
Review Article
The Role of Decay Accelerating Factor in Environmentally
Induced and Idiopathic Systemic Autoimmune Disease

Christopher B. Toomey,1 David M. Cauvi,2 and Kenneth M. Pollard3

1 Department of Ophthalmology, Duke University School of Medicine, Albert Eye Research Institute, Durham, NC 27710, USA
2Department of Surgery and Center for Investigations of Health and Education Disparities, University of California, San Diego,
La Jolla, CA 92037, USA

3Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA

Correspondence should be addressed to Kenneth M. Pollard; mpollard@scripps.edu

Received 10 October 2013; Accepted 19 November 2013; Published 27 January 2014

Academic Editor: Aristo Vojdani

Copyright © 2014 Christopher B. Toomey et al.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Decay accelerating factor (DAF) plays a complex role in the immune system through complement-dependent and -independent
regulation of innate and adaptive immunity. Over the past five years there has been accumulating evidence for a significant role of
DAF in negatively regulating adaptive T-cell responses and autoimmunity in both humans and experimental models. This review
discusses the relationship between DAF and the complement system and highlights major advances in our understanding of the
biology of DAF in human disease, particularly systemic lupus erythematosus. The role of DAF in regulation of idiopathic and
environmentally induced systemic autoimmunity is discussed including studies showing that reduction or absence of DAF is
associatedwith autoimmunity. In contrast, DAF-mediatedT cell activation leads to cytokine expression consistent with T regulatory
cells. This is supported by studies showing that interaction between DAF and its molecular partner, CD97, modifies expression of
autoimmunity promoting cytokines. These observations are used to develop a hypothetical model to explain how DAF expression
may impact T cell differentiation via interactionwithCD97 leading to T regulatory cells, increased production of IL-10, and immune
tolerance.

1. Introduction

Decay accelerating factor (DAF) was first described in 1969
in human erythrocytes that inhibited complement activation
in vitro [1]. (The gene and protein designations used for decay
accelerating factor in this paper are DAF for the human gene
and DAF for the human protein. The mouse genes are Daf1
and Daf2 and the protein is DAF1.) However, its biological
significance was not appreciated until 1982 when the human
protein was isolated and deficiency of DAF was found in
patients with paroxysmal nocturnal hemoglobinuria (PNH)
[1–3]. The major function of DAF is to protect self-cells from
complement-mediated attack by inhibiting the cleavage of C3
andC5, blocking the formation of C3 andC5 convertases, and
accelerating their decay [4]. In humans, DAF is expressed as
a posttranslationally modified glycosylphosphatidylinositol-

(GPI-) anchoredmolecule [5, 6]. In mice, functionally equiv-
alent, GPI-anchored, and transmembrane-anchored DAF
proteins are produced, which are derived from two different
genes, Daf1 and Daf2, respectively [7]. Daf1 is ubiquitously
expressed, whereas, Daf2 is mostly present in the testis and
splenic dendritic cells [8]. DAF is also found in soluble form
in plasma, cerebrospinal fluid, saliva, synovial fluid, and urine
[9]. In humans,DAF is encoded by a single gene which maps
to q32 on chromosome 1 [10]. It is widely expressed on the
surface of all major circulating blood cells as well as epithelial
and endothelial cells [9, 11]. Constitutive expression can vary
depending on tissue and cell type [8, 12]. In human cells,DAF
expression ismodulated by cytokines such as IL-1, IL-6, TNF-
𝛼, TGF-𝛽1, and IFN-𝛾, prostaglandins, and tissue-specific
factors and controlled by the transcription factor SP1 [13–17].
In 1988, DAF was found to be rapidly expressed in T-cells
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activated by mitogens and in vitro stimulation with anti-DAF
antibodies led to phosphatidylinositol-specific phospholipase
C dependent T-cell proliferation [18]. This led to the hypoth-
esis that an alternative function of DAF may be to regulate
T-cell tolerance. Subsequently, DAF has been shown to
negatively regulate a variety of autoimmune diseases includ-
ing animal models of antiglomerular basement membrane
glomerulonephritis, experimental autoimmune myasthenia
gravis (EAMG), experimental autoimmune encephalomyeli-
tis (EAE), cardiac allograft rejection, and idiopathic and
induced models of systemic lupus erythematosus (SLE) [19–
24].

2. Complement System and DAF

The complement system is among the oldest evolutionary
components of the immune system. It was discovered in 1896
as a heat-labile fraction of serum that led to opsonization
of bacteria. Biochemical characterization showed that the
complement system is composed of over 30 proteins that
function to mediate removal of apoptotic cells and eliminate
pathogens.Three separate pathways (i.e., classical, alternative,
and lectin pathways) converge to convert C3 toC3 convertase,
an enzyme capable of initiating a cascade that results in cell
membrane pore formation and subsequent cell lysis known as
the membrane attack complex (MAC) (Figure 1). To protect
host cells from complement activation four plasma mem-
brane complement regulatory proteins are expressed, CD59
(membrane inhibitor of reactive lysis (MIRL)), CD35 (type
1 complement receptor (CR1)), CD46 (membrane cofactor
protein (MCP)), andCD55 (decay accelerating factor (DAF)),
that interrupt the complement cascade on self-cells. CD59
blocksMAC complex formation [25], CD35 acts as a cofactor
to inactivate C3b and C4b by factor I and interacts with
C3b and C4b to promote immune-complex removal [9],
and CD46 acts as a cofactor to inactivate C3b and C4b
through factor I [9]. DAF inhibits the cleavage of C3 and
C5 by blocking the formation of C3 and C5 convertases
and accelerating their decay [4