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Abstract: The prevention of sudden cardiac death (SCD) in cardiomyopathies (CM) remains a
challenge. The current guidelines still favor the implantation of devices for the primary prevention
of SCD only in patients with severely reduced left ventricular ejection fraction (LVEF) and heart
failure (HF) symptoms. The implantation of an implantable cardioverter-defibrillator (ICD) is a
protective barrier against arrhythmic events in CMs, but the benefit does not outweigh the cost in
low risk patients. The identification of high risk patients is the key to an individualized prevention
strategy. Cardiac magnetic resonance (CMR) provides reliable and reproducible information about
biventricular function and tissue characterization. Furthermore, late gadolinium enhancement (LGE)
quantification and pattern of distribution, as well as abnormal T1 mapping and extracellular volume
(ECV), representing indices of diffuse fibrosis, can enhance our ability to detect high risk patients.
CMR can also complement electro-anatomical mapping (EAM), a technique already applied in the
risk evaluation and in the ventricular arrhythmias ablation therapy of CM patients, providing a
more accurate assessment of fibrosis and arrhythmic corridors. As a result, CMR provides a new
insight into the pathological substrate of CM. CMR may help identify high risk CM patients and,
combined with EAM, can provide an integrated evaluation of scar and arrhythmic corridors in the
ablative therapy of ventricular arrhythmias.

Keywords: cardiomyopathy; sudden cardiac death; implantable cardiac defibrillators; ventricular
tachycardia; ventricular fibrillation; cardiac magnetic resonance; electroanatomic mapping

1. Introduction

Cardiac plasticity permits the heart to adjust its function and structure in response to environmental
stimuli such as the increase in the wall thickness or the dilatation of the ventricles due to pressure or
volume overload conditions [1]. The term cardiomyopathy (CM) is used to describe an inhomogeneous
group of disorders affecting the function and the structure of the myocardial wall without an
obvious triggering factor such as arterial hypertension, coronary artery disease, valvular disease or
congenital heart disease. The European Society of Cardiology (ESC) in 2008 classified CMs in five
groups according to their functional and morphological characteristics (hypertrophic cardiomyopathy
(HCM), dilated cardiomyopathy (DCM), arrhythmogenic right ventricular cardiomyopathy (ARVC),
restricted cardiomyopathy (RCM) and an unclassified group) [2]. The prevalence of CMs differs
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significantly among these groups, with HCM and DCM being the most common (1:250/500) and ARVC
(1:2000/5000) and RCM (unknown prevalence) being the rarest [3]. It is worth noting that although
the term of ischemic cardiomyopathy (ICM) is used to describe patients with myocardial dysfunction
caused by severe coronary disease, it is, by definition, not considered to be a ”real” CM according to
the ESC since myocardial hypoperfusion is the cause of the dysfunction.

Patients diagnosed with any kind of CM are threatened by a variety of complications including
progressive heart failure, need for cardiac transplantation or sudden cardiac death (SCD). Even if
manifestations such as an episode of heart failure decompensation give time to seek medical help and are
manageable, SCD leaves no room for reaction. SCD can be divided into two major categories—deaths
that occur as a consequence of a mechanical complication, for instance, myocardial rupture or left
ventricular outflow tract obstruction in HCM and deaths that have a malignant arrhythmic origin [4].
The latter cases are more likely to have an autopsy negative SCD since the post-mortem analysis of the
cardiac conduction system is not routinely feasible given that it is technically demanding [5]. As an
epidemiological hint, in the United States, up to 300,000 cardiac deaths occur suddenly every year.
The majority of them have an ischemic etiology (75%) followed by CMs (15%) [6]. More precisely,
in DCM, studies suggest that 30% of deaths occur unexpectedly. Among them, patients with preserved
functional status (NYHA class I and II) are more prone to SCD (50–60% of their overall mortality)
than patients in a worse clinical status who mainly die due to heart failure complications [7].
Undoubtedly, the primary prevention of SCD demands that medical teams are a step forward
in patients’ therapeutic management.

