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Abstract: The blood–cerebrospinal fluid barrier (BCB) is important in maintaining brain manganese
(Mn) homeostasis. This barrier consists of a single layer of epithelial cells, connected by tight junctions,
that restrict the passage of nutrients to only allow molecules to be carried through the membrane by a
transporter. These epithelial cells are polarized with asymmetrical blood-facing and cerebrospinal
fluid-facing sides. Here, we have established a polarized model of a human choroid plexus papilloma
cell line, HIBCPP. For the first time, Mn importers ZIP14 and ZIP8 were identified in HIBCPP cells
and were found to be enriched at the basolateral and apical sides of the cell monolayer, respectively.
The localization of each ZIP protein adds to the understanding of Mn transport across the HIBCPP
BCB model to help understand the mechanism of Mn homeostasis within the brain.
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1. Introduction

The central nervous system is dependent on a controlled environment to function optimally.
This environment is established through the passive and active transport mechanisms within the
blood–brain barrier (BBB) and the blood–cerebrospinal fluid barrier (BCB). While the BBB is studied
extensively for its role in immune factor transport [1] and ion/nutrient exchange [2], the BCB has
more recently become a focus of study to understand the separation between the brain environment
alongside the cerebrospinal fluid (CSF) and the systemic blood circulation [3].

The BCB exists at the choroid plexus, a single cell layer of choroid plexus epithelial cells that are
connected to each other by tight junctions and anchored to a basement membrane surrounding blood
vessels. It is found in all four ventricles of the brain. The choroid plexus is responsible for the secretion
of CSF, as well as the exchange of various factors and nutrients between the CSF and the blood [4].
Models of the BCB include primary cultures of choroid plexus epithelial cells isolated from postmortem
human tissue, rodents, or larger mammals. Differences in species and cell culture protocols make
it difficult to compare the data between individual studies. A reliable in vitro model that uses an
immortalized and widely available cell line would help to standardize the experiments and results
surrounding BCB research. HIBCPP cells have recently been identified as a consistent model of the
BCB, and several publications have utilized these cells as a barrier model [5–7]. The HIBCPP cell line
was established in 2005 from a human choroid plexus papilloma [8] and has been characterized in
several studies that indicate that HIBCPP cells have many critical functional characteristics of choroid
plexus epithelial cells—namely, the ability to polarize and express marker proteins to match choroid
plexus epithelial cells in vivo [5,6,9].

However, previously unreported are the characteristics of HIBCPP cells relating to manganese
(Mn) metabolism. As an essential nutrient, Mn is present in both the blood and CSF [10] and is required
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for the normal function of enzymes in choroid plexus epithelial cells [11]. One in vitro study on the
BCB and BBB reveals that the BCB, not the BBB, is more sensitive to high blood Mn levels and is
likely to be the primary site of Mn entry into the brain [12]. While several metal transport proteins are
expressed on choroid plexus cells, none have been identified as Mn transporters [12,13]. Furthermore,
it remains unknown which Mn transporters are expressed in HIBCPP cells.

Recently, it has been identified that members of the ZIP family proteins, ZIP14 and ZIP8, are two
major Mn importers expressed in the epithelial cells of the liver and intestine [14–17]. ZIP14 imports
Mn from blood into enterocytes and hepatocytes within the intestine and liver, respectively, while
ZIP8 imports Mn from the bile to hepatocytes. In patients with ZIP14 deficiency, high blood Mn and
the accumulation of Mn in the brain result in irreversible neurodegeneration associated with motor
disabilities [18,19]. The Mn overload in individuals lacking ZIP14 is likely caused by a combined
effect of increased intestinal Mn absorption and decreased hepatobiliary Mn excretion [14,15,20,21].
Patients with ZIP8 deficiency have blood Mn levels below detectable limits and present with severe
psychomotor and intellectual disabilities [22–24], which are due to severe Mn deficiency caused by
decreased Mn reabsorption from the bile [17].

The functions of ZIP14 and ZIP8 as Mn importers have been well established through in vitro
studies. In hepatic HepaRG and WIF-B cells, ZIP14 was expressed at the basolateral membrane and
imported Mn in a time- and temperature-dependent manner based on the Mn uptake assay [25,26].
In Xenopus oocytes, Mn uptake in cells expressing murine ZIP14 protein was significantly higher than
that in control oocytes, indicating the role of ZIP14 in mediating Mn import [27]. In enterocyte-like
Caco-2 cells, ZIP14 was primarily detected on the basolateral membrane, and it was determined to
account for over 95% of the Mn uptake from the basolateral side [21]. In kidney proximal tubule cells,
the knockdown of either ZIP14 or ZIP8 was associated with a significant decrease in Mn uptake [28].
In mouse fibroblasts (MEF), ZIP8 overexpression resulted in elevated cellular Mn accumulation;
moreover, in MEF cells, ZIP8 had a higher affinity for Mn than all other trace metals tested, except for
cadmium [29]. In HEK293 cells, ZIP8 was detected on the plasma membrane and ZIP8 overexpression
increased cellular Mn accumulation [30]. Together, these studies clearly demonstrate that both ZIP14
and ZIP8 are Mn importers.

