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Abstract

Background

Children with congenital heart defects have an increased risk of neurodevelopmental dis-

ability. The impact of environmental chemical exposures during daily life on neurodevelop-

mental outcomes in toddlers with congenital heart defects is unknown.

Methods

This prospective study investigated the impacts of early childhood exposure to mixtures of

environmental chemicals on neurodevelopmental outcomes after cardiac surgery. Out-

comes were assessed at 18 months of age using The Bayley Scales of Infant and Toddler

Development-III. Urinary concentrations of exposure biomarkers of pesticides, phenols,

parabens, and phthalates, and blood levels of lead, mercury, and nicotine were measured at

the same time point. Bayesian profile regression and weighted quantile sum regression
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were utilized to assess associations between mixtures of biomarkers and neurodevelop-

mental scores.

Results

One-hundred and forty infants were enrolled, and 110 (79%) returned at 18 months of age.

Six biomarker exposure clusters were identified from the Bayesian profile regression analy-

sis; and the pattern was driven by 15 of the 30 biomarkers, most notably 13 phthalate bio-

markers. Children in the highest exposure cluster had significantly lower adjusted language

scores by -9.41 points (95%CI: -17.2, -1.7) and adjusted motor scores by -4.9 points (-9.5,

-0.4) compared to the lowest exposure. Weighted quantile sum regression modeling for the

overall exposure-response relationship showed a significantly lower adjusted motor score

(β = -2.8 points [2.5th and 97.5th percentile: -6.0, -0.6]). The weighted quantile sum regres-

sion index weights for several phthalates, one paraben, and one phenol suggest their rele-

vance for poorer neurodevelopmental outcomes.

Conclusions

Like other children, infants with congenital heart defects are exposed to complex mixtures of

environmental chemicals in daily life. Higher exposure biomarker concentrations were asso-

ciated with significantly worse performance for language and motor skills in this population.

Introduction

Improved survival after surgical repair of congenital heart defects (CHD) has led to recogni-

tion that neurobehavioral disability, including mild cognitive dysfunction, impaired motor

skills, language difficulties, and impaired attention and executive function, is the most com-

mon and potentially most disabling long-term adverse outcome of infants with CHD [1].

Despite the efforts of multiple investigators and clinicians, there has been minimal progress in

improving early neurodevelopmental outcomes for these children over the past 20 years [2].

For many years, studies of neurodevelopmental outcomes for children with CHD were focused

on cardiac surgery; specifically on intraoperative management strategies [2]. This focus was

understandable inasmuch as these strategies are potentially modifiable and thus there were

potential opportunities to improve outcomes. However, recent studies have shown that innate

patient factors (prematurity, brain dysmaturity, genetic anomalies, maternal education, etc.)

eclipse intraoperative factors as predictors of worse neurodevelopmental outcomes [1, 2].

Moreover, multiple studies have demonstrated that currently recognized risk factors explain

only a small portion of total variation in neurodevelopmental outcomes [2]. A better under-

standing of other modifiable, yet under recognized factors, is critical in not only identifying

risk profiles, but also in guiding development of more individualized therapeutic strategies.

There is growing evidence of the adverse effects of even low level, early life exposures to

environmental chemicals on neurodevelopment (e.g., metals, tobacco smoke, pesticides,

industrial chemicals [phthalates, phenols, parabens]) [3, 4]. Many of these chemicals are com-

mon in the environment and are known to be endocrine disrupting compounds (EDCs) [3, 5–

10]. Household dust can contain lead (Pb), phthalates, and pesticides [11, 12]. Phthalates, phe-

nols, and parabens are present in many common consumer and personal care products [13].

In some cases (e.g. Pb), there is no known “safe” threshold for exposure to these environmental
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chemicals, with infants having increased exposure vulnerability and biologic susceptibility

compared to other sub-populations. The early postnatal period through the first two years of

life is a particularly important time for brain development [1, 4]. The infant brain is in a state

of rapid growth; thus, impairment of brain cognitive function may arise from relatively low

levels of exposure [3, 4]. Many previous epidemiologic studies have focused on exposure to

one neurotoxicant at a time [4]. However, environmental chemical exposures occur as com-

plex mixtures of chemicals from multiple chemical classes [4]. Several recent studies have sug-

gested that exposure to environmental chemical mixtures may have cumulative or possibly

synergistic (or antagonistic) adverse effects on neurodevelopment [4, 14–17].

We have previously shown that, in the perioperative period, neonates undergoing cardiac

surgery with cardiopulmonary bypass (CPB) are exposed to high-levels of phthalates and phe-

nols from medical devices [18]. Cyclohexanone is a major industrial solvent used in the pro-

duction of medical devices [19]. Everett and colleagues found substantial exposure to

cyclohexanone in neonates undergoing CPB [19]. Higher exposures were associated with

worse performance for cognitive and language skills at 12 months of age. However, to our

knowledge, no previous study has investigated the impact of exposure to environmental chem-

icals (in isolation or as part of a mixture) encountered during daily life on neurodevelopmental

outcomes in the CHD population. It is important to realize that in the infant CHD population,

these chemical exposures co-occur with other neurodevelopmental risks (e.g., brain dysmatur-

ity, hypoxia, cardiac surgery, etc.), which may exacerbate the risk of neurotoxicity [1, 4]. In

this context, children with CHD are a particularly at-risk and vulnerable population.

The purpose of this study is to determine if early life chemical exposures are potentially

important factors which are not currently included in our understanding of the mechanisms

underlying neurodevelopmental disability in children with CHD. We assessed a large number

(n = 30) of exposure biomarkers of neurotoxicants and EDCs, including Pb, mercury, environ-

mental tobacco smoke (cotinine, nicotine), pesticides, phthalates, phenols, and parabens.

Patients and methods

We conducted a prospective, observational cohort study investigating the effect of childhood

exposure to mixtures of environmental chemicals on neurodevelopmental outcomes at 18

months of age after cardiac operations in newborns. Inclusion criteria were: (1) infants with

CHD and an expected operation with cardiopulmonary bypass (CPB) at age 44 weeks post-

conception or younger. Exclusion criteria were (1) presence of an identified genetic syndrome,

(2) major extracardiac anomaly, or (3) language other than English spoken in the home. The

Children’s Hospital of Philadelphia (CHOP) Institutional Review Board and the University of

Florida Institutional Review Board approved the study. Written informed consent was

obtained from the parent or guardian. The involvement of the Centers for Disease Control

and Prevention (CDC) laboratory did not constitute engagement in human subjects research.

Patients were enrolled between September 1, 2011 and August 31, 2015. Operations were

performed by 1 of 4 cardiac surgeons with a dedicated team of cardiac anesthesiologists. Deep

hypothermic circulatory arrest (DHCA) was used at the surgeon’s discretion. Modified ultrafil-

tration was performed in all patients. Patient-related variables (e.g., age at testing, sex, race,

anthropometric measures) and peri-operative variables (e.g., age at surgery, bypass support

times, hematocrit, length of stay) were collected from patient records. Newborn length, weight,

and head circumference were measured, and the z-score for each growth measurement was

calculated using World Health Organization (WHO) standards for full-term infants and the

Fenton growth chart for preterm infants [20, 21]. Body mass index (BMI) and z-scores were

calculated using WHO standards for full-term infants and the Olsen growth chart for preterm
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infants [22]. Maternal education, socioeconomic-related variables that comprise the Hollings-

head socioeconomic status (SES), and ethnicity were determined through parental report [23].