Accurate and straightforward arrhythmic risk stratification algorithms for the primary prevention
of major arrhythmic events (MAEs)—including, in this article, SCD and both sustained ventricular
tachycardia (VT) and fibrillation (Vf)—constitute the holy grail of clinical electrophysiology. An effective
and efficient approach allows for the rational targeted allocation of life-saving implantable cardioverter
defibrillators (ICDs), with the expected benefit outweighing any device related complication and
adverse events (e.g., infections and inappropriate shocks) [8]. Based on results from seminal trials,
most of which were published approximately 15 years ago [9–17], left ventricular function, assessed in
terms of ejection fraction (LVEF), and functional status (NYHA classification), dominate American [18]
and European [19] primary prevention guidelines regarding both ischemic (ICM) and nonischemic
dilated cardiomyopathy (NIDCM).

The aforementioned studies were not designed to stratify patients according to arrhythmic risk but
rather, based on their LVEF; consequently, they only demonstrated that moderately-to-severely impaired
LVEFs were associated with high arrhythmic risk, without including patients with mildly-to-moderately
impaired contractility. Not unexpectedly, a two-fold disparity between ICD allocation and MAE
occurrence in the primary prevention population has been noted, with an ever increasing trend,
given that the majority of sudden deaths in the community occurs in people with mildly impaired
LVEF [20,21], and in modern ICD registries [22], the rates of appropriate ICD activation are low (2.6% at
30 months), even at low LVEFs.

As contemporary studies [20–22] raise skepticism about the true role of LVEF in the prediction of
malignant arrhythmias, the introduction of new parameters in the daily practice for the risk stratification
of patients is a necessity for the near future. Cardiac magnetic resonance (CMR) is a highly effective
imaging modality for the characterization of myocardial tissue as well as for the anatomical and the
functional evaluation of the heart [23]. Several CMR findings are associated with arrhythmogenic
substrates in CMs, with the late gadolinium enhancement (LGE) quantification and distribution pattern
being the most well established [24–34]. The addition of CMR in the field of risk stratification for SCD
of the CM patients is promising.

The aim of this review is to present the CMR imaging patterns of the arrhythmogenic substrate,
studied up to date in CMs, and examine the role of CMR findings in the clinical decision making of
the electrophysiologist.
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2. CMR Basics

The diagnostic imaging of the human body, independently of the modality used, enables the
creation of contrast between tissues. The signal source that serves as contrast for magnetic resonance
imaging (MRI) is the response of hydrogen atoms to the magnetic field. Each hydrogen atom is
composed of a proton which carries its own spin. The human body does not spontaneously create
magnetic signal since spins are oriented randomly [35]. By placing the human body in a strong uniform
magnetic field, the spins are forced to align in a parallel or anti-parallel way along the field, creating a
new equilibrium with slightly more atoms choosing the parallel orientation. The next step is the
interruption of this provoked equilibrium by a radiofrequency pulse (RF) applied in the magnetic
field for a specific amount of time. Hydrogen atoms absorb and reemit the radiofrequency received
in a different manner that depends on their surroundings. After the appliance of the pulse, as the
spins return to the previous equilibrium, the phenomenon of ”relaxation” begins. T1 relaxation, or
spin-lattice relaxation time, is the recovery of the longitudinal net magnetization vector, and it occurs
due to the exchange of energy between the spins and the lattice. T2 relaxation time or spin–spin
relaxation is the recovery of the transverse net magnetization vector, and it occurs due to spin–spin
interactions and their progressive dephasing [36].

The heart, as a constantly beating organ, which is also affected by respiration movements, makes
CMR measurements challenging because of multiple artifacts. Techniques such as the Look Locker (LL)
sequence, the Modified Look Locker Inversion Recovery Sequence (MOLLI), the shortened MOLLI
(shMOLLI) and the Saturation recovery single-shot acquisition sequence (SASHA) overcome these
difficulties by using protocols of supplement excitation RF pulses to extract T1 measurements and
have significantly improved the reproducibility of the method [37].

Regarding T1 mapping, it is created by the accumulation of multiple T1 measurements from many
heart beats, all at the same phase of the cardiac cycle. Each T1 value is represented by a pixel in the
map. T1 mapping images the entire myocardium and does not separate extracellular from cellular
environments. The deposition of lipids, water, proteins or iron change T1 measurements and reveal
early histological changes [38,39]. Native T1 is a CMR parameter that does not require the use of
contrast and, subsequently, is suitable for patients with renal impairment.