Similarly to the epithelial cells of the intestine and liver, HIBCPP cells form a polarized monolayer
with specific apical and basolateral orientation [5,31,32]. Identifying Mn transporters in these cells
will help us to understand the mechanisms of Mn homeostasis within the brain. Whether ZIP14 and
ZIP8 are expressed in HIBCPP cells and whether these two Mn transporters are localized to apical or
basolateral plasma membranes are not known. In the present study, we identified that both ZIP14
and ZIP8 are expressed in HIBCPP cells and that both transporters are involved in cellular Mn uptake.
In addition, we found that ZIP14 and ZIP8 are enriched at opposite sides of HIBCPP cells. These results
provide novel insights for the understanding of potential Mn transport mechanisms in HIBCPP cells.

2. Materials and Methods

2.1. Cell Culture

HIBCPP cells were maintained in DMEM/F12 (Corning Inc., Corning, NY, USA) supplemented
with 10% fetal bovine serum, 100 µg/mL streptomycin, 100 units/mL penicillin, 4 mM L-glutamine,
and 5 µg/mL insulin. To be consistent with previously published results using HIBCPP cells, only cells
before passage 37 were used for experiments [33]. HEK293 and A549 cells were cultured in DMEM
supplemented with 10% fetal bovine serum, 100 µg/mL streptomycin, and 100 units/mL penicillin.
All cells were grown in a humidified incubator at 37 ◦C with 5% CO2. Media was changed every 2–3
days and trypsin (0.05% in phosphate buffered saline [PBS]) (Life Technologies, Grand Island, NY,
USA) or Accutase (Corning Inc., Corning, NY, USA) was used to detach cells for passaging.
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2.2. RNA Isolation, PCR, Quantitative Real-Time PCR (qRT-PCR), and Melting Curve Analysis

Total RNA was isolated from HIBCPP cells using the Quick-RNA MiniPrep Plus kit (Zymo,
Irvine, CA, USA). Complementary DNA was synthesized from isolated RNA using M-MuLV Reverse
Transcriptase (New England BioLabs, Ipswich, MA, USA). To verify the primers, PCR was performed
using a Direct PCR kit (Bimake, Houston, TX, USA) and a thermal cycler (C1000 Touch Thermal Cycler,
Bio-Rad, Hercules, CA, USA). The primers used were as follows: ZIP8-Forward 5′-TGG TTG CAC
CCC TCA CAA AT-3′, reverse 5′-CAC ATG GTG CAC TGA AAC CG-3′; ZIP14-forward 5′-GTC TGG
CCT TTG GCA TCC T -3′, reverse 5′-AGG GAA CAT ATC AGC CAG AGA AAT AG-3′. The PCR
products were loaded onto a 2% agarose gel, separated by electrophoresis, and purified with a Wizard
SV Gel and PCR Clean-up System (Promega, Madison, WI, USA). The purified PCR products of the
primers for ZIP8 or ZIP14 were further used as standards to quantify copy numbers of ZIP8 or ZIP14
mRNA by qRT-PCR analysis. The qRT-PCR procedure was performed using a SYBR Green PCR
Master mix (ThermoFisher Scientific, Waltham, MA, USA) with the Applied Biosystems QuantStudio
5 system (ThermoFisher Scientific, Waltham, MA, USA). Copy numbers of ZIP8 and ZIP14 mRNA
were determined by comparing Ct values with those obtained from standard curves as previously
described [34]. The fluorescence signal from SYBR green intercalating dye was measured as the
temperature increased in each cycle to determine the melting point of each DNA product. The melting
point is determined by the base pair composition in a strand of double-stranded DNA. For each
suitable primer set, only one DNA product should be copied, resulting in a single peak at one melting
point. Thus, the melting curve results were analyzed to confirm the presence of single peaks for each
primer set.

2.3. siRNA and Plasmid Transfections

HIBCPP cells were added to 6-well dishes at 3.5–4.5 × 105 cells per well. The next day, siRNA
targeting either ZIP8 (5′-CCC AAA CUG UCA GAA AUA GGG ACG A-3′) (Origene Technologies
Rockville, MD, USA; Cat no. SR11962B) or ZIP14 (5′-CCC UCU GGA AGA UUA UUA UGU CUC C-3′)
(Origene, Cat no. SR308328B) was transfected into HIBCPP cells using the Lipofectamine RNAiMAX
transfection reagent (ThermoFisher Scientific, Waltham, MA, USA). A scramble siRNA was used as
the negative control. The transfection procedure was completed per the manufacturer’s protocol
using 60 pmol of siRNA. When transfecting HEK293 or A549 cells, 4 × 105 cells per well were seeded,
and transfection occurred using 30 pmol of siRNA.

