feature maps. Res2Net5 introduces a novel 
building block for convolutional neural networks, enhancing multi-scale feature representation within a single 
residual block. Several methods8–10 have employed attention mechanism. PraNet9 utilizes a reverse attention 
mechanism to capture contextual information effectively and refines polyp boundaries and internal structures. 
Attention UNet10 introduces attention gates within the UNet architecture, enabling adaptive modulation of 
feature map relevance during processing. Some methods11–14 have utilized transformer technique. TransUnet11 
innovates by integrating transformer-based global context extraction with CNN feature maps, enhancing seman-
tic segmentation accuracy through precise localization. Swin-UNet12 combines the Swin Transformer with the 
UNet architecture, addressing the computational resource consumption and performance degradation issues 
faced by traditional UNet models in handling large medical images. Some methods15–18 have utilized double 
decoders or double encoders. DC-UNet16 adopts a structural design with dual decoders, which facilitate the 
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extraction of multi-scale features and effectively solves the problem of single decoder being unable to balance 
precise localization and fine boundary refinement. DDU-Net15 introduces of a dual-encoder structure, which 
enhances feature extraction and representation by incorporating additional encoders. A number of approaches 
as ASPP19, DenseASPP20 concentrate on extracting intra-layer multi-scale information using the spatial pyramid 
pooling module in their networks, gradually incorporate the semantic context and intricate texture information 
from various scale representations.

However, previous methods often fuse encoder features using simple operations like addition or concatena-
tion. These methods generate redundant information, weaken specific-level features, affecting both localization 
and boundary refinement. They overlook the importance of differences between levels, resulting in a decrease 
in segmentation performance.

In this paper, we propose a novel multi-gated reverse attention multi-stage differential network (MGRAD-
UNet) from the perspective of learning differential features at multiple scales and between the double decoder 
and encoder for general medical image segmentation. Firstly, we place emphasis on differential features. We 
design two differential decoders with the differential process (DP) applied to each pair of neighboring levels. 
This highlights useful differences between features and eliminates interference from redundant parts. Then, we 
utilize a pyramid-style differential process to capture cross-level information. Next, we aggregate specific level 
features and multi-level differential features. We use them as gate signals to feed into another decoder, providing 
richer information for another differential decoder. Meanwhile, another differential decoder is equipped with 
gate and reverse attention mechanisms, as well as the pyramid differential process from the first decoder. These 
features from both decoders undergo another round of differentiation, enhancing the differential features, and 
then using them as gate signals to pass into gate-control port. Finally, excellent segmentation results are recur-
sively obtained from this network.

Our main contributions to this research are as follows:

•	 We propose an efficient and versatile multi-gated reverse attention multi-scale differential network (MGRAD-
UNet) for multifarious medical image segmentation. With multi-gated reverse attention mechanism and 
multi-scale differential module, the network can efficiently acquire differential features, thereby comprehen-
sively enhancing the perception of organs or lesions.

•	 We propose a new perspective, which involves learning from differential features generated by two differential 
decoders.

•	 To better integrate the differential features into the network, we propose Multi-Scale Differential Decoder. It 
replaces traditional addition or concatenation feature fusion with an efficient differential aggregation. And 
we propose gate-control reverse attention differential decoder. It integrates the differential features of MSD, 
resulting in higher segmentation accuracy thereafter.

•	 MGRAD-UNet has conducted extensive experiments on two publicly available medical image segmentation 
datasets, and the results show that this method outperforms the current state-of-the-art methods.

Related works
Medical image segmentation
Medical image segmentation can be described as a dense prediction task that involves classifying pixels of 
lesions or organs in endoscopy, CT, MRI, etc21. The UNet architecture, introduced by Ronneberger et al.2, has 
established itself as a cornerstone in medical image segmentation. Its encoder-decoder structure, featuring skip 
connections for enhanced feature aggregation, has become a bedrock for segmentation tasks. In light of the 
exceptional performance consistently demonstrated by numerous variants inspired by UNet, it becomes evident 
that this architectural paradigm has a lasting influence and proven effectiveness. UNet++22 uses nested encoder-
decoder sub-networks that integrate long and short connections to reduce the semantic gap between encoder 
and decoder feature mappings. MC-Net+22 utilizes three decoders with different structures and enforces output 
consistency. For attention UNet10, each transition layer and decoder block is embedded with an attention gate 
to automatically learn to focus on different shapes and sizes of target structures. Recently, the Transformer23 
architecture has achieved success in many natural language processing tasks. Some researches11,24, have explored 
its effectiveness in medical visual tasks. UTNet24 is a simple but powerful hybrid transformer architecture that 
minimizes the cost of capturing long-range dependencies between encoder and decoder. TransUNet11 is a typi-
cal transformer-based model that is worth mentioning, which encodes image features as a sequence of global 
contexts and utilizes a U-shaped hybrid design to combine low-level CNN features. Swin-Unet12 is a transformer-
centric architecture built upon the Swin transformer25. Unlike conventional approaches, Swin-Unet integrates 
transformers into both the encoder and decoder. However, contrary to expectations, this dual implementation 
fails to yield performance enhancements.