When CMR imaging is being supplemented with intravenous contrast agents, the information
derived is multiplied. Gadolinium-based contrast agents (GBCAs) are the most widely used agents
approved for use [40].They are well-tolerated with extremely low allergic reactions and side
effects (0.01%) and have a minimum impact on renal function. Nephrogenic Systemic Sclerosis
(NSF), is a rare side effect of GBCAs and has only been reported in patients with renal
impairment [41]. Although deposits of gadolinium have been identified in the brains of patients
without renal disease who received multiple doses, the clinical relevance of this finding remains to be
clarified [42,43]. GBCAs cannot insert the intracellular compartment due to their high molecular weight.
Consequently, their distribution is possible only to the extracellular space-intravascular compartment
and interstitial space.

The paramagnetic properties of gadolinium lead to a shorten T1 relaxation time in these areas.
The most valuable information extracted by the use of GBCA is its pattern of removal from tissues.
Normally, after its first distribution, a GBCA is progressively washed out. In areas of myocardial
fibrosis, the wash out is delayed since the extracellular space is expanded, the capillary density is
reduced and the distance between myocardial cells is augmented. Imaging the heart ”late” after the
gadolinium has been washed out from healthy tissue can identify these areas with pathological response
indicative of replacement fibrosis. It is noticeable that, by definition, late gadolinium enhancement
(LGE) (Figure 1) expresses the difference between two areas and is not useful in diffuse myocardial
disease, where the entire myocardium is affected and no healthy areas exist to serve as a control [44].

Last but not least, extracellular volume (ECV) is another useful parameter reflecting histological
changes early in the CMs’ course, independently of their cause. It is measured by the native and
postcontrast T1 mapping also including the hematocrit level [45,46] (Figure 2).
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Figure 1. ‘’Bright is dead”. Inversion recovery image showing extensive LGE area due to anterior
myocardial infarction. During late imaging, a gadolinium-based contrast agent (GBCA) is present in
areas of fibrosis, as mentioned in the text. The bright area in the anterior and apical wall represents
scar tissue.
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Figure 2. Native and postcontrast T1 mapping in the midventricular short axis level of the left
ventricle (LV) in a patient with inflammatory cardiomyopathy. The left image was derived before the
administration of a GBCA. The myocardial wall is shown in an inhomogeneous deep orange color
which corresponds to pathologically elevated native T1 values. The right one was taken after the
administration of the agent. It is worth noting that postcontrast T1 values are influenced by factors
other than tissue characteristics such as the agent’s dosage and the time of the imaging. An algorithm
that combines native and postcontrast T1 values allows us to calculate a more tissue specific parameter,
the ECV, in areas of interest.
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The quantification of ECV by CMR is an excellent noninvasive method as the measurements are
highly correlated with the results of biopsies [47,48]. ECV is useful when the myocardium is being
infiltrated by diffuse diseases such as amyloidosis or diffuse fibrosis that cannot be evaluated with
LGE distribution, demanding areas of healthy tissue for comparison and also thicker areas of collagen
deposition in order to be visible [38,49].

A common issue affecting all contrast-based scar detection lies in the definition of scar and its
subtypes, given that it hinges on relative signal intensity. There is not a universal cutoff over which
the high signal intensity in LGE-CMR reflects scar tissue. Subsequently, the definition of scar varies
between different studies and researchers. Two major approaches have been pursued, one defining
scars based on increased signal intensity (versus a healthy remote area) and the other defining healthy
tissue based on less pronounced signal intensity (versus the maximal intensity observed at a dense
scar region). A few of the most popular scar definitions in studies are the followings: areas with signal
intensity >6 standard deviations (SD) higher than the average intensity of remote areas [50], or with
signal intensity ≥50% of the maximal within infarct zone value [51–53], or signal intensity >2SDs above
the value for normal myocardium [54]. At the same time, border scars (grey zone) can be defined as
having an intensity of either 35% to 50% [53] or <60% [55] of the above value.