A blood sample was obtained from each patient for genetic analysis. Whole exome sequencing

was performed on subjects and all consented parents. Details are included in the Supplemental

Files. Variant calls were queried for single nucleotide polymorphisms to determine apo-lipo-

protein E (APOE) genotype according to the following classification of bases at rs429358 and

rs7412, respectively on chromosome 19: C,T, ε1; T,T, ε2; T,C, ε3; C,C, ε4.

A study follow-up visit was conducted at 18 (mean) ± 1 (SD) months of age. Growth param-

eters (weight, height, and head circumference, BMI) were measured, and z-scores derived

using WHO standards. Collection of spot infant urine samples was performed by placing a cot-

ton ball in the diaper. The cotton balls were placed into a 3 to 5 mL polypropylene syringe

(Becton-Dickinson, Franklin Lakes, NJ), and the urine was transferred into a polypropylene

Cryovial (Simport, Beloeil, QC, Canada). Specific gravity (SG) was measured at room tempera-

ture using a handheld refractometer. Urine and negative control samples were frozen at –20˚C

and shipped overnight on dry ice to the CDC. At the CDC, urinary biomarkers were quantified

in infant urine using solid phase extraction coupled to high performance liquid chromatogra-

phy-isotope dilution tandem mass spectrometry after enzymatic deconjugation to hydrolyze

urinary conjugates and following standard quality assurance/quality control procedures as

described in detail previously [24–27]. The target chemical biomarkers measured and their

acronyms are shown in Table 1. The limits of detection (LOD) were 0.1–1.7 μg/L, depending

on the biomarker. A venous blood sample was obtained for measurement of lead, mercury,

nicotine, and cotinine. Lead levels for Pennsylvania residents were performed by the CHOP

Clinical Laboratory. Measurements for out of state subjects were performed by ARUP Labora-

tories (Salt Lake City, UT). Total mercury measurements for all subjects were performed by

ARUP Laboratories. Nicotine and cotinine were measured by ARUP Laboratories and NMS

Labs (Horsham, PA).

Patients were evaluated by a genetic dysmorphologist. Neonatal recognition of dysmorphic

features may be difficult; therefore, some patients for whom the diagnosis of a genetic syn-

drome was made at a later evaluation were enrolled. Genetic testing was performed as clini-

cally indicated. Results of the genetic evaluations were classified as normal if no genetic or

chromosome abnormality was demonstrated, abnormal if a specific diagnosis was confirmed,

and suspect if there was evidence of a genetic syndrome that could not be confirmed. Neurode-

velopmental outcomes were assessed using The Bayley Scales of Infant and Toddler Develop-

ment-III; which provide composite scores for cognitive, language and motor skills (μ = 100

with σ = 15) [28]. Higher scores indicate better skills.

Statistical analysis

Data analysis proceeded in three phases: a descriptive analysis phase to fully characterize the

study population; a modeling phase in which selected neurocognitive measures were regressed

onto a series of established risk factors to identify influential covariates for subsequent model-

ing; and, finally, a health effects modeling approach which explicitly evaluated the effects of

early-childhood chemical mixtures on neurodevelopmental attainment. All data were analyzed

in SAS (v9.4) or R (v 4.1.2).

Descriptive statistics

Measures of central tendency, variability, and univariate associations with neurodevelopmen-

tal outcomes were computed for patient-related, peri-operative, and post-operative variables

and environmental exposure biomarkers. Of the analytes used in this study, several returned
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nondetectable concentrations for some participants and required imputation consistent with

established methods in the literature [29, 30]. As such, LOD/sqrt(2) was used to impute values

for the two analytes for which the rate of non-detection was low (< 20%) while single imputa-

tion was used for the three analytes for which non-detection was more moderate (20 to 50%).

For single imputation, specifically, values were drawn from a randomly generated lognormal

probability distribution with imputed values bounded between zero and the analyte’s LOD. A

Table 1. Exposure biomarkers and chemical class.

Herbicides

2,4-D (2,4-Dichlorophenoxyacetic acid)

Organophosphates

TCPY (3,5,6-Trichloro-2-pyridinol)

Pyrethroids

3-PBA (3-Phenoxybenzoic acid)

DEET

DCBA (3-(Diethylcarbamoyl) benzoic acid)

Phenols, Parabens, Trichlocarbans

2,4-DCP (2,4-Dichlorophenol)

2,5-DCP (2,5-Dichlorophenol)

BP-3 (Benzophenone-3)

BPA (Bisphenol A)

BPB (Butyl Paraben)

BPS (Bisphenol S)

PPB (Propyl Paraben)

TCC (Triclocarban)

TCS (Triclosan)

Phthalates

MBP (Mono-n-butyl phthalate)

MBzP (Monobenzyl phthalate)

MCNP (Mono carboxyisononyl phthalate)

MCOP (Mono carboxyisooctyl phthalate)

MCPP (Mono-3-carboxypropyl phthalate)

MECPP (Mono-2-ethyl-5-carboxypentyl phthalate)

MEHHP (Mono-2-ethyl-5-hydroxyhexyl phthalate)

MEHP (Mono-2-ethylhexyl phthalate)

MEOHP (Mono-2-ethyl-5-oxohexyl phthalate)

MEP (Monoethyl phthalate)

MHBP (Mono-hydroxybutyl phthalate)

MHiBP (Mono-hydroxyisobutyl phthalate)

MIBP (Mono-isobutyl phthalate)

MNP (Mono-isononyl phthalate)

Phthalate alternatives (DINCH)

MCOCH (cyclohexane-1 2-dicarboxylic acid monocarboxyisooctyl ester)

MHINCH (Cyclohexane-1 2-dicarboxylic acid monohydroxy isononyl ester)

Other Exposures

Lead

Mercury

Nicotine

Cotinine

https://doi.org/10.1371/journal.pone.0277611.t001

PLOS ONE Exposures and Neurodevelopmental Outcomes in CHD

PLOS ONE | https://doi.org/10.1371/journal.pone.0277611 November 17, 2022 5 / 26

https://doi.org/10.1371/journal.pone.0277611.t001
https://doi.org/10.1371/journal.pone.0277611


total of 453 of 3190 (14.2%) biomarker concentrations were reported as<LOD, and 121 of

3190 (3.8%) concentrations were reported as missing because of insufficient urine volume for

analysis or analytical interferences. If the CDC laboratory reported numeric values for concen-

trations <LOD, these values were used as observed concentrations. To help characterize rela-

tionships among the 30 analytes reported here, a table of Spearman-rho correlation

coefficients was generated. Because of the extremely large number of bivariate correlations

(n = 870) in the matrix, only those achieving statistical significance at an adjusted α = 0.0024

level for 30 moderately correlated endpoints are presented in S2 Table. All observed and

imputed urine concentrations were corrected for specific gravity using Levine’s formula [31].

ResultADJ ðng=mLÞ ¼ Result� ½ðSGMedian � 1:000Þ=ðSGTesting � 1:000Þ�

Where Result = observed concentration of an analyte at testing

ResultADJ = observed concentration of an analyte at testing after adjusting for specific

gravity.

SGMedian = median specific gravity value across all subjects.

SGTesting = concentration of a subject’s urine at the time of testing.