We can see that the majority of medical image segmentation methods employ rich feature representation, 
multi-scale information extraction, and cross-level feature aggregation. These models rely on a large number of 
aggregation or concatenation operations for feature fusion, emphasizing consistency among features and there-
fore weakening the differential feature components. In contrast, our MGRAD-UNet focuses on extracting multi-
scale differential features and learning differences between decoders, resulting in more efficient segmentation.

Multi‑scale feature extraction
Multi-scale feature extraction refers to the use of multiple scales of features to extract information from an 
image, thereby improving the model’s perception and segmentation accuracy. In medical image segmentation, 
multi-scale feature extraction can help the model better capture contextual information and features of lesions 
at different scales, thereby improving the accuracy of the segmentation results. Zhao et al.26 introduced M 2
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SNet, which utilizes scale cues to play an important role in capturing contextual information of objects. As the 
scale-space theory, a widely validated and theoretically sound framework, continues to inspire, an increasing 
number of multi-scale methods are being introduced27. This can be achieved by operating on multiple levels of 
the feature encoder and decoder, or by using multiple feature extraction modules to obtain features at different 
scales. Multi-scale methods include inter-layer multi-scale structures and intra-layer multi-scale structures. Inter-
layer multi-scale structures achieve multi-scale by progressively aggregating features with different scales in the 
decoder, such as U-shaped2,9,23,28–30 architectures. Intra-layer multi-scale structures obtain multi-scale features 
by using different dilation rates in feature extraction modules as some ASPP30 modules, such as DenseASPP20 
and FoldASPP31. Differing from the previous methods, we simultaneously introduced inter-layer and intra-layer 
multi-scale. This allows us to utilize multi-scale differential information in our proposed method. The intra-layer 
differential process focuses on exploring the self-difference characteristics of feature pairs from pixel-pixel to 
region-region.

Experiments
Datasets
To verify the effectiveness of proposed framework on medical segmentation tasks, we have conducted tests on 
multiple organ CT segmentation challenges Synapse11 and automatic heart diagnosis challenges ACDC11 datasets.

Synapse for multi‑organ CT segmentation
The Synapse dataset contains 30 abdominal CT scans with 3779 axial contrast-enhanced abdominal CT images. 
Following the experimental protocol of TransUNet11, we split the dataset into 18 scans for training, and 12 for 
testing. We extracted 2D slices from CT scans and segmented 8 abdominal organs, including the aorta, gallblad-
der (GB), left kidney (KL), right kidney (KR), liver, pancreas (PC), spleen (SP), and stomach (SM), and evaluated 
the results using the Dice similarity coefficient.

ACDC for automated cardiac segmentation
The ACDC dataset contains Cine MR images from 100 patients, acquired with different 1.5T and 3.0T MR scan-
ners and different temporal resolutions. For each patient, manual annotations of the right ventricle (RV), left 
ventricle (LV), and myocardium (MYO) are provided at both end-diastole (ED) and end-systole (ES) phases. In 
the following, we subjectively divide the ACDC dataset into three groups of 70%, 15%, and 15%, respectively, 
for training, validation, and testing.

Implementation details
The MGRAD-UNet is achieved based on Python 3.8 and Pytorch 1.11.0. Besides, we use a single NVIDIA RTX 
4090 GPU with 24GB of memory to train all models. For all training cases, data augmentations such as flips and 
rotations are used to increase data diversity. The input image size is set as 224 × 224. The primary learning speed 
is put to 0. 01, the default optimize procedure is SGD, the momentum to 0.9 and the weight fall off is made to 
1e−4. We train each model for a maximum of 300 epochs with a batch size of 8 for multi-organ segmentation in 
Synapse. For heart organ segmentation in ACDC, we use a batch size of 12 and train each model for a maximum 
of 300 epochs.