To overexpress FLAG-tagged proteins in HEK293 cells, pCMV-Entry-hZIP14-myc-FLAG or
pCMV6-Entry-hZIP8-myc-FLAG plasmid (Origene, Rockville, MD, USA) was transfected into cells
using an Effectene transfection reagent (Qiagen, Hilden, Germany). To knock down the expression of
FLAG-tagged proteins, ZIP14-targeting or ZIP8-targeting siRNA was co-transfected one hour after the
plasmid transfection. Cell lysates were collected 24 h after the co-transfection.

2.4. Transwell Culture

For all biotinylation experiments, cells were grown on Transwell inserts (24 mm diameter, 0.4 µm
pore size, polystyrene) (Corning Inc.). HIBCPP cells were lifted with 0.05% trypsin or Accutase for
15 min at 37 ◦C, followed by manual dissociation with a 1 mL pipette. Growth media was added to
stop trypsinization or Accutase digestion, and viable cells were counted using Trypan blue (VWR,
Radnor, PA, USA). Then, 1.2 × 106 cells were added to the upper chamber of a 6-well Transwell insert
and media was added so that the total volume was 1.6 mL in the upper chamber only. The day after
seeding, non-adhered cells were removed and growth media was changed in the upper chamber,
and 2.5 mL of growth media was added to the lower compartment. Every 2–3 days thereafter, media
was aspirated, cells were washed once with fresh media, and then fresh media was added to the upper
and lower chambers of each well. Cells were used for biotinylation experiments when they reached
confluence, which was typically 7 days after seeding.
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2.5. Measurement of Transepithelial Electrical Resistance (TEER)

For TEER measurements, 4 × 105 cells per well were seeded in 12-well Transwells as described
earlier in this section. The media levels in the upper and lower chambers were 0.8 mL and 1.5 mL,
respectively. EVOM2 with STX2 electrodes (World Precision Instruments, Sarasota, FL, USA) was used
to measure the resistance across the cell layer. The resistance from a single well containing media
only (control resistance) was measured daily to calculate TEER (TEER = [Experimental Resistance –
Control Resistance] × Transwell area) [5,6]. Resistance was measured from three areas within each
well, and the average was used to calculate the TEER for each well. Measurements were taken daily
for a minimum of 11 days.

2.6. Cell Surface Protein Biotinylation

Surface biotinylation was performed on HIBCPP cell monolayers grown on 6-well Transwell
inserts. After removing growth medium, cells were washed twice with PBS+/+ (PBS containing 1 mM
MgCl2 and 0.1 mM CaCl2) pre-warmed to 37 ◦C, then twice more with pre-chilled PBS+/+ before the
insert was transferred to a new 6-well plate. Basolateral or apical membrane proteins were biotinylated
by adding 0.5 mg/mL Sulfo-NHS-SS-biotin (ThermoFisher Scientific, Waltham, MA, USA) in PBS+/+

to either the basolateral or apical side. Cells were incubated at 4 ◦C for 30 min with gentle agitation.
For each cell monolayer, PBS+/+ was added to the opposite side during incubation. Then, cells were
washed twice with 4 ◦C Tris buffered saline (TBS) before quenching with 100 mM glycine for 20 min at
4 ◦C with gentle agitation. Glycine was removed, and the quenching step was repeated once more,
followed by two more 4 ◦C TBS washes. The insert was excised and transferred to a new 6-well plate.
Cells were lysed with 1 mL of NETT buffer (150 mM NaCl, 5 mM EDTA, 10 mM Tris, 1% Triton X-100,
and 1× protease inhibitor mixture (Bimake, Houston, TX, USA), pH 7.4) and lysate was collected in
1.5 mL collection tubes. The lysate was chilled on ice for 20 min, vortexed every 5 min, and centrifuged
at 10,000× g for 10 min. The supernatant containing the “whole” lysate was transferred to 1.5 mL
collection tubes. An aliquot of 300 µL was stored at −80 ◦C for future analysis, while the remaining
lysate was transferred to a Pierce centrifuge column pre-loaded with 100 µL of Pierce high capacity
NeutrAvidin agarose beads (ThermoFisher Scientific, Waltham, MA, USA), per the manufacturer’s
protocol. Samples were incubated for 2 h at 4 ◦C on a rocker. The column was centrifuged for 1 minute
at 1500× g to collect the flow-through. The beads were washed three times with TBS containing protease
inhibitors. After each wash, the column was centrifuged for 1 minute to remove the flow through.
To elute the biotinylated proteins, 100 µL of 1× sample buffer (1.7% (w/v) SDS, 5% (v/v) glycerol,
150 mM Dithiothreitol [DTT], 58 mM Tris, pH 6.8) was added to the agarose beads. Then, the samples
were incubated for 1 hour at room temperature, with hand mixing every 10 min. The columns were
centrifuged for 2 min at 1500× g to collect the surface protein fraction. This membrane protein fraction
was stored at −80 ◦C for further Western blot analysis.