Neurocognitive modeling

Cognitive, Language, and Motor Composite scores from the Bayley Scales of Infant and Tod-

dler Development obtained at 18 months of age were regressed onto a series of 29 patient-

related, peri-operative, and post-operative covariates, individually, using a generalized linear

model (normal distribution, identity link) specifically to identify relevant covariates for subse-

quent modeling of chemical mixtures effects on neurodevelopment. The covariates selected

for use in this study were deemed relevant for modeling based upon our prior work, as well as

the published literature in CHD [2, 32, 33]. We elected to keep as many potentially influential

covariates as possible for subsequent, in-depth analysis. Assumptions and distributional prop-

erties were tested and deemed amenable for analysis. Two of the outcomes were skewed,

requiring a Box-Cox transformation to achieve normality and make them amenable for

parametric analysis (Cognitive Composite Score^2.25, Motor Composite Score^2.75). Single

covariate models with Wald-statistic p-values < 0.20 were used as candidates for inclusion in a

best-fitting multiple covariate model for each outcome. Final, best-fitting, multiple-covariate

models were then selected based on individual and model-specific likelihood ratio tests, AIC,

and BIC values. Covariates used in the final, best-fitting models were then used in subsequent

modeling that assessed the neurodevelopmental health effects of the environmental chemical

mixture (described in turn).

Modeling the effects of environmental chemical mixtures on

neurodevelopment

Because the purpose of this study is to determine if early life chemical exposures are potentially

important contributors to our understanding of the mechanisms underlying neurodevelop-

mental disability in children with CHD, two additional semi-parametric modeling techniques

were used to investigate the impact of exposures to environmental chemicals.

Bayesian profile regression (BPR)

BPR is a semi-parametric clustering algorithm that is set in a Bayesian framework with Markov

Chain Monte Carlo (MCMC) sampling [34, 35]. In this study, BPR was used to identify envi-

ronmental exposure patterns among the children that could be linked to our study outcomes
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using conventional linear regression [36]. Advantages of using BPR compared to more con-

ventional clustering algorithms such as K means, Euclidean distance, or nearest neighbor clus-

tering, include a lack of constraint on defining the number of clusters a priori, allowances for

categorical covariates on which to base the clusters, its ability to handle and account for corre-

lated, as well as missing data, and a variable selection option to help identify the covariates

most responsible for observed patterns of clusters.

Missing exposure (or covariate data) values are accommodated with BPR by denoting each

missing value as ‘NA’ and applying multiple imputation throughout the sampler using the full

model information [35, 37]. Another particular advantage of BPR is the ability to handle cate-

gorical data in the clustering. Hence, if data are highly skewed, they can be reclassified to

accommodate the clustering algorithm. In our case, highly skewed data were reclassified into

quantiles then fit as categorical covariates, such that those with similarly high levels of exposure

(i.e., highest quantile) are clustered together and those with similarly low levels of exposure

(i.e., lowest quantile) are clustered together” [34, 35].

As mentioned, prior to fitting the model, we first transformed urinary biomarker concen-

trations into tertiles based on the sample size of our cohort and the highly skewed nature of

the biomarker data. Target exposure biomarkers were fit as categorical (discrete) covariates

and the variable selection option was utilized to identify exposure biomarkers of interest driv-

ing the observed clustering patterns. The PReMiuM package (version 3.2.6) available in the R

Statistical Computing Platform (version 4.1.2) was used to implement BPR [34]. Default priors

available in the PReMiuM package were used. The outcome was excluded from the cluster

analysis so that cluster membership is not influenced by neurodevelopmental outcomes but

rather only the co-exposure patterns. In the second step, neurodevelopmental outcomes were

analyzed using linear regression models. These outcomes included Cognitive Composite

score, Motor Composite score, and Language Composite score. The clusters were fit as cate-

gorical variables for adjusted as well as unadjusted linear regression models. In each outcome-

specific model, the cluster with the lowest exposure biomarker concentrations was set as a ref-

erence group. Clusters with regression coefficient estimates that had 95% confidence intervals

that did not overlap with zero were considered significantly associated with the neurodevelop-

mental outcome of interest.

Weighted quantile sum regression (WQS)

WQS is an alternative statistical method designed to assess associations between correlated

joint exposures with a health outcome of interest. With WQS, exposure biomarker concentra-

tions are transformed into quantiles and joined into a weighted index, which both reduces the

model parameter dimensions and addresses multi-collinearity. An overall unidirectional effect

of the mixture is estimated, with individual exposure biomarkers ranked (or weighted) based

on their relative contribution to the weighted quantile index. In our implementation of WQS,

we performed 100 bootstrap samples for parameter estimation along with 100 repeated hold-

outs with cross-validation. Model training and validation were performed using a 40%/60%

split of the cohort data. We applied the repeated holdouts because it has recently been shown

to improve the stability of WQS estimates in the context of small cohort sample sizes [38].

Since WQS handles missing values by automatically imputing to the lowest exposure group,

which would be an inappropriate assumption, only 26 chemical biomarkers were included in

the WQS model fitting. We fit WQS using tertiles for ranking of each exposure biomarker and

assumed a negative exposure-response for the WQS index since we are interested in adverse

effects of the chemical biomarkers mixture on neurodevelopment indicators. A sensitivity

analysis was performed which allowed for a positive exposure-response for the exposure
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mixture; however, there was no evidence of a significant positive effects (data not shown). The

health outcome-specific models were modeled as a linear function of the WQS index and

covariate adjustment was performed using the same covariates for the linear regression analy-

sis as described above. In our presentation of results, our inference was based on the overall

mean WQS index effect estimate along with the corresponding 95% confidence intervals. We

evaluated the importance of the estimated weights for each exposure biomarker using a thresh-

old of� 0.038 (1/26 [number of exposure biomarkers]) as this is shown to be a good indicator

of variable importance [38, 39].

Results

Between September 1, 2011 and August 31, 2015, 140 infants were enrolled in the study. Of

these, 110 (79%) returned for the evaluation at 18 months of age (Fig 1). The types of CHD

included hypoplastic left heart syndrome or variant (n = 32), transposition of the great arteries

(n = 39), and other (n = 39). Patent characteristics and operative management variables are

shown in Table 2. The only significant differences were larger placenta weight/birth weight

and longer DHCA time in the non-returners.

The mean Cognitive Composite score for the entire cohort (n = 110) was 93.2 ± 12.7. Cog-

nitive Composite scores were more than 1SD below the expected mean for 19 subjects (17%)

and more than 2SD below the expected mean for 3 (3%). The mean Language Composite

score for the entire cohort was 91.9 ± 18.1. Language Composite scores were more than 1SD

below the expected mean for 35 subjects (32%), and more than 2SD below the expected mean

for 12 (12%). The mean Motor Composite score for the entire cohort was 92.0 ± 11.7. Motor

Composite scores were more than 1SD below the expected mean for 24 subjects (22%), and

more than 2SD below the expected mean for 5 (5%). With respect to the multiple covariate

models for the Cognitive, Language, and Motor Composite scores, patient factors were more

important predictors than operative management variables. (Table 3) Presence of a suspected

or confirmed genetic anomaly was an independent predictor of worse performance on all

three scores. Older gestational age was a predictor of a higher Cognitive score. Higher SES was

associated with better Cognitive and Language Composite scores. Female sex was predictive of

better performance for Language and Motor skills. Hispanic ethnicity was associated with

worse Motor performance. Among the operative management factors, longer hospital length

Fig 1. Study enrollment and evaluation flowchart.

https://doi.org/10.1371/journal.pone.0277611.g001
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Table 2. Descriptive statistics and comparisons for returners (n = 110) vs. non-returners (N = 30).