Experiment results
Experiment results on synapse
Based on results of multi-organ segmentation shown in Table 1, it can be seen that our proposed MGRAD-
UNet outperforms all previous state-of-the-art CNN and transformer-based 2D medical image segmentation 
methods on the Synapse multi-organ CT dataset. Our MGRAD-UNet achieved an average Dice score of 83.33%, 
which is notably higher than the reported Dice scores of TransUNet and SwinUNet, which are 5.72% and 5.75% 
lower, respectively. When compared to the recent top-performing method, TransCASCADE (Dice of 82.68%), 
MGRAD-UNet shows a 0.65% improvement on this dataset. Furthermore, when comparing the 95% Hausdorff 
Distance(HD95) of all methods, it is observed that MGRAD-UNet has the lowest HD95 distance (16.67), which 
is 10.23 lower than TransUNet (HD95 of 26.90) and 0.67 lower than TransCASCADE (HD95 of 17.34). Moreover, 
the Fig. 2 visually represent the segmentation outcomes of models.

From our study of Dice scores of individual organs, we can see that our proposed MGRAD-UNet performs 
significantly better than other methods on five out of eight organs. We can also conclude that MGRAD-UNet 
performs better in both large and small organs, although the improvement is greater for small organs. We believe 
that the reason why MGRAD-UNet achieves better segmentation results is because it uses a multi-scale differ-
ential decoder and combines differential features from two decoders, and by reusing these features, the model’s 
learning ability is strengthened.

Experiment results on ACDC
Table 2 reports cardiac organ segmentation results on the MRI data modality of the ACDC dataset. Our proposed 
MGRAD-UNet outperforms all other SOTA methods with better Dice scores. Compared to TransUNet and 
SwinUNet, MGRAD-UNet shows improvements of 2.42% and 4.06%, respectively. MGRAD-UNet also achieves 
the highest Dice scores in RV (90.42%), Myo (90.00%), and LV (95.98%) segmentation. Therefore, we can infer 
that by considering differential features as feedback signals and feeding them back to the encoder, along with 
multi-scale differential learning, the robustness of the encoder is effectively enhanced, and redundant informa-
tion is eliminated.
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Model parameters comparison
We further conducted experiments to compare parameters and computational complexities of various models. 
As shown in Fig. 3, although our computational complexity is the highest compared to other models, param-
eters is the lowest and our results are also improved. We observe that Dice is the highest in performance on the 
Synapse dataset. The reason behind this increase in computational complexity is the use of 3-time loop to fully 
utilize the differential information. These observations validate the efficiency and effectiveness of MGRAD-UNet.

Ablation study
Effectiveness of different modules
We have conducted an ablation study on the Synapse dataset and the ACDC dataset to evaluate the effectiveness 
of different components in our proposed MGRAD-UNet. We remove modules such as RFB and SideConv from 
the MGRAD-UNet and compare the results.

The results on the Synapse dataset, as shown in Table 3, clearly demonstrate that the RFB and SideConv 
modules contribute to improved performance. When the SideConv module is removed, average Dice and mIoU 
values decrease by 0.33% and 0.11% respectively. Average HD95 and ASD values increase by 2.13 and 0.23 
respectively. Similarly, when the RFB module is removed, average Dice and mIoU values decrease by 0.72% and 
1.13% respectively. Additionally, average HD95 and ASD values increase by 2.87 and 0.18 respectively.

When both modules are removed simultaneously, average Dice and mIoU values decrease by 0.93% and 
1.23% respectively. Average HD95 and ASD values increase by 1.91 and 0.25 respectively. The best performance 
is achieved when both the RFB and SideConv modules are used, as it consistently outperforms other variations 
across all test datasets.

The results on the ACDC dataset, as shown in Table 4. When the SideConv module is removed, average Dice 
values decrease by 0.43%. Additionally, Dice values of RV, Myo and LV values decrease by 0.33%, 0.38% and 0.59% 
respectively. Similarly, when the RFB module is removed, average Dice values decrease by 0.71%. Additionally, 
Dice values of RV, Myo and LV values decrease by 0.37%, 0.26% and 1.11% respectively. When both modules are 
removed simultaneously, average Dice values decreased by 1.01%. Additionally, Dice values of RV, Myo and LV 
values decrease by 0.59%, 0.55% and 2.10% respectively. The best performance is achieved when both the RFB 
and SideConv modules are used, as it consistently outperforms other variations across all test datasets.