2.7. Manganese Uptake

54Mn uptake was measured in HIBCPP cells grown on 6-well plates for 72 h. The uptake procedure
was performed as previously described [21]. Briefly, two-times concentrated (0.2 µM) 54Mn solutions
were prepared from 54MnCl2 (PerkinElmer Inc., Waltham, MA, USA) complexed to citrate on the day
of the experiment. Higher concentrations of Mn were achieved by adding Mn citrate in the required
amounts. During the experiments, cells were washed three times with PBS+/+ and pre-incubated in
1 mL of transport medium (DMEM with 1 mM pyruvate and 20 mM HEPES, pH 7.4) at 37 ◦C (or 4 ◦C)
in a humidified incubator (or on ice) for 30 min. 54Mn uptake experiments were initiated by adding
1 mL of two-times concentrated 54Mn solutions, and the cells were incubated at 37 ◦C (or 4 ◦C) for
5 min. The uptake procedure was stopped by removing the media and washing the cells five times
with ice-cold washing buffer (PBS with 1 mM EDTA). The cells were lysed in 1 mL 0.5 M NaOH,
and 100 µL of lysate was used to determine the protein concentration. An aliquot of 400 µL of the
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lysate was used to quantify the cellular content of 54Mn by gamma counting (WIZARD2 Automatic
Gamma Counter, PerkinElmer Life Sciences).

2.8. Immunocytochemistry and Confocal Microscopy

HIBCPP cell monolayers grown on Transwell inserts were fixed and permeabilized with methanol
at minus 20 ◦C, followed by pre-chilled acetone. After inserts were excised and placed in a new 6-well
plate, cells were blocked with blocking buffer (1% bovine serum albumin in PBS+/+) for 2 h at room
temperature. After blocking, cells were incubated overnight in blocking buffer with rabbit anti-ZO-1
antibody (Proteintech, Rosemont, IL, USA) (1:100) in a humidified chamber at 4 ◦C, followed by a 2-h
incubation with Alexa Fluor-488 conjugated goat anti-rabbit antibody (Life Technologies, Carlsbad,
CA, USA) (1:500) at room temperature. Cells were treated with 4′,6-diamidino-2-phenylindole (DAPI)
(1 µg/mL PBS) for 5 min at room temperature for nuclear staining. Membranes with cells were
mounted on glass slides in a ProLong Diamond Antifade Mountant (ThermoFisher Scientific, Waltham,
MA, USA) beneath a glass coverslip. Images were obtained using a Zeiss LSM880 inverted confocal
microscope with a 20× objective at the Marley Imaging Core within the University of Arizona (Tucson,
AZ, USA).

2.9. Western Blotting Analysis

Western blotting analysis was completed as previously described [21]. Cells in lysis buffer were
thoroughly vortexed, followed by centrifugation 10,000× g to separate cell nuclei and larger debris.
Protein quantification of clarified supernatant was determined using the RC DC protein assay kit
(Bio-rad, Hercules, CA, USA). Equal amounts of protein samples were prepared with 1x Laemmli
buffer, heated at 37 ◦C for 30 min, then loaded into wells of 7.5–10% polyacrylamide SDS gels. Proteins
were electrophoretically separated at 120V for 60–90 min. Proteins were transferred to nitrocellulose
membranes for 2 h at 100V. All blots were blocked in blocking buffer consisting of 5% nonfat milk in
TBS with 0.1% Tween-20 (TBST) for one hour and then probed with anti-human ZIP8 (Proteintech,
Rosemont, IL, USA) (1:2000), ZIP14 (1:1000), MRP-1 (Cell signaling Technology, Danvers, MA, USA)
(1:1000), or divalent metal transporter-1 (DMT-1) (Proteintech, Rosemont, IL, USA) (1:1000) primary
antibodies, followed by anti-rabbit-HRP secondary antibody (Millipore Sigma, Burlington, MA, USA)
(1:4000). Horseradish peroxidase (HRP)-conjugated GAPDH or Beta-Actin antibodies (Proteintech,
Rosemont, IL, USA) (1:20,000) were used to probe for normalization proteins. The ZIP14 antibody
was made in house as previously described in detail [21]. Blots were imaged with the ChemiDoc MP
imaging system and Image Lab software (Bio-Rad Bio-Rad, Hercules, CA, USA).

2.10. Statistical Analysis

Results were analyzed using PRISM 5 software (GraphPad, La Jolla, CA, USA). Three sets of data
were analyzed by one-way ANOVA. Tukey’s post hoc comparisons tests were performed for multiple
comparisons. Two sets of data were analyzed by the Student’s t-test. A p-value < 0.05 was considered
statistically significant.