Variable Returners Returners Returners Non-returners p-value

n Mdn (IQR) n Mdn (IQR) f (%) f (%)

Maternal Characteristics
Placental Weight/Birth Weight 89 0.1 (0.1, 0.2) 16 0.2 (0.1, 0.2) < 0.01

Maternal Age at Childbirth 110 31.5 (27.0, 35.0) 20 31.5 (25.5, 34.0) 1.00

Hollingshead Raw Score 109 50.0 (38.0, 55.5) 16 48.8 (25.0, 57.0) 0.61

Gestational Diabetes

No 106 (96.4) 20 (100.0) 1.00

Yes 4 (3.6) 0 (0.0)

Gestational Hypertension

No 109 (99.1) 19 (95.0) 0.28

Yes 1 (0.9) 1 (5.0)

Preeclampsia

No 107 (97.3) 18 (90.0) 0.17

Yes 3 (2.7) 2 (10.0)

Smoke Exposure

No 100 (90.9) 17 (89.5) 0.69

Yes 10 (9.1) 2 (10.5)

Multiple Births

No 103 (93.6) 19 (95.0) 1.00

Yes 7 (6.4) 1 (5.0)

Impaired Maternal-Fetal Environment

No 92 (83.6) 16 (80.0) 0.75

Yes 18 (16.4) 4 (20.0)

Maternal Education

Partial High School 6 (5.4) 1 (6.2) 0.48

High School Graduate 10 (9.1) 2 (12.5)

Partial College/Trade School 16 (14.6) 3 (18.8)

College Diploma 50 (45.4) 4 (25.0)

Graduate School 28 (25.4) 6 (37.5)

Patient Characteristics
Gestational Age 110 39.1 (38.4, 39.6) 20 39.1 (37.6, 39.3) 1.00

Birth Head Circumference (cm) 110 34.0 (33.0, 35.0) 20 33.0 (32.2, 34.2) 0.10

Birth Head Circumference z-score 110 -0.3 (-1.2), 0.8) 20 -0.7 (-1.6, 0.1) 0.26

Birth Length (cm) 110 49.5 (47.0, 51.5) 20 48.0 (47.0, 51.0) 0.65

Birth Length z-score 110 -0.1 (-1.0, 1.0) 20 -0.6 (-1.2, 0.8) 0.50

Birth Weight (kg) 110 3.3 (3.0, 3.6) 20 3.2 (2.8, 3.5) 1.00

Birth Weight z-score 110 0.0 (-0.7, 0.6) 20 -0.1(-1.1, 0.5) 1.00

Small for Gestational Age

No 97 (88.2) 17 (85.0) 0.71

Yes 13 (11.8) 3 (15.0)

Sex

Female 42 (38.2) 11 (55.0) 0.22

Male 68 (61.8) 9 (45.0)

Race

Caucasian 89 (80.9) 12 (60.0) 0.08

African American 6 (5.4) 3 (15.0)

Other 15 (13.6) 5 (25.0)

(Continued)
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of stay for the initial hospitalization was associated with worse performance for the Motor

score. No other operative management factors were significantly associated with status at 18

months of age.

Urine concentration of exposure biomarkers were measured at 18 months of age; and

blood levels were measured for lead, mercury, nicotine, cotinine, and hydroxycotinine. A

urine sample was not available for 3 subjects. A blood sample was not available for 20 subjects.

Mercury, nicotine, cotinine, and hydroxycotinine were detected in only 1–2 subjects each and

Table 2. (Continued)

Variable Returners Returners Returners Non-returners p-value

n Mdn (IQR) n Mdn (IQR) f (%) f (%)

Ethnicity

Non-Hispanic 94 (85.4) 17 (89.5) 1.00

Hispanic 16 (14.5) 2 (10.5)

Genetic Anomaly

Normal 78 (70.9) 16 (80.0) 0.12

Confirmed 18 (16.40) 0 (0.0)

Suspected 14 (12.7) 4 (20.0)

APOE Genotype

e2 8 (7.5) 3 (17.6) 0.35

e3 77 (72.0) 12 (70.6)

e4 22 (20.6) 2 (11.8)

Diagnosis Code

HLHS 32 (29.1) 5 (25.0) 0.95

Transposition of the Great Arteries 39 (35.4) 8 (40.0)

Other 39 (35.4) 7 (35.0)

Preterm Birth

No 101 (91.8) 19 (95.0) 1.00

Yes 9 (8.2) 1 (5.0)

Operative Management
Age at 1st Operation (yrs.) 110 4.9 (3.0, 6.0) 20 3.5 (2.5, 10.5) 0.50

Weight at 1st Operation (kg) 110 3.3 (3.0, 3.5) 20 3.4 (2.9, 3.7) 0.82

Total Support Time, 1st Operation (mins) 110 74.5 (60.0, 98.0) 20 70.0 (54.0, 89) 0.50

Deep Hypothermic Circulatory Arrest Time, 1st Operation (mins) 110 0.0 (0.0, 37.0) 20 8.0 (0.0, 37.0) < 0.01

Class

2 Ventricles, No Obstruction 53 (48.2) 11 (55.0) 0.98

2 Ventricles, Obstruction 17 (15.4) 3 (15.0)

1 Ventricle, No Obstruction 8 (7.3) 1 (5.0)

1 Ventricle, Obstruction 32(29.1) 5 (25.0)

ECMO

No 107 (97.3) 19 (95.0) 0.49

Yes 3 (2.7) 1 (5.0)

After First Operation
Length of Stay at 1st Operation (days) 110 15.0 (11.0, 23.0) 20 13.5 (9.5, 21.0) 0.33

Number of Additional Operations with CPB

None 66 (60.0) 12 (60) 1.00

1 or More 44 (40.0) 8 (40.0)

Notes. IQR = interquartile range (25%ile, 75%ile). One-sample sign tests were used for continuous variables; Fisher Exact tests were used for categorical variables.

https://doi.org/10.1371/journal.pone.0277611.t002
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Table 3. Single and multiple covariate risk factor models for neurodevelopmental outcomes (N = 110).