Effectiveness of multi‑gated reverse attention mechanism
To evaluate the effectiveness of our proposed multi-gated reverse attention mechanism, we conduct a compara-
tive analysis of MGRAD-UNet with and without reverse attention on the Synapse multi-organ dataset. It can 
be observed from Fig. 4 that the heatmaps generated with multi-gated reverse attention mechanism are more 
detailed, clearer, and richer in information compared to those generated without it. This demonstrates the 
remarkable effectiveness of the multi-gated reverse attention mechanism in improving feature extraction and 
model performance.

Effectiveness of aggregated loss
In our experiments, we used aggregated loss, which takes all predictions mapping from different stages of the 
network as input and sums up the losses of the prediction mappings generated from the non-empty subsets of 
n prediction mappings in 2n − 1 . From Table 5, we can see When we replaced it with weighted loss, we found 
that the average values of Dice and mIoU decreased by 0.19% and 0.05% respectively, while the value of HD95 
increased by 6.49.

In addition, to compare the convergence properties of the two loss functions, we provide visualizations of the 
corresponding losses in Fig. 5. It is precisely because aggregated loss can generate and combine prediction maps 
from subsets, resulting in more combined prediction maps, that its effectiveness has been proven.

Discussion
We adopt a differential process that is distinct from previous addition or aggregation operations in the multi-scale 
module. This differential process reduces redundancy among different levels in the resulting feature while sig-
nificantly enhancing their scale-specific properties. Compared to single-scale designs, the multi-scale differential 
approach enables the network to gather more complementary information at both the pixel and neighborhood 
levels. Additionally, we further explore the potential of learning differentials and propose a dual-differential 
decoder structure, which leverages the differential information obtained through training with different decod-
ers. In contrast to a single decoder, multiple decoders not only generate diverse prediction results, enhancing the 
accuracy and robustness of segmentation results, but also can capture features at different scales and levels. Our 
dual-differential decoder structure addresses scale information extraction and feature aggregation challenges. 
We believe that this new paradigm can drive further research on differential operations in the future.

Conclusion
In this paper, we reflect on the traditional methods of addition or connection and consider the differences among 
multiple decoders. On this basis we propose a new and effective differential network method MGRAD-UNet 
for more efficient medical image segmentation. Based on the proposed differential process, adjacent layers are 
differentially aggregated to extract complementary features from both low-level and high-level representations to 
enhance the multi-scale feature representation. Meanwhile, the network uses differences between two decoders as 
feedback signals and sends them to the gating unit. Unlike previous methods that emphasize filtering inconsist-
ent regions, our approach is more effective. Specifically, it involves training differential decoders, followed by a 
learning process guided by resulting differences. In addition, we use an aggregated loss method to supervise the 
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prediction. Experimental results on medical segmentation tasks demonstrate that the proposed model outper-
forms various state-of-the-art methods.

Method
Overview
The MGRAD-UNet overall architecture is illustrated in Fig. 1. The MGRAD-UNet consists of a gate-control port, 
an encoder, a multi-scale differential decoder (MSD) and a gate-control reverse attention mechanism differential 

Fig. 1.   Illustration of the proposed multi-gated reverse attention multi-scale differential network. On the left of 
the figure is the encoder network, and on the right are the dual differential decoder network and the prediction 
results generated by them. We perform differential processing on the features from decoders and provide 
differential results as supplementary information to the encoder for learning.

Fig. 2.   The qualitative results of different methods on the Synapse Multi-Organ dataset include the Ground 
Truth (GT), Ours, SwinUNet, MT-UNet, TransUNet, and PVT-CASCADE. We overlay the segmentation maps 
on top of the original image/slice. We use white bounding boxes to highlight our excellent segmentation results.
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decoder (GRAD). The input data X ∈ R
3×224×224 . Initially, we employ convolutional blocks comprised of 3× 3 

convolutions, BatchNorm function, and ReLU activation to extract features from each layer, denoted as Ei , 
i ∈ {1, 2, 3, 4, 5} . Next, we adjust the number of channels to 64 through the RFB module to decrease subsequent 
parameter count. Subsequently, these features from different layers are input into the MSD, resulting in five com-
plementary enhanced differential features Mi , i ∈ {1, 2, 3, 4, 5} being output. Then Mi are input into the GRAD 
to reinforce the edge features, and obtain the output feature Gi . To better utilize the differences between feature 
maps generated by two differential decoders, we will perform a differential operation on Mi and Gi , and absorb 
these differences recursively. In the current iteration, the differential information obtained from the previous 
iteration will be adopted as auxiliary information and integrated into the encoder.