3. Results

3.1. The Detection of ZIP14 and ZIP8 mRNAs in HIBCPP Cells

To determine whether ZIP14 and ZIP8 are expressed in HIBCPP cells, we first aimed to use
qRT-PCR analysis to measure the expression levels of these two genes. The specificity of qRT-PCR
primer sets was evaluated by DNA gel electrophoresis and melt curve analysis to ensure the validity
of the results presented in our studies. The correct sizes of PCR amplification products and absence
of non-specific amplification were verified by agarose gel electrophoresis (Figure 1A). Additionally,
for primer sets targeting ZIP14 and ZIP8, one clear peak for each gene was present in the melt curve
analysis, indicating that a single amplicon was obtained in the RT-PCR procedure (Figure 1B).
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Figure 1. mRNA levels of ZIP14 and ZIP8 can be detected in human choroid plexus papilloma cell line
(HIBCPP cells). (A) PCR products of each primer set were loaded onto a 2% agarose gel, revealing
a single amplicon band for each primer set. Predicted sizes: 104 bp (ZIP14) and 74 bp (ZIP8). NC:
Non-template control. (B) Melt curve plots show individual peaks for each primer set. a: ZIP8, b:
ZIP14. (C) Total RNA was isolated from untreated HIBCPP cells grown for 72 h. Copy numbers were
determined by qRT-PCR and revealed a higher expression of ZIP14 compared to ZIP8. Data represent
three independent experiments. ** p < 0.01.

Both ZIP14 and ZIP8 are ubiquitously expressed [35–37]. Tissues with high levels of ZIP14
include the liver and small intestine [35,36,38]; while ZIP8 is abundantly detected in the lung and large
intestine [36]. However, the expression levels of ZIP8 and ZIP14 in the choroid plexus or choroid
plexus-derived cells have not been reported. As a cell line derived from a human choroid plexus
papilloma, HIBCPP cells were broadly used as a model for choroid plexus epithelium [6,9,33,39]. Here,
for the first time, we reported that both ZIP14 and ZIP8 are expressed in HIBCPP cells. Using a
standard curve and comparing Ct values between samples and standards, we were able to determine
the copy number of each gene. ZIP14 expression was about 2.3 times higher compared to ZIP8 in
HIBCPP cells (Figure 1C).

3.2. Both ZIP14 and ZIP8 Proteins Are Present in HIBCPP Cells

Since the presence of RNA does not necessarily reflect actual expression of the protein of
interest [40,41], we next asked the question of whether ZIP14 and ZIP8 proteins could be detected in
HIBCPP cells. To investigate the presence of ZIP14 and ZIP8 proteins, we first tested the specificity of
the antibodies used for Western blotting analysis. As of this publication, there are no commercially
available human ZIP14 antibodies for Western blotting, so one has been generated in our laboratory.
Additionally, commercially available human ZIP8 antibodies seem to vary drastically. To determine
the specificity of the ZIP14 antibody, we transiently transfected HEK293 cells with a plasmid encoding
FLAG-tagged ZIP14. After plasmid transfections, cells were transfected with either negative control
(NC) or ZIP14-targeting siRNA. Results indicate the presence of the ZIP14 band at the predicted
molecular weight of 55 kDa, confirmed by both the anti-ZIP14 antibody and anti-FLAG antibody.
Additionally, siRNA transfected cells have a marked reduction in ZIP14 expression detected by both
anti-ZIP14 and FLAG antibodies (Figure 2A and Figure S1A).
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Figure 2. Validation of anti-ZIP14 and anti-ZIP8 antibodies and the detection of ZIP14 and ZIP8
proteins in HIBCPP cells. (A) HEK293 cells were transfected with a control empty vector (−), or a vector
expressing FLAG-tagged ZIP14 (+). In the meantime, cells were transfected with negative control
siRNA (−) or ZIP14-targeting siRNA (+). Antibodies used to detect ZIP14 and FLAG identify the
FLAG-tagged protein at approximately 55 kDa. (B) HEK293 cells were transfected with the control
vector (−) or a vector expressing FLAG-tagged ZIP8 (+). Concurrently, cells were transfected with
negative control siRNA (−) or ZIP8-targeting siRNA (+). (C) siRNA knockdown of endogenous ZIP8 in
A549 cells confirmed that the ZIP8 antibody detects the endogenous transporter at 150 kDa. In HIBCPP
cells, ZIP14 (D) and ZIP8 (E) proteins were both detected. siRNA knockdown confirmed the identities
of these proteins. The plasmid or siRNA transfection was carried out for 24 h (A,B) or 48 h (C–E) prior
to Western blot analyses using anti-ZIP14, anti-ZIP8, or anti-FLAG antibodies. Beta Actin was used as
a loading control.

To verify the anti-ZIP8 antibody and ZIP8-specific siRNA, a similar procedure was carried out
in HEK293 cells using a plasmid encoding FLAG-tagged ZIP8 and ZIP8-targeting siRNA. Results
indicated the presence of ZIP8 bands at around 50 kDa, as well as at approximately 100 kDa and 150 kDa
positions (Figure 2B and Figure S1B). The predicted molecular weight of ZIP8 is approximately 50 kDa;
therefore, the higher molecular bands detected by Western blotting could represent multimer forms of
ZIP8 [30,42,43]. To determine the signal pattern of endogenous ZIP8, we performed another siRNA
knockdown in A549 cells, which are alveolar epithelial cells expressing high levels of endogenous ZIP8
protein [44]. In A549 cells, endogenous ZIP8 was only detected at the 150 kDa position (Figure 2C and
Figure S1C). Together, these experiments carefully validated both anti-ZIP14 and anti-ZIP8 antibodies,
as well as their targeting siRNAs.