Potential Risk Factors Cognition Language Motor

Single Covariate Best Fitting

Multiple Covariate

Single Covariate Best Fitting

Multiple

Covariate

Single Covariate Best Fitting

Multiple Covariate

n β (SE) p β (SE) p n β (SE) p β (SE) p n β (SE) p β (SE) p
Maternal Characteristics
Gestational diabetes 110 2798.5

(4023.3)

0.49 110 10.7

(9.1)

0.24 110 12778.9

(42294.9)

0.76

Gestational

hypertension

110 -2779.4

(7948.1)

0.73 110 -21.1

(18.0)

0.24 110 -58803.9

(83263.6)

0.48

Smoke exposure 110 -3369.8

(2605.8)

0.20 110 -0.5

(6.0)

0.93 110 -420.9

(27551.8)

0.99

Preeclampsia 110 8255.6

(4566.8)

0.07 110 2.4

(10.5)

0.82 110 -153.0

(48629.3)

1.00

Impaired Maternal-Fetal

Environment 110 99.0 (2040.2) 0.96 110 1.5

(4.6)

0.74 110 -882.5

(21410.0)

0.97

Maternal age 110 330.1 (132.5) 0.01 110 0.5

(0.3)

0.11 110 2780.3

(1404.4)

0.05

Multiple Gestation 110 -5128.8

(3053.2)

0.09 110 -13.8

(6.9)

0.04 110 -34102.4

(32284.3)

0.29

Placental weight (kg) 89 3.8 (6.6) 0.56 89 0.0

(0.0)

0.47 89 64.0 (65.5) 0.33

Placental wt./birth wt. 89 -10471.8

(19410.0)

0.59 89 -28.9

(44.1)

0.51 89 -67434.8

(192003.8)

0.72

Maternal education 110 0.01 110 <

0.01

110 0.15

College graduate -2101.6

(1751.2)

0.23 -4.4

(3.9)

0.25 -9250.3

(19011.4)

0.63

High School diploma -6932.2

(2733.1)

0.01 -19.6

(6.0)

<

0.01

-29937.1

(29671.8)

0.31

Partial college -5820.3

(2325.1)

0.01 -18.0

(5.1)

<

0.01

-49541.2

(25241.7)

0.05

Partial high school -9642.3

(3337.6)

<

0.01

-19.0

(7.4)

0.01 -68439.3

(36234.0)

0.06

Graduate school (ref)

Patient Characteristics
Preterm birth 110 -4400.9

(2721.7)

0.10 110 -11.6

(6.2)

0.06 110 -58128.6

(28361.6)

0.04

Gestational age 110 1123.6

(585.6)

0.06 5290.9

(1875.0)

<

0.01

110 3.4

(1.3)

0.01 110 14504.2

(6092.0)

0.02

Small for gestational age 110 -6367.6

(2257.9)

<

0.01

110 -12.8

(5.2)

0.01 110 -59415.9

(23872.4)

0.01

Hollingshead Raw Score 109 227.7 (53.9) <

0.01

3856.0

(1577.6)

0.01 109 0.5

(0.1)

<

0.01

0.4

(0.1)

<

0.01

109 1217.0 (594.3) 0.04

Sex 110 -4290.3

(1498.8)

<

0.01

110 -13.2

(3.3)

<

0.01

-12.6

(2.9)

<

0.01

110 -72867.1

(14748.7)

<

0.01

-62926.5

(12852.2)

<

0.01

Race 110 0.01 110 0.01 110 0.01

African American -9336.8

(3213.2)

<

0.01

-21.3

(7.3)

<

0.01

-10274.0

(33595.1)

<

0.01

Other -1817.0

(2126.3)

0.39 -6.4

(4.8)

0.18 -18473.3

(22231.1)

0.41

White (ref)
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Table 3. (Continued)

Potential Risk Factors Cognition Language Motor

Single Covariate Best Fitting

Multiple Covariate

Single Covariate Best Fitting

Multiple

Covariate

Single Covariate Best Fitting

Multiple Covariate

n β (SE) p β (SE) p n β (SE) p β (SE) p n β (SE) p β (SE) p
Ethnicity 110 -4716.8

(2093.1)

0.02 110 -14.8

(4.6)

<

0.01

110 -61878.6

(21677.5)

<

0.01

-43781.0

(17940.2)

0.01

Cardiac diagnosis 110 0.40 110 0.26 110 0.02

HLHS (ref)

TGA 1644.3

(1872.6)

0.38 3.9

(4.2)

0.36 55386.2

(19081.1)

<

0.01

Other -714.4

(1872.6)

0.70 - 2.8

(4.2)

0.51 23480.6

(19081.1)

0.22

Genetic anomaly 110 0.01 0.01 110 <

0.01

<

0.01

110 <

0.01

0.01

Confirmed -3480.7

(1979.5)

0.08 -2192.8

(1825.90)

0.23 - 12.6

(4.3)

<

0.01

-8.1

(3.9)

0.04 -62607.2

(19960.6)

<

0.01

-47426.2

(17225.1)

<

0.01

Suspected -6461.8

(2197.3)

<

0.01

-6653.9

(2093.1)

<

0.01

- 18.8

(4.8)

<

0.01

-15.7

(4.4)

<

0.01

-82288.3

(22156.6)

<

0.01

-46482.9

(20301.4)

0.02

APOE Genotype 107 0.43 107 0.89 107 0.67

e2 (ε2ε2, ε2ε3) -760.2

(2919.0)

0.79 2.9

(6.7)

0.66 26660.7

(31123.3)

0.39

e3 (ε3ε3; ref)

e4 (ε3ε4, ε4ε4) 2331.6

(1899.6)

0.22 1.1

(4.4)

0.80 -2381.8

(20254.8)

0.91

Weight difference 110 -11.3 (675.7) 0.99 110 - 0.4

(1.5)

0.81 110 7761.3

(7052.2)

0.27

Length difference 110 414.5 (542.5) 0.44 110 1.8

(1.2)

0.14 110 9618.6

(5633.8)

0.09

Head circumference

difference

110 320.1 (551.2) 0.56 110 0.8

(1.2)

0.51 110 6208.3

(5762.8)

0.28

Operative Management
Age at first operation 110 -19.4 (247.4) 0.94 110 -0.3

(0.6)

0.57 110 -2495.4

(2585.8)

0.33

Operative class 110 0.28 110 0.50 110 0.06

1v No Obstruction -2330.1

(2951.4)

0.43 -6.9

(6.8)

0.31 -35206.2

(30470.9)

0.25

1v Obstruction 54.9 (1742.0) 0.97 -0.2

(4.0)

0.95 -39698.6

(17984.6)

0.03

2v No Obstruction

(ref)

2v Obstruction 3482.0

(2168.8)

0.11 4.7

(5.0)

0.35 15350.8

(22391.8)

0.49

Total support time 110 -51.1 (23.1) 0.03 110 -0.1

(0.0)

0.15 110 -270.7 (246.2) 0.27

Length of stay 110 -67.3 (20.8) <

0.01

110 -0.1

(0.0)

0.02 110 -833.8 (214.0) <

0.01

-572.3

(189.9)

<

0.01

After First Operation
Additional Operations 110 -1681.3

(562.0)

<

0.01

110 -3.4

(1.3)

0.01 110 -21789.1

(5770.5)

<

0.01

Additional Operations

with CPB

110 -1091.1

(1537.2)

0.48 110 -1.8

(3.5)

0.61 110 -36161.8

(15795.9)

0.02

Gestational
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these results were not included in the analyses. A summary of the analyte distributions along

with their geometric means, standard errors, and corresponding percentiles is presented in

S1 Table.

A Spearman-rho correlation matrix of the urinary metabolites concentrations was com-

puted. Of the 870 bivariate correlations, 86 (10%) were highly, statistically significant

(p� 0.0024, with many correlations ranging from moderate (r = 0.40 to 0.60) to strong

(r> 0.60 to 0.97). Phthalate metabolites in particular were more frequently and strongly corre-

lated with one other urinary metabolite. These observations suggest that there are likely com-

mon sources for certain groups of contaminants. In future analyses, we will determine

whether specific exposure profiles reflect unique patterns of device use (S2 Table).