Multi‑scale differential decoder
The architecture of the Multi-Scale Differential Decoder is illustrated in Fig. 6. It involves five input features Ri , 
five output features Mi , addition operations, the difference process as DP . The DP composed of ConvBlocks and 
subtractions between adjacent layers. The process can be expressed as follows:

where Ri and Ri+1 represent feature maps from adjacent levels, Conv(·) denotes the ConvBlock with a convo-
lutional layer with a kernel size of 3 and padding of 1, a batch normalization layer and ReLU. Up(·) denotes the 

(1)DP = Conv(
∣

∣Conv(Up(Ri+1))⊖ Conv(Ri)
∣

∣)

Table 1.   Evaluation metrics for the Synapse multi-organ segmentation. The evaluation metrics for UNet, 
AttnUNet, SSFormerPVT, and PolypPVT are taken from32. We reproduced the results for TransUNet, 
SwinUNet, HiFormer, PVT-CASCADE, TransCASCADE with a batch size of 8 and an input resolution of 
224 × 224. Additionally, ↑ ( ↓ ) indicates that a higher (lower) value is better. The best-performing results are 
highlighted in bold.

Architectures

Average

Aorta GB KL KR Liver PC SP SMDice (%)↑ HD95 (voxel)↓ mIoU (%)↑

UNet2 70.11 44.69 59.39 84.00 56.70 72.41 62.64 86.98 48.73 81.48 67.96

AttnUNet10 71.70 34.47 61.38 82.61 61.94 76.07 70.42 87.54 46.70 80.67 67.66

R50+UNet11 74.68 36.87 – 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92

R50+AttnUNet11 75.47 36.97 – 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95

TransUNet11 77.61 26.90 67.32 86.56 60.43 80.54 78.53 94.33 58.47 87.06 75.00

MT-UNet33 78.59 26.59 – 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

MISSFormer34 81.96 18.20 – 86.99 68.65 85.21 82.00 94.41 65.67 91.92 80.81

SwinUNet12 77.58 27.32 66.88 81.76 65.95 82.32 79.22 93.73 53.81 88.04 75.79

PolypPVT35 78.08 25.61 67.43 82.34 66.14 81.21 73.78 94.37 59.34 88.05 79.40

SSFormerPVT36 78.01 25.72 67.23 82.78 63.74 80.72 78.11 93.53 61.53 87.07 76.61

HiFormer37 80.69 19.14 – 87.03 68.61 84.23 78.37 94.07 60.77 90.44 82.03

PVT-CASCADE32 81.06 20.23 70.88 83.01 70.59 82.23 80.37 94.08 64.43 90.10 83.69

TransCASCADE32 82.68 17.34 73.58 86.63 68.48 87.66 84.56 94.43 65.33 90.79 83.52

MGRAD-UNet (Ours) 83.33 16.67 74.68 89.31 76.41 85.22 84.94 94.53 61.17 93.39 81.66

Table 2.   Qualitative results of the ACDC dataset. We report Dice scores for the left ventricle (LV), right 
ventricle (RV), myocardium (Myo), and the average Dice score. ↑ ( ↓ ) indicates that a higher (lower) value is 
better. The best performance is highlighted in bold.

Methods

Dice (%)

Average RV Myo LV

R50+UNet11 87.55 87.10 80.63 94.42

R50+AttnUNet11 86.75 87.58 79.20 93.47

ViT+CUP11 81.45 81.46 70.71 92.18

R50+ViT+CUP11 87.57 86.07 81.88 94.75

TransUNet11 89.71 86.67 87.27 95.18

SwinUNet12 88.07 85.77 84.42 94.03

MT-UNet33 90.43 86.64 89.04 95.62

MISSFormer34 90.86 89.55 88.04 94.99

PVT-CASCADE32 91.46 89.97 88.90 95.50

TransCASCADE32 91.63 90.25 89.14 95.50

MGRAD-UNet (Ours) 92.13 90.42 90.00 95.98
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Fig. 3.   This figure shows Average Dice, the number of parameters, and computational complexities of different 
models.