To determine whether ZIP14 and ZIP8 proteins are expressed in HIBCPP cells, we transfected
HIBCPP cells with siRNA to knockdown either ZIP14 or ZIP8. Western blotting confirmed that both
ZIP14 and ZIP8 proteins are present in HIBCPP cells (Figure 2D,E and Figure S1D,E).
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3.3. Both ZIP14 and ZIP8 Contribute to Mn Accumulation in HIBCPP Cells

The BCB is an important part of the homeostatic infrastructure of the brain and is involved in
the active transport of nutrients [45]. HIBCPP cells are frequently used to model the BCB, but Mn
accumulation by HIBCPP cells has not been investigated. While the detection of ZIP14 and ZIP8
proteins in HIBCPP cells is novel, the activity of these transporters is unknown in this cell model.
Our next goal was to confirm the activity of ZIP14 and ZIP8 as Mn transporters in HIBCPP cells.

To determine whether ZIP8 and ZIP14 contribute to Mn uptake, HIBCPP cells were transfected
with either negative control (NC), ZIP14-, or ZIP8-targeting siRNA. A representative blot for ZIP14
and ZIP8 knockdown is shown in Figure 3A. The knockdown efficiency of either ZIP14 or ZIP8 is
close to 50%, with no significant change in ZIP14 expression after ZIP8 knockdown or no change in
ZIP8 expression after ZIP14 knockdown (Figure 3B,C). HIBCPP cells transfected with ZIP14 siRNA
contained approximately 44% less 54Mn than the control cells, while ZIP8 siRNA treatment resulted in
about 14% less 54Mn uptake compared to the controls (Figure 3D) indicating that both ZIP14 and ZIP8
contribute to Mn uptake in HIBCPP cells. Due to the incomplete siRNA-mediated knockdown of each
protein, we could not conclude that ZIP14 and ZIP8 are the only two transporters responsible for Mn
uptake in HIBCPP cells. Future investigation should establish a stable knockout cell line to determine
both transporters’ precise contribution to Mn uptake in these cells.

Brain Sci. 2020, 10, x FOR PEER REVIEW 8 of 15 

To determine whether ZIP14 and ZIP8 proteins are expressed in HIBCPP cells, we transfected 
HIBCPP cells with siRNA to knockdown either ZIP14 or ZIP8. Western blotting confirmed that both 
ZIP14 and ZIP8 proteins are present in HIBCPP cells (Figure 2D,E and Figure S1-D,E). 

3.3. Both ZIP14 and ZIP8 Contribute to Mn Accumulation in HIBCPP Cells 

The BCB is an important part of the homeostatic infrastructure of the brain and is involved in 
the active transport of nutrients [45]. HIBCPP cells are frequently used to model the BCB, but Mn 
accumulation by HIBCPP cells has not been investigated. While the detection of ZIP14 and ZIP8 
proteins in HIBCPP cells is novel, the activity of these transporters is unknown in this cell model. Our 
next goal was to confirm the activity of ZIP14 and ZIP8 as Mn transporters in HIBCPP cells. 

To determine whether ZIP8 and ZIP14 contribute to Mn uptake, HIBCPP cells were transfected 
with either negative control (NC), ZIP14-, or ZIP8-targeting siRNA. A representative blot for ZIP14 
and ZIP8 knockdown is shown in Figure 3A. The knockdown efficiency of either ZIP14 or ZIP8 is 
close to 50%, with no significant change in ZIP14 expression after ZIP8 knockdown or no change in 
ZIP8 expression after ZIP14 knockdown (Figure 3B,C). HIBCPP cells transfected with ZIP14 siRNA 
contained approximately 44% less 54Mn than the control cells, while ZIP8 siRNA treatment resulted 
in about 14% less 54Mn uptake compared to the controls (Figure 3D) indicating that both ZIP14 and 
ZIP8 contribute to Mn uptake in HIBCPP cells. Due to the incomplete siRNA-mediated knockdown 
of each protein, we could not conclude that ZIP14 and ZIP8 are the only two transporters responsible 
for Mn uptake in HIBCPP cells. Future investigation should establish a stable knockout cell line to 
determine both transporters’ precise contribution to Mn uptake in these cells. 