Detectable concentrations of some pesticides [4-fluoro-3-phenoxybenzoic acid, trans-3-

(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid, and 2-isopropyl-4-methyl-

6-hydroxypyrimidine] were found in only 6, 15, and 26 subjects respectively; and were

Table 3. (Continued)

Potential Risk Factors Cognition Language Motor

Single Covariate Best Fitting

Multiple Covariate

Single Covariate Best Fitting

Multiple

Covariate

Single Covariate Best Fitting

Multiple Covariate

n β (SE) p β (SE) p n β (SE) p β (SE) p n β (SE) p β (SE) p
age�Hollingshead

Raw Score -94.92

(40.89)

0.02

Intercept 109 -18424.0

(72137.4)

109 82.1

(5.7)

110 332940.4

(11023.4)

Note. All 0.0 values appearing here represent rounded values to retain 1 decimal place.

https://doi.org/10.1371/journal.pone.0277611.t003

Fig 2. A) Exposure Biomarkers by Clusters: Heatmap to visualize the median (most typical) tertile of exposure that each chemical falls within for each cluster.

Darker red colors indicate tertile 3 (highest exposure group), orange colors indicate tertile 2 (medium exposure group), and light orange indicate tertile 1

(lowest exposure group). B) Unadjusted Neurodevelopmental Scores by Cluster: Box and whisker plots of neurodevelopmental scores (unadjusted) for each

cluster. Black lines within each boxplot represent the median value and the upper and lower ends of the boxes represent the 75th and 25th percentiles,

respectively. The horizontal red line on the graph indicates 1 standard deviation (85) below population mean (100).

https://doi.org/10.1371/journal.pone.0277611.g002
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therefore excluded from analysis. Measurable concentrations of para-nitrophenol, a nonspe-

cific metabolite of parathion were detected in 106 subjects. Parathion is no longer used and

there are other substances which can confound the measurements, so para-nitrophenol was

excluded from further analysis. Very high concentrations of methyl- and ethyl parabens were

detected in some subjects. These chemicals are commonly used in diaper creams. Because of

concern over contamination during urine sample collection, these biomarkers were excluded

from the analysis. To provide context about the magnitude of exposures compared to the gen-

eral population, the biomarkers included in the final analysis were compared to available data

from two published studies [40, 41] (S3 Table). The exposures for the current study were simi-

lar to previously reported data.

With BPR, we uniformly analyzed 30 chemical biomarkers, including urinary phenols,

parabens, triclocarban and metabolites of pesticides and phthalates, and one blood biomarker

(Pb) for the 110 subjects who returned for the 18-month evaluation. (Table 1) Three returnees

were removed from the BPR analysis due to lack of any biomarker information, resulting in a

final population for profile regression analysis of n = 107. Because profile regression can han-

dle missing values in the exposures of interest, we were able to analyze the data of all 107 par-

ticipants despite several missing values on a select few biomarkers of exposure (e.g., Pb). Six

clusters were identified from BPR analysis of 30 environmental chemical biomarkers. In terms

of number of subjects, cluster 1 is the largest cluster (n = 29), followed by cluster 2 (n = 28),

cluster 5 (n = 21), cluster 6 (n = 18), cluster 4 (n = 7), and cluster 3 (n = 4). Cluster 1 represents

the highest exposure group, with concentrations for 13 phthalate biomarkers that fall within

the highest concentration tertile (Fig 2A). Conversely, cluster 2 represents the lowest exposure

group with nearly all of the biomarkers involved in the clustering being in the lowest concen-

tration tertile. All other clusters are characterized by elevated concentrations for only a few of

the biomarkers involved in the clustering. The variable selection procedure indicated that 15

of the 30 chemical biomarkers drove the observed clustering pattern, 13 of which are phthalate

metabolites. The only non-phthalate chemicals included in the clustering were a pyrethroid

pesticide metabolite, 3-phenoxybenzoic acid (3-PBA) and a phenol, 2,5-dichlorophenol. There

was no statistically significant variability among clusters in terms of study population charac-

teristics (S4 Table). The clear partitioning of phthalate exposure biomarker profiles between

the six clusters is shown in the heatmap (Fig 2A), suggesting that the BPR clustering algorithm

successfully grouped together individuals with similar exposure biomarker profiles and

Fig 3. Assessment scores from linear regression models. Crude and adjusted linear regression models for the three

outcomes of interest and the clusters from the profile regression. Cognitive Score Model adjusted for genetic anomaly,

gestational age, and raw Hollingshead SES score. Language Score Model adjusted for genetic anomaly, raw

Hollingshead SES score, and sex. Motor Score Model adjusted for ethnicity, genetic anomaly, sex, and hospital length

of stay at first operation. Cluster 2 is the lowest exposure cluster and is set as the reference group for each model.

https://doi.org/10.1371/journal.pone.0277611.g003
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separated those with dissimilar profiles. The full posterior joint distribution of the exposure

biomarker profile clusters (with uncertainty) is provided in the Supplemental Materials

(S1 Fig).

Boxplots of the unadjusted neurodevelopmental outcomes for each cluster are shown in Fig

2B. Cluster 1 (highest exposure group) had lower median Language and Motor Composite

scores compared to cluster 2 (lowest exposure group). The distribution of the Language Com-

posite scores for cluster 1 is shifted well below 1 standard deviation (85) from the population

mean, with 41.4% of children in cluster 1 having a Language Composite score� 85 and just

20.7% having a Language Composite score� 100. Conversely, cluster 2 consistently resulted

in the highest median scores for Language and Motor Composite scores, with only 17.9% hav-

ing a Language Composite score� 85 and 53.6% having a Language Composite score� 100.

Fig 4. Weighted quantile sum (WQS) regression effect estimate. The WQS modeling results for selected

neurodevelopmental outcomes displaying the mean and lower 2.5th and upper 97.5th percentiles for the WQS index

coefficients obtained from the repeated holdout validation.

https://doi.org/10.1371/journal.pone.0277611.g004
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Crude and adjusted Cognitive, Language, and Motor Composite scores for the cohort and

stratified by clusters are shown in Table 4 and Fig 3. Overall, there were no statistically signifi-

cant differences for Cognitive Composite scores between the clusters and the reference group,

cluster 2 (lowest exposure). Relative to cluster 2, children in cluster 1 (highest exposure group)

had significantly lower Language Composite scores by -9.41 points (95%CI: -17.2, -1.7) and

significantly lower Motor Composite scores by -4.9 points (-9.5, -0.4) after adjustment. The

Motor Composite score was significantly lower for cluster 5 compared to cluster 2 by -5.91

points (-10.85, -0.97). Models stratified by sex indicated that these negative exposure-response

relationships for cluster 1 were only statistically significant among girls. Girls in cluster 1 had

significantly lower Language Composite scores by -14.9 points (-27.7, -2.2) compared to clus-

ter 2, whereas the negative association was attenuated in boys (β = -5.3 [-15.3, 4.7]) in the

adjusted models. A similar sex-specific pattern was observed for the Motor Composite scores,

whereby cluster 1 was significantly associated with lower scores among girls (β = -7.5 [-14.3,

-0.7]) but not among boys (β = -4.0 [-10.0, 2.0]) in the adjusted models. Cluster 5 also exhibited

a significant adjusted association for Motor Composite scores among girls only, with girls in

cluster 5 having a lower score by -8.2 points (-16.0, -0.5) compared to girls in cluster 2.