Table 3.   Ablation studies were conducted on the Synapse multi-organ segmentation dataset. The 
modules“RFB” and “SideConv” represent different modules used in the study. Significant values are in (bold).

Compenents Average

RFB SideConv Dice↑ mIoU↑ HD95↓ ASD↓

� � 83.33 74.68 16.67 3.26

� × 83.00 74.57 18.80 3.49

× � 82.61 73.55 19.54 3.44

× × 82.40 73.45 18.58 3.51

Table 4.   Ablation studies were conducted on the ACDC for automated cardiac segmentation dataset. The 
modules “RFB” and “SideConv” represent different modules used in the study. Significant values are in (bold).

Compenents Dice (%)

RFB SideConv Average↑ RV↑ Myo↑ LV↑

� � 92.13 90.42 90.00 95.98

� × 91.70 90.09 89.62 95.39

× � 91.62 90.05 89.74 94.87

× × 91.12 89.83 89.45 93.88

Fig. 4.   This figure shows feature heatmaps of MGRAD-UNet with and without multi-gated reverse attention.
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upsample function with a scale factor of 2. | · | denotes the absolute value computation. The DP can obtain and 
highlight differential features between adjacent levels, thus supplying more affluent information for subsequent 
decoding.

To enhance the complementarity of features at each level, establishing differential relationships at both pixel 
and structural levels. We employ DP to obtain differential features between adjacent levels and across layers, 
meanwhile we connect differential features in both horizontal and vertical directions, calculating differential 
features of different levels. Then aggregated the features CLin of the corresponding layer and differential features 
CLin =1 of any other layers, to generate complementary enhanced features as output features Mi . The entire process 
can be formulated as:

(2)Mi = Conv(

6−i
∑

n=1

CLin) i ∈ (1, 2, 3, 4, 5)

Table 5.   Performance comparisions of different loss functions on Synapse multi-organ segmentation dataset. 
Significant values are in (bold).

Loss Dice HD95 mIoU

Weighted loss 83.14 23.16 74.68

Aggregated loss (Ours) 83.33 16.67 74.73

Fig. 5.   Trends in aggregated loss and weighted loss during training on the Synapse dataset.

Fig. 6.   Details of the introduced MSD. It designed with a pyramid structure, extracts features from each level 
and performs differential processes between layers, resulting in 5 complementary enhanced features and one 
prediction result.
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To ensure that the features passed into GRAD are robust and accurate, we design a supervision block called 
SideConv (SConv):

where n represents the number of upsampling times.

Gate‑control reverse attention differential decoder
As illustrated in Fig. 7. In order to better utilize multi-scale contextual information to enhance differential 
features, we design a gate-control reverse attention method. The gate-control mechanism adjusts the propaga-
tion path based on the gate signal, thereby reinforcing the edge features. The reverse attention mechanism as 
RAi , strengthens the focus on edge features by adjusting the weights of Ri , thereby improving the accuracy of 
segmentation. RAi can be formulated as follows:

where σ(·) represents the Sigmoid function. By Equation 4, we can focus more on key areas in the image, 
enhanced the utilization of contextual information.

Subsequently, we further enhance the complementarity between different layers. The weights of the features 
from RFB are adjusted and weighted with the features from each layer from the RAi :

This process obtains strengthened features focusing on key regions and edge. Following that, the features were 
passed through DP operation, resulting in the scale-specific feature ( DFi1 ) and the cross-scale differential fea-
tures ( DFin =1 ) between corresponding level and every other level. Aggregate them to generate complementary 
enhanced features as out features ( Gi ) of the GRAD. This process can be formulated as follows:

Gate‑control feedback differential encoder
To enhance the robustness of feature extraction for low-level features, such as texture, color, and edges in tradi-
tional UNet. We propose a gate-control feedback differential encoder. Specifically, we obtain differential features 
by differencing the decoding features of two decoders at the same resolution. Then we feed these differential 
features as control signals into the next round encoder.