 
Figure 3. ZIP14 and ZIP8 are involved in Mn uptake in HIBCPP cells. (A) HIBCPP cells were 
transfected with either ZIP14, ZIP8, or negative control (NC) siRNA for 48 h, and lysates were probed 
for ZIP14 (upper) and ZIP8 (lower) proteins. Quantification of (B) ZIP14 and (C) ZIP8 protein levels. 
(D) HIBCPP cells were transfected with NC, ZIP14-, or ZIP8-specific siRNA for 48 h. Cells were 

Figure 3. ZIP14 and ZIP8 are involved in Mn uptake in HIBCPP cells. (A) HIBCPP cells were transfected
with either ZIP14, ZIP8, or negative control (NC) siRNA for 48 h, and lysates were probed for ZIP14
(upper) and ZIP8 (lower) proteins. Quantification of (B) ZIP14 and (C) ZIP8 protein levels. (D) HIBCPP
cells were transfected with NC, ZIP14-, or ZIP8-specific siRNA for 48 h. Cells were incubated with
0.1 µM of 54Mn at 37 ◦C for 5 min. Cell-associated radioactivity was determined by gamma counting.
The data are presented as means ± S.D. from four independent experiments. * p < 0.05, ** p < 0.01 and
*** p < 0.001.
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To confirm that Mn accumulation by HIBCPP cells is mediated by an active transport mechanism,
we further characterized Mn uptake. The active transport process facilitates the movement of a
substrate across the membrane relative to the amount of substrate until the transporter is saturated [46].
Additionally, active transport processes proceed optimally at temperatures close to 37 ◦C and are
essentially blocked at 4 ◦C [46]. These two characteristics, concentration- and temperature-dependence,
were investigated in our study to determine whether Mn enters HIBCPP cells via an active process.
We measured 54Mn accumulation using a wide range of Mn concentration. Our results indicated
that Mn accumulation by HIBCPP cells is a saturable biological process (Figure 4A). Moreover,
we found that the incubation of HIBCPP cells at 4 ◦C almost completely abolished 54Mn uptake
(Figure 4B). These results suggest that Mn accumulation by HIBCPP cells is mediated through an active
transport mechanism.
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Figure 4. Characterization of Mn accumulation by HIBCPP cells. (A) Concentration-dependence of
54Mn uptake of HIBCPP cells. HIBCPP cells were grown on six-well plates for 48 h. Cells were
incubated with uptake media containing different concentrations of 54Mn-Citrate for 5 min.
(B) Temperature-dependence of 54Mn accumulation. Cells were incubated with 0.1 µM of 54Mn
at 37 ◦C or 4 ◦C for 5 min. Cell-associated radioactivity was determined by gamma counting. The data
are presented as means ± S.D. from three independent experiments. *** p < 0.001.

3.4. Establishment of HIBCPP Transwell Cultures

In polarized epithelial cells, the apical and basolateral plasma membrane domains contain different
nutrient transport proteins and carry distinct transport processes [47]. To determine the relative
localization of ZIP14 and ZIP8 in HIBCPP cells, we aimed to use the Transwell culture system and cell
surface protein biotinylation approach. This approach has been widely used to study the steady-state
distributions of plasma membrane proteins in polarized epithelial cells [21,48,49]. We confirmed the
expression of tight junction protein zonula occludens (ZO-1) in HIBCPP cells (Figure 5A). In addition,
we evaluated the cell monolayer integrity by measuring the electrical resistance across the Transwell
culture. HIBCPP cells are reported to have very low permeability at TEER values over 150 Ω · cm2 [5]
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to 400 Ω · cm2 [6]. Our measurements reveal TEER values at or approaching 400 Ω · cm2 within 7
to 8 days after seeding (Figure 5B). Therefore, biotinylation experiments are conducted when cells
have visibly formed a monolayer after 7–8 days of growth. We first confirmed the polarity of the
HIBCPP monolayer using Western blotting to probe for well-characterized apical or basolateral marker
proteins. For the apical marker protein, we used divalent metal transporter-1 (DMT-1), which is mainly
present on the apical side of polarized Caco-2 epithelial cells [21] and kidney proximal tubule epithelial
cells [50]; for the basolateral marker protein, we used the multidrug resistance-associated protein 1
(MRP-1), since MRP-1 is expressed on the basolateral membrane of epithelial cells in choroid plexus
tissue and in HIBCPP cells [5,51]. After biotinylation, it was confirmed that DMT-1 was highly enriched
on the apical membrane of HIBCPP cells. In contrast, MRP-1 was detected mainly on the basolateral
membrane (Figure 5C and Figure S3A).
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Figure 5. HIBCPP cells form a polarized monolayer connected by tight junctions. After seeding on a
Transwell insert, HIBCPP cells grow to confluence. (A) After 7 days in culture, immunofluorescent
antibody for ZO-1 (green) reveals the formation of cell–cell junctions. Nuclei are marked by
4′,6-diamidino-2-phenylindole (DAPI) (blue). Left image is a maximum intensity projection, right image
represents a single z-stack. Red arrows point to the apical side of the cell layer. Scale bar: 20 µm.
(B) HIBCPP monolayer integrity was monitored by Transepithelial Electrical Resistance (TEER)
measurement (Days post-seeding are indicated on the X-axis). The data are presented as means ± S.D.
from four independent Transwell cultures. (C) MRP-1, a known basolateral transporter in choroid
plexus tissue, and DMT-1, an apical protein, were probed as basolateral and apical markers, respectively.
(D) ZIP14 and ZIP8 are expressed on opposite sides of the membrane in a polarized HIBCPP cell culture.
GAPDH is not enriched in the membrane fraction after biotinylation and therefore appears to only be
present in the whole lysate.
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3.5. ZIP14 and ZIP8 Are Expressed On Opposite Sides of Polarized HIBCPP Cells