Complete exposure data were available for 26 urinary biomarkers among 107 children and

were included in the WQS analysis. The WQS modeling results for selected neurodevelopmen-

tal outcomes are shown in Fig 4, which displays the mean and lower 2.5th and upper 97.5th per-

centiles for the WQS index coefficients obtained from the repeated holdout validation.

Overall, only the Motor Composite score resulted in a significantly lower score (β = -2.8 points

[2.5th and 97.5th percentile: -6.0, -0.6]) for the exposure-response relationship of the overall

mixture index. The female-only WQS models resulted in significantly lower Language Com-

posite score by -8.4 points (2.5th and 97.5th percentile: -15.9, -0.9) and lower Motor Composite

score by -5.7 points (2.5th and 97.5th percentile: -10.6, -1.2) for exposure-response of the overall

mixture index. No significant association were observed in male-only WQS models (Fig 5).

The WQS index weights for each of the 26 exposure biomarkers included in the analysis are

shown in Fig 5. For Motor Composite score among all participants (Fig 5B), several phthalate

metabolites mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) [16.6%], mono-isobutyl

phthalate (MiBP) [10.5%], mono-hydroxybutyl phthalate (MHBP) [7.8%], mono-ethyl phthal-

ate (MEP) [7.4%], mono-2-ethyl-5-oxohexyl phthalate (MEOHP) [6.5%], and mono-hydroxyi-

sobutyl phthalate (MHiBP) [5.1%], one metabolite of a phthalate alternative, cyclohexane-1

Fig 5. Weighted quantile sum regression. Index weights for WQS index exposure-responses that were significantly

associated with ND outcomes. (A) Language score index weights for girls; (B) Motor score index weights for entire

cohort; (C) Motor score index weights for girls.

https://doi.org/10.1371/journal.pone.0277611.g005
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2-dicarboxylic acid monohydroxy isononyl ester (MHINCH) [5.9%], one paraben (propylpar-

aben [10.5%]), and one phenol, bisphenol A (BPA) [7.1%] resulted in index weights that sug-

gest they are important contributors to the outcomes (probability> 1/26 [3.8%]). For

Language Composite score among girls (Fig 4A), several phthalates mono-3-carboxypropyl

phthalate (MCPP) [10.9%], mono carboxyisooctyl phthalate (MCOP) [8.2%], MEHHP [7.9%],

monobenzyl phthalate (MBzP) [6.6%], MHBP [6.1%], MiBP [5.9%], MHiBP [5.8%], and MEP

[4.9%]), one phenol (benzophenone-3 [5.6%]), and propylparaben [4.5%]) resulted in index

weights that suggested they are important biomarkers driving the negative exposure-response

relationship of the WQS index. Similarly, for Motor Composite scores among girls only (Fig

5C), several phthalates (MHiBP [9.5%], MHBP [9.1%], MiBP [8.5%], MEHHP [6.1%], MBzP

[4.9%], and MCPP [4.0%]), two metabolites of a phthalate alternative (MHINCH [8.4%], and

cyclohexane-1 2-dicarboxylic acid monocarboxyisooctyl ester (MCOCH) [6.3%]), one phenol

(BPA [6.3%]) and propylparaben [5.9%]) resulted in index weights that suggest they contrib-

uted significantly to the overall WQS index.

Discussion

Exposure to potentially neurotoxic chemicals during susceptible periods of rapid brain growth

can have profound effects on neurodevelopment.[4, 42] In the current study, we demonstrate

that toddlers with CHD are exposed to complex mixtures of chemicals (e.g., phthalates, phe-

nols, parabens, pesticides), some of which are known or suspected EDCs and neurotoxicants,

during everyday life. There is significant variability in both the pattern and magnitude of expo-

sures; however, the magnitude of exposure is similar to that reported for infants and toddlers

in the general population [40, 41]. Greater concentrations of biomarkers of exposure to these

chemicals, especially phthalates, are associated with poorer performance for language and

motor skills at 18 months of age after adjustment for known risk factors for adverse neurode-

velopment outcomes. Many of these chemicals are known EDCs and/or neurotoxicants and

we identified a greater adverse effect in girls compared to boys. This study adds to the growing

body of evidence of the importance of patient and environmental factors, such as fetal brain

development, genetic syndromes, and SES, as determinants of neurodevelopmental outcomes

in the CHD population. In order to define factors that may predispose to, or protect against,

brain injury and adverse neurodevelopmental outcomes in the CHD population, we must con-

sider the neurodevelopmental exposome, i.e., the totality of exogenous and endogenous expo-

sures from conception onward through adult life [43].

Exposure to phthalates, both in utero and later in life, has been associated with neurobeha-

vioral disability. A systematic review of the literature by Ejaredar and associates found evi-

dence that prenatal exposure to phthalates is associated with adverse cognitive and behavioral

outcomes, including lower IQ, and problems with attention, hyperactivity, and poorer social

communication [44]. In an important study, Verstraete and colleagues investigated the rela-

tionship of circulating phthalate metabolites in a cohort of more than 400 critically ill children

(ages 0 to 16 years) to subsequent development of attention deficit hyperactivity disorder

(ADHD) compared with normal controls [45]. The phthalate exposure explained half of the

risk of attention deficit in the cohort. They concluded that “Iatrogenic exposure to DEHP

metabolites during intensive care was independently and robustly associated with the impor-

tant attention deficit observed in children 4 years after critical illness” [45]. In a study of early

life phthalate exposures, Li and coworkers found evidence that childhood exposures to phthal-

ate mixtures was associated with increased behavior problems [46].

In both the cluster analysis and the WQS regression analysis, we found that exposure to

mixtures of multiple chemical classes (e.g., phthalates, pesticides, phenols, parabens) was
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associated with worse outcomes. These classes of chemicals have been associated with adverse

neurodevelopmental outcomes in other populations [7, 10, 47]. The most commonly identified

exposure was to phthalates [diesters of phthalic acid] used as solvents and plasticizers (to give

flexibility) in many types of products such as food packaging, cosmetics, medical devices, toys,

dentures, paints, adhesives, and nail polishes. Phthalates are not covalently bound and thus

handling these products can lead to significant exposures [41]. In addition, phthalates and pes-

ticides are commonly found in household dust [11, 12]. Prenatal and early childhood expo-

sures to phthalates have been associated with poorer neurobehavioral outcomes [6, 48]. After

exposure, phthalate diesters are rapidly metabolized and excreted in the urine. Urinary con-

centrations of these metabolites can be utilized as exposure biomarkers and reflect recent

exposures (half-lives of 6 to 24 hours). Di(2-ethylhexyl) phthalate (DEHP) is one of the most

commonly used phthalates. Four DEHP metabolites (MECPP, MEHHP, MEOHP, MEHP)

were included in the high exposure group (cluster 1); both MEHHP and MEOHP were identi-

fied in the WQS regression as important drivers of the adverse exposure-response relationship.

Metabolites of several other phthalates were associated with poorer outcomes by both the clus-

ter analysis and WQS regression, including metabolites of di-isobutyl phthalate (MHiBP), ben-

zylbutyl phthalate (MBzP), dibutyl phthalate (MHBP), di-n-octyl phthalate (MCPP), and

diethyl phthalate (MEP). Non-phthalate chemicals were also important in the clustering

including a pyrethroid pesticide metabolite and 2,5-dichlorophenol. The WQS regression also

identified exposure biomarkers of other classes of chemicals (phenols and parabens) as poten-

tial drivers of adverse outcomes.