3. CMR Imaging Patterns Reveal the Arrhythmogenic Burden in Cardiomyopathies

3.1. Nonischemic Dilated Cardiomyopathy

The most well established parameter of an arrhythmogenic substrate in NIDCM is the LGE
imaging [24–31]. The existence, the localization but not the quantification of LGE are all strong
independent predictors for ventricular arrhythmias, SCD and hospitalization in all ranges of
LVEF [56–58]. Precisely, septal LGE carries the worst prognosis even if the fibrotic area is restricted.
Moreover, the coexistence of septal with free wall LGE as well as a subepicardial pattern of LGE
are all additive risk factors for fatal arrhythmias [56–59]. Interestingly, concerning the inducibility of
ventricular arrhythmias during programmed ventricular stimulation (PVS), the absence of LGE is an
excellent predictor of noninducibility of monomorphic but not polymorphic VT/VF [29,50,60].

Furthermore, T1 mapping and ECV are also valuable tools in the arrhythmic risk stratification
of NIDCM [46,61–64]. ECV and postcontrast T1 mapping correlate with the severity of systolic
dysfunction [61]. An increase in ECV is detected early, even before the systolic impairment,
reflecting the pathological substrate of the myocardium. Except from the early reveal of the disease,
ECV measurements serve also as an independent prognostic factor for cardiovascular death, heart
failure hospitalization and appropriate ICD firing [46,47]. However, in patients who cannot receive
intravenous contrast agents, ECV measurements can be successfully replaced by native T1 mapping
which is a strong independent predictor of an adverse outcome such as all cause mortality, heart failure
death and hospitalization in NIDCM [62,64].

Finally, CMR derived left ventricular longitudinal strain is a newly proposed marker of prognosis
in patients with NIDCM with conflicting results [65,66]. In one study, the prognostic value of
longitudinal strain was even superior to other markers such as LVEF, NT-proBNP and LGE mass [65].
However, other studies failed to confirm this finding [67].

3.2. Ischemic Cardiomyopathy

The scar tissue following an acute coronary syndrome (ACS) constitutes the most common
arrhythmogenic substrate in ICM [68–70]. Although malignant arrhythmias occurring early after an
ACS are caused by abnormal automaticity and triggered activity of hypoperfused myocardial cells,
after the formation of the scar, mechanisms of reentry dominate [71].

Focal myocardial fibrosis detected by LGE imaging substantially increases the risk for life
threatening arrhythmias in ICM [32–34,72]. Histologically, a myocardial scar is not always a uniform
lesion. In the dense core of the scar, areas of fibrosis are interrupted by viable fibers that serve as
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slow conduction pathways. In addition, the tissue surrounding the core of the scar is a ‘grey zone’
of hypoperfused myocardium with arrhythmogenic properties [73–75]. The heterogeneity of the scar
as well as the size of the border zone assessed by CMR parameters are all predictors of malignant
arrhythmias and appropriate ICD firings in ICM [76–78].

Regarding the role of T1 mapping and ECV measurements in the arrhythmic risk stratification
of ICM, there are a few studies, including both ischemic and nonischemic CM patients, suggesting a
correlation between their pathological values and an increased arrhythmic burden [79,80].

Here, it should be highlighted that another highly effective risk stratification approach with
absolute negative predictive value, and a positive predictive one of 22% over a mean follow up of
32 months, is that of PVS response in post-myocardial infarction (MI) patients with a LVEF ≥ 40%
having at least one out of seven noninvasive risk factors (NIRFs) present on ambulatory and signal
averaged electrocardiography [81]. This approach did not incorporate any abnormal CMR data of the
corresponding post-MI population although a probable association can coexist in these patients [82].
Such a two step combined noninvasive/invasive risk stratification approach holds promise for a
significant, yet until recently unrecognized post MI patient population at risk, to be addressed through
cost effective and readily available algorithm [83].

3.3. Hypertrophic Cardiomyopathy

In a rare divergence between American and European guidelines [84,85], primary prevention in
hypertrophic cardiomyopathy (HCM) is based either on the presence of 1 out of 3 major clinical risk
factors (SCD history, marked left ventricular (LV) hypertrophy, unexplained syncope) with the presence
of LGE upon CMR and outflow tract obstruction acting as risk modifiers in cases of nonsustained VT
and abnormal blood pressure response to exercise (AHA) or on the calculated 5-year risk of MAEs
(ESC–ICD strongly indicated when ≥6%). Notably, there is considerable debate on the value of the
latter approach, with contradictory evidence published [86,87].