Mn is present in both the blood and CSF, suggesting that the choroid plexus epithelial cells could
take up Mn from both its apical and basolateral membrane domains. ZIP14 and ZIP8 are known to
be critical for importing Mn into cells [17,21], and experiments with either transporter overexpressed
resulted in an increase in Mn uptake [27,29,30]. In this study, we have found that both ZIP14 and
ZIP8 play a role in Mn accumulation by HIBCPP cells. Both transporters are reported to have either
basolateral or apical expression in other cell lines [17,21], but the distributions of ZIP14 and ZIP8 in
choroid plexus-derived cells have not been reported. To determine the membrane localization of ZIP14
and ZIP8 in HIBCPP cells, we seeded the cells on Transwell inserts to allow the cells to form polarized
monolayers. We found that ZIP14 and ZIP8 differ in their relative distributions: ZIP14 is enriched on
the basolateral membrane (Figure 5D and Figure S3B), while ZIP8 is enriched on the apical side of
HIBCPP cells (Figure 5D and Figure S3B). GAPDH, an intracellular protein, was used to confirm the
lack of enrichment of cytosolic proteins in the membrane fractions of our samples. To our knowledge,
this study is the first to report the presence of polarized Mn transport proteins in HIBCPP cells.

4. Discussion

A growing body of research regarding the choroid plexus as the site for BCB has used mammalian
primary cultures of porcine [52,53] and rodent [54,55] choroid plexus tissues. While primary cultures
are suitable to study choroid plexus epithelial cells for individual experiments, protocols and results
from primary cultures of choroid plexus cells are difficult to compare, and the establishment of primary
cultures from rodents requires a large number of animals to yield a small quantity of healthy epithelial
cells [54,56]. Therefore, there is a need for a consistent and reliable in vitro model for the choroid plexus
epithelial cells. HIBCPP cells were isolated from a human papilloma and continuously proliferate [8],
making them more convenient and economical to use than primary cells. Particularly important as a
model of the BCB, HIBCPP cells consistently polarize and are connected by tight junctions, which allows
them to form an epithelial monolayer.

As an essential nutrient, Mn is required for normal brain function. It has been demonstrated that
Mn enters the brain primarily through the BCB [12]. To investigate how Mn homeostasis is regulated
within the BCB, we first need to identify which transporters are expressed in the choroid plexus
epithelial cells. In this study, by using the HIBCPP cells as a model for choroid plexus epithelium,
we identified that Mn importers ZIP14 and ZIP8 are expressed at both the RNA and protein levels
in these cells. To ensure careful analyses, we confirmed that the primers used in our studies are
specific to only one target and that the amplicon is the predicted length. In addition, we validated the
specificities of anti-ZIP14 and anti-ZIP8 antibodies used in our studies. Rigorous analyses of primers
and antibodies are necessary due to the novelty of HIBCPP cells and the relatively recent identification
of ZIP14 and ZIP8 as Mn transporters. Since this is the first study to identify ZIP14 and ZIP8 in HIBCPP
cells, further studies will greatly benefit from these primer and antibody validations.

The functions of ZIP14 and ZIP8 as Mn importers have been well documented [27,28,30,35–37].
Our results confirm that both proteins are functional Mn importers in HIBCPP cells, which is consistent
with reports using other epithelial cell lines. We determined the relative subcellular distribution
of ZIP14 and ZIP8 to help further understand their potential roles in Mn uptake in HIBCPP cells.
We found that HIBCPP cells express ZIP14 primarily at the basolateral membrane and ZIP8 mainly on
the apical surface. By understanding the polarized localization of ZIP14 and ZIP8, we can begin to
understand how Mn is transported in choroid plexus-derived epithelial cells.

This study has limitations that should be acknowledged. First, the expression of Mn transport
proteins in choroid plexus tissue is currently unknown. Further research is needed to determine
the in vivo expression patterns of ZIP14 and ZIP8 in the choroid plexus and the function of these
two proteins in primary choroid plexus epithelial cells. Additionally, transcriptomic analysis of ZIP
transporters in the choroid plexus indicates that transcript levels vary between fetal and neonatal
development [57]. While HIBCPP cells originate from an adult, we do not know whether they express
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the same levels of Mn transporters as healthy human adults. A future investigation will need to
analyze the age-dependent expression of ZIP14 and ZIP8 in vivo.

5. Conclusions

This report supports two main conclusions that will contribute to the field of Mn biology in the
brain. First, we have established a Transwell culture model for HIBCPP cells. These cells form a
polarized monolayer with tight junctions and express specific apical and basolateral proteins. Second,
we have identified that Mn transporters ZIP14 and ZIP8 both contribute to Mn accumulation by
HIBCPP cells, and are enriched on basolateral and apical sides, respectively. Future studies using
HIBCPP cells could benefit from our findings to further investigate mechanisms of Mn homeostasis
regulation in the choroid plexus-derived cells.
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