As noted in a recent review, “The staggering majority of epidemiological studies have inves-

tigated chemicals in isolation rather than taking into account the totality of chemical expo-

sures, which together may have additive, synergistic, antagonistic, or potentiating effects.” [42]

A major strength of our study is the use of statistical modeling approaches specifically designed

to assess the challenges of analyzing the health effects of multiple correlated environmental

exposures. Epidemiologic modeling of the health effects of chemical mixtures, and especially

EDCs, must deal with the large number of possible exposures and the potentially highly corre-

lated (multi-collinearity) nature of exposure to multiple EDCs. Large numbers of co-exposures

and multi-collinearity make it particularly challenging in terms of being able to disentangle

causal effects of particular EDCs within the chemical mixture. Consequently, in this study, we

utilized statistical alternatives to multivariable regression that have been developed by others

to deal with such challenges [36, 39, 49–52]. Specifically, we applied cluster analysis using BPR

as one approach that groups observations together based on their similarity in ‘exposure bio-

marker profiles’. Grouping individuals based on similarity in exposure biomarkers can serve

as a type of dimension reduction technique for evaluating health effects of chemical mixtures.

Cluster analysis also helps to identify typical exposure biomarker patterns in a study popula-

tion which can identify sub-populations of individuals who are most vulnerable to multiple

exposures and susceptible to adverse health effects. WQS regression is another technique

applied in our study that was developed as a way to estimate both an overall effect of the chem-

ical mixture and to derive an exposure-response index weighted by the relative contribution

that a particular chemical exposure has to health outcomes of interest (response). This

approach therefore helps to identify possible chemicals with worse potential adverse health

effects among an array of chemical exposures while also estimating the adverse effects of the

mixture. In the current study, we applied BPR (a type of cluster analysis) and WQS to deal

with multi-collinearity and for dimension reduction in the exposure-response space. These

methods have been applied in other recent studies evaluating the health effects of chemical

mixtures in children, including neurodevelopmental outcomes [6, 15–17, 36, 53–55]. In our

study, we found these distinct statistical methods to be complementary, insofar as cluster
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analysis describes sub-populations in terms of their exposures to multiple chemicals and asso-

ciated adverse neurodevelopmental risks, whereas WQS is concerned with assessing the overall

mixture effects on neurodevelopmental risks as well as highlighting specific chemical expo-

sures that may be driving such risks. Another strength is the detailed characterization of the

cohort in terms of known and suspected risk factors for poor neurodevelopmental outcomes.

Previous studies have shown that the associations of select chemical exposures with neuro-

developmental outcomes are mixture and sex specific [6, 56, 57]. The mechanisms resulting in

sex differences have not been fully delineated. Many of these chemicals are known EDCs,

which can have differential effects on girls and boys due to their different hormone profiles

[57]. EDCs are defined as exogenous chemicals that can interfere with any aspect of hormone

action [57]. The potential mechanism of EDC mediated neurotoxicity is disruption of endo-

crine signaling, mimicking the actions of thyroid, glucocorticoid, and gonadal hormones [3,

42].

Because of the increasing recognition of the toxicity of EDCs, particularly phthalates, there

have been efforts in some countries to use alternative plasticizers, including in medical equip-

ment [58, 59]. A variety of alternative plasticizers have been utilized [59]. Studies have shown

that there is often lower migration of the alternative plasticizers compared to those manufac-

tured with DEHP, but the toxicity profiles (including impact on neurodevelopment) are not

fully known [59, 60]. Substitution of alternative plasticizers for phthalates may not always

improve outcomes [60]. In a study of NICU patients, use of DEHP-free central venous lines

for total parenteral nutrition was associated with a significant decrease in cholestasis [61].

However, in a follow-up to the study evaluating phthalates and ADHD, phasing out DEHP

containing devices was shown to reduce DEHP exposure, but there was still significant expo-

sures and the incidence of impaired attention was not reduced [62].

There are limitations to this study. The cohort is relatively small which precluded us from

to explicitly testing for statistical interaction effects of specific combinations of exposure bio-

markers. While one interpretation of the BPR method could be that interactions are accounted

for through effects of latent variables (clustering of exposure profiles), the method is not

designed to estimate or test interaction effects between specific chemical exposures of interest.

Therefore, BPR at best is an indirect way of assessing the possibility of interaction effects on an

outcome. Despite the limitations driven by the relatively small study sample size, leveraging

BPR is a strength of this study because it allows us to explore exposure-response relationships

given specific combinations of biomarker exposure levels. Another limitation of our applica-

tion of BPR is the use of “hard” clusters. There is inherent uncertainty in cluster allocation

with any type of cluster analysis. While BPR propagates uncertainty by fitting with Markov

chain Monte Carlo (MCMC) sampling methods, we focused our epidemiological inference on

the deterministic clustering allocation. In other words, we ignored the uncertainty of cluster

allocation and instead used the “hard groupings” (or best clustering) as determined with the

optimal partition algorithm, “partitioning around medoids” (PAM). Despite this limitation,

the hard clustering provides a representative and interpretable cluster allocation that allowed

us to model the crude and adjusted associations between exposure profiles and the different

neurological outcomes. The assessment of exposure was limited to a single time point and the

analyses evaluated cross-sectional exposures and outcomes. While relying on a single exposure

biomarker for short-lived compounds certainly leads to exposure misclassification, this mis-

classification bias will typically be non-differential, which entails effect estimates will be attenu-

ated towards the null. Future studies should include exposure and outcome assessment at

multiple time points, including peri-operative, across the life span. Although we assessed mul-

tiple classes of chemicals, we did not assess other potentially neurotoxic compounds, including

air pollution, flame retardants, and heavy metals other than Pb and mercury. Additionally, our
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exposure data for Pb included several missing observations. Very little comparative data for

the exposure biomarkers are available for 18-month-old children. We also note that two of the

clusters (C3 and C4) include small numbers of children. While these two clusters did not show

a significant association with neurodevelopmental outcomes, this observation may be driven

by the small sample size. Additionally, WQS regression assumes homogeneity for the direc-

tionality of the exposure-response relationship. This assumption does not allow for the possi-

bility that some short-lived EDCs could plausibly impart a positive effect on the

neurodevelopmental outcomes. Although, our sensitivity analysis suggested there was not a

significant positive effect of the mixture. Finally, the neurodevelopment assessment was per-

formed early in life and may not be predictive of later outcomes.

In conclusion, we demonstrate that early life chemical exposures are potentially important

factors which should be further investigated as an important contributor to neurodevelopmen-

tal disability in children with CHD. In addition, we show that environmental exposure to mul-

tiple potentially toxic chemicals and EDCs (e.g., phthalates, pesticides, phenols, parabens) is

ubiquitous in toddlers with CHD. There is significant variability in both the pattern and mag-

nitude of exposure biomarkers. Greater concentrations of exposure biomarkers are associated

with poorer outcomes for language and motor skills, especially for girls. In order to define fac-

tors that may predispose to, or protect against, brain injury and adverse neurodevelopmental

outcomes in the CHD population; we must consider not only events that occur during medical

care, but the neurodevelopmental exposome, the totality of exogenous and endogenous expo-

sures from conception onward through adult life [43].
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