Indeed, there has been considerable debate concerning the value of the latest European risk
score [84,88] regarding arrhythmic events in HCM, as exhibiting high specificity but low sensitivity [89].
This is a population where protection from arrhythmic death has been claimed to lead to an almost
normal life expectancy [90], although recent surveys [91] cast doubt on this, reporting an increased
mortality even among such well protected patient cohorts. The reverse is true for the currently
undergoing major reshaping [92] American criteria, that have excellent sensitivity yet rather low
specificity [89], with patients experiencing more inappropriate shocks and complications than receiving
appropriate therapies [93,94]. Thus, CMR has long been thought as a potential tie-breaker in the clinical
decision-making process [95,96].

The presence of scar, imaged by LGE in HCM patients is considered to be a strong independent
predictor for ventricular arrhythmias, ventricular remodeling, all-cause mortality and cardiac
death [72,97–100]. The extent of myocardial LGE involvement has been proposed as a better risk
stratifier, with cutoffs oscillating from as low as 10% [101], to as high as 20%, with the mean value
of 15% attaining wider acceptance [96]. The pattern of LGE distribution, patchy with multiple foci
or diffuse, does not carry an additional risk [100]. However, diffuse myocardial fibrosis identified by
pathological postcontrast T1 mapping is correlated with episodes of NSVT on Holter monitoring of
HCM patients [102].

A relatively common finding during CMR imaging of HCM patients is the appearance of areas of
T2-high signal spotted within LGE. Although its clinical significance is not well established, a study
of 81 HCM patients concluded that high T2 signal is another parameter for VT manifestation in this
group [103]. Concerning the role of ECV, a study incorporating the measured global ECV in the already
suggested HCM risk-SCD score of the European society of cardiology (ESC) was associated with a
significant improvement in the diagnostic accuracy of the score offering a better risk stratification in
this disease [104].
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3.4. Inflammatory Cardiomyopathy

Inflammatory CM is the result of an inflammatory process due either to infective or autoimmune
causes. Myocardial oedema and fibrosis as a result of macro-, micro-vascular coronary artery disease,
vasculitis and autoimmune myocarditis may lead to SCD in patients with autoimmune diseases, even if
the left ventricular ejection fraction (LVEF) is preserved [105]. These changes in the myocardial substrate
of patients with autoimmune rheumatic diseases (ARDs), imaged in CMR as elevated median T1
mapping values, pathological T2 mapping and increased ECV values, were all predictors for malignant
arrhythmias in a study of 61 patients with ARDs and preserved LVEF [105].

Between various ARDs, polymyalgia rheumatica, the commonest rheumaticdisease in elderly
people, may present with SCD, as a result of chronic inflammation. Several studies demonstrated that
besides promoting structural heart disease, inflammatory activation may also be per se arrhythmogenic,
via cytokine-mediated effects on cardiac electrophysiologic properties. Furthermore, there is increasing
evidence that inflammation is a risk factor for QTc prolongation and associated life-threatening
arrhythmias, specifically torsade de pointes (TdP) [106]. Additionally, rheumatoid arthritis (RA)
patients have twice the risk of SCD, compared with non-RA patients, due to an increased incidence
of VT/VF. Although the pathophysiologic background of the proarrhythmic substrate in RA is
rather complicated, it seems that chronic systemic inflammation can introduce arrhythmias either by
promoting the development of ICM or by altering the electrophysiological properties of the heart.
Therefore, the tight control of the inflammatory process is probably the most effective intervention to
decrease the arrhythmic risk in RA patients.

Autonomic dysfunction, potentially leading to SCD, even in the absence of relevant symptoms
or reduced LVEF, was documented in systemic lupus erythematosus, idiopathic juvenile arthritis
patients and children with type 1 diabetes mellitus [107–109]. Sporadic VT/VF has also been observed
in dermato-, poly-, and inclusion body myositis patients [110]. Finally, SCD was observed in various
infiltrative diseases such as sarcoidosis and systemic sclerosis [111]. Specifically, in systemic sclerosis,
the presence of oedema and LGE are predictive factors for arrhythmia development [112].