As shown in Fig. 1. When no signal is received from the control port, we perform normal encoding follow-
ing the black arrows. When the control signal is received, we perform differential encoding following the green 
arrows. The differential encoding can be formulated as follows:

(3)SConv = Conv1×1(Up
n=i−1(Mi))

(4)RAi = (1− σ(Mi)) · Ri i ∈ (1, 2, 3, 4, 5)

(5)DFi1 =

6−i
∑

RAi i ∈ (1, 2, 3, 4, 5)

(6)Gi = Conv(

6−i
∑

n=1

DFin) i ∈ (1, 2, 3, 4, 5)

Fig. 7.   Details of proposed GRAD. It receives complementary enhanced features from MSD and performs RA 
operations with features from each level, followed by differential processes between layers, resulting in 5 output 
features and one prediction result.
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where Ei represents the normal encoding features, E′

i represents the differential encoding features, � represents 
the initial value for the coefficient weight, set to 1e − 3.

In order to enhance the model’s capability of capturing multi-scale information. We introduce the receptive 
field block (RFB)38. As illustrated in Fig. 8. RFB offers an efficient means to expand the receptive field and adjust 
the number of channels to 64 to improve computational efficiency. This process can be formulated as follows:

where Ri represents the feature generated from each Ei or E′

i after passing through the RFB module.

Loss function
In our proposed model, we utilize two loss strategies, specifically aggregate loss and weighted loss, alongside a 
defined loss function. The expression of the loss function is as follows:

where Ldice represents dice coefficient loss39, Lce represents cross-entropy loss3. �1 and �2 represent the weight 
coefficients, with values assigned as 0.3 and 0.7 respectively.

Aggregated loss
In the proposed model, the total training loss can be written as:

where Lsup and Lagg represent supervised loss and aggregated loss. The supervised loss is calculated between 
result (Pi) from the differential decoders and ground truth (GT), which can be written as:

We introduce an effective multi-stage differential feature mixing loss aggregation strategy for image segmenta-
tion. Our goal is to create new prediction maps by combining the existing prediction maps. To achieve this, we 
take all feature maps from different stages of the network as input and aggregate the losses of the new prediction 
maps generated from non-empty subsets of these prediction maps. We then aggregate these losses with the losses 
of main maps. Aggregated loss can be written as:

where G̃ represents 2n − 1 non-empty subsets of n prediction maps generated by all predicted mappings from n 
stages of the network. This aggregation strategy does not require additional parameter calculations, and can be 

(7)E
′

i = Ei + � · (Gi −Mi)

(8)Ri = RFB(Ei or E
′

i)

(9)Loss = �1 · Ldice + �2 · Lce

Ltotal = Lsup + Lagg

(10)Lsup =

2
∑

i=1

Loss(Pi ,GT)

(11)Lagg =

2n−1
∑

1

Loss(G̃i ,G)

Fig. 8.   Details of RFB module. The RFB module processes the encoder features through four branches, 
concatenates the results, and reduces the dimensionality with a 1× 1 convolution. Additionally, a shortcut 
connection adds feature maps to the output, preserving spatial information.



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20274  | https://doi.org/10.1038/s41598-024-71194-9

www.nature.com/scientificreports/

used in conjunction with multi-stage image segmentation. Algorithm 1 presents the steps for generating new 
prediction maps and aggregating the losses.

Input: G; the ground truth;
A list Mi, i ∈ {0, 1, 2, 3, 4}, where each element is a prediction map
Output: Lagg; the aggregated loss
1: Lagg ← 0.0;
2: LS ← locate all subsets of the predicted map indices that are not empty;
3: for ls ∈ LS do
4: G̃ ← 0.0; // G̃ is a newly predicted map.
5: for i ∈ ls do
6: G̃ ← G̃+Mi;
7: end for
8: Lagg ← Lsf (G̃,G); //Lsf (·) is any loss function such as Dice, CrossEntropy;
9: end for

Algorithm 1.   Aggregated Loss Algorithm

Weighted loss
Additionally, we also use another efficient weighted loss ( Lw ), which directly weights the losses of multi-stage 
differential features and each main graph, as follows:

where Lsup and Laux are the supervised loss and auxiliary loss, respectively. The auxiliary loss Laux is calculated 
between the result Si from the SConv, and ground truth GT, which can be formulated as:

where wi represents the weight coefficient.

Data availibility
The ACDC dataset originates from https://​www.​creat​is.​insal​yon.​fr/​Chall​enge/​acdc/. The Synapse dataset origi-
nates from https://​www.​synap​se.​org/#​!Synap​se:​syn31​93805/​wiki/​217789.
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