4. The Complementary Role of CMR and Electroanatomical Mapping in Ventricular
Tachycardia Ablation

A significant limitation of VT ablation is its variable success rate. The HELP-VT study evaluated
VT ablation outcomes among patients with ICM and NIDCM, demonstrating similar success rates in
the short term, but with significant reappearance of the arrhythmia in the long term in the latter [113].
The absolute VT noninducibility has been claimed as a prerequisite for long term success [113].
The differences in the arrhythmia substrate are a major determinant of this failure in NIDCM, since
the isthmus and critical parts of the circuit are located in regions difficult to map and ablate such as
the epicardium [114].

Electroanatomic mapping (EAM) is the currently used approach to identify the arrhythmiologic
substrate. However, in EAM the arrhythmogenic substrate is identified indirectly by collecting local
voltage amplitudes of the myocardium. This method has some drawbacks: (a) it is time consuming,
(b) it lacks sensitivity for scar substrates deep in the mapped surface and (c) it lacks specificity for
scar detection in the case of poor catheter contact or thin myocardium. Therefore, the need for new
strategies to define arrhythmogenic scar substrates is relevant [115]. CMR examination before or during
EAM could reveal these difficult areas and potentially enhance the ablation’s success rate. An example
of the complementary approach to the incorporation of CMR in interventional electrophysiology is
depicted in Figure 3.
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Figure 3. Joint application of cardiac magnetic resonance (CMR) and electro-anatomical mapping
(EAM) in the case of a 43 year old female diagnosed with Behçet’s disease and high burden of
symptomatic ventricular extrasystoles (≈20,000 on 24 h ambulatory electrocardiography), without LV
dysfunction. (A,B) T1-weighted sequence CMR with obvious LGE both at the left ventricular lateral
wall (midmyocardial) and subendocardially (diffuse pattern, not corresponding to coronary artery
territory). Four chamber (A) and short axis (B) views. (C,D) Electroanatomical map of the LV using the
CARTO3® system (Biosense-Webster, Diamond Bar, CA, USA) depicting a low voltage area (non-purple
color) in the same segments, using both bipolar (C) and unipolar (D) settings. Successful ablation of
the arrhythmia was achieved following radiofrequency energy application at the basal lateral wall,
an area with abnormal unipolar but not bipolar voltage values, suggesting a nonsubendocardial
arrhythmogenic focus [116].

The first necessary step in this algorithm is to incorporate CMR into 3D-EAM in order to
transfer anatomical data from one software environment to the other. Potential causes of a mismatch
include different rhythms during different image acquisition timings, as well as different loading
conditions, leading to slight geometric alterations in chamber geometry [117], as it has been shown
in several studies [55,118,119]. Regarding the association between scar features and measured
voltages, a correlation between both bipolar and unipolar values with scar nature (dense/border,
transmurality) has been reported [118]. However, it is worth noting that a bipolar voltage threshold of
<1.5mV (usual threshold for border-zone tissue) did miss dense scars with <75% transmurality and
nontransmural border scars, potentially explaining why some VT isthmuses were not detected by
substrate 3D-EAM and were not ablated [118].
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In one of the first studies, to evaluate the integration of CMR to achieve the demanding task of
scar definition in a clinical setting [120], this imaging technique facilitated conducting channel
characterization and demarcation of possible entrance sites, allowing for a more targeted and
comprehensive isolation. The ability of CMR to accurately detect subendocardial conducting channels
was also confirmed in another study [55], where 81% of them could be identified by CMR prior to
3D-EAM. Similar results have been reported [54] with an impressive 92.2% of 3D-EAM points lying
within a 5mm distance of the imported CMR-formed shell. Additionally, all critical sites for premature
ventricular contractions (PVCs) and VT isthmuses were detected within the LGE-defined scar.

In a more radical approach, the field of magnetic resonance electrophysiology (MR-EP) [119],
alternatively known as interventional CMR (iCMR), has been developed with the CMR scanner now
forming an integral, rather than a complementary/auxiliary, part of the 3D-EAM. The approach is still
theoretic, with proof of concept animal studies having been carried out to validate the functionality
of prototype integrated MR-EP systems [121,122] with no currently existing human studies [117].
More precisely, a scanner can be used, virtually in lieu of a fluoroscopy machine [123] to:

I. Generate anatomic images during the procedure. Consequently, any registration mismatch
errors are avoided. The operator uses the CMR scanner virtually in the same manner as a
fluoroscope, with an attached pedalfor image acquisition whenever e.g., tissue characterization
is needed [117].

II. Locate indwelling ablation catheters [121–124].
III. Produce substrate maps to be compared with those derived from the “classical” EAM module

and improve area of interest targeting.
IV. Evaluate the formation of permanent, irreversible lesions [124–126] prior to catheter withdrawal.

Regarding real-time lesion formation assessment, acute LGE grossly overestimates the effect (ECV
expansion), while thenoncontrast method, using fast T1- and T2-weighted imaging [127–130]
has only been able to acutely detect a minority (~30%) of lesions. CMR thermography is a newly
introduced parameter with promising results [42,131,132].

5. Future Perspectives in the Arrhythmic Risk Stratification in Cardiomyopathies

A multidisciplinary approach for the risk stratification of ICM and NIDCM patients seems to be
more suitable than the proposed oversimplified one based on LVEF so far, in order to better define their
complex substrate and support individualization. Towards this direction, several efforts have been
made to update primary prevention arrhythmic risk stratification in ICM and NIDCM with rather
well maintained LVEF, either by assessing the presence of an arrhythmogenic substrate through a
two-step approach with noninvasive risk factor presence leading to PVSin both diseases [81,89,133] or
by the use of imaging [56,59,134–136] in the latter. Such preliminary combinational approaches are
associated with encouraging results [81,133,137] for the detection of a high risk NIDCM cohort with
low LVEF and 3year event rates similar to that of a secondary prevention population based on the
ESTIMATED score, a score derived from the combination of abnormal CMR findings with various
clinical and electrocardiographic NIRFs.

In this direction, two prospective observational studies are currently underway: The CMR-Guide
trial [138] (NCT01918215) will define the role of CMR in the primary prevention of SCD in ICM and
NIDCM patients with well maintained LVEF>35%. After assessing the presence of either an ischemic or
nonischemic LGE pattern, patients will be randomized to receive either an implantable loop recorder
or an ICD. The ReCONSIDER study [139] (NCT04246450) will incorporate CMR findings, namely LGE
presence along with a variety of other NIRFs, leading to invasive PVS in NIDCM patients across the
LVEF spectrum in a two step approach.

The question of which is the best risk stratification approach among HCM patients with a
low European risk score and/or a single conventional noninvasive risk factor present, remains a
highly debatable issue. On the contrary, there is solid evidence that, in the presence of multiple
NIRFs and/or a high European risk score, the justification of ICD insertion is well supported [89].
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Although electrophysiology testing (ET) has received a class III recommendation for the risk stratification
of HCM patients [19], it has an excellent predictive ability for HCM patients with a single NIRF, such as
the presence of nonsustained VT or unexplained syncope, by revealing either a potentially malignant
ventricular arrhythmogenic substrate and/or an underlying conduction system disease [89]. Whether a
combinational multifactorial, CMR and ET-inclusive, approach is appropriately suited for this rather
large subgroup of HCM patients is currently unknown [140].

6. Conclusions

There is an urgent need to update our risk stratification criteria for the appropriate and timely
selection of the ICD candidates among CM patients at all LVEF spectrum values. In this direction,
CMR imaging may play a significant role. Indeed, LGE quantification and pattern of distribution,
as well as abnormal T1 mapping and ECV, can further enhance our ability to identify patients
susceptible to life threatening arrhythmogenesis. Currently, more sophisticated approaches combining
a variety of noninvasive and invasive modalities are underway in the new era of the arrhythmic
risk stratification among CM patients even at early heart failure stages with less impaired LV
function. Furthermore, CMR in combination with EAM may assist in the effectiveness of demanding
interventional EP procedures not uncommonly applied among such seriously affected high risk patients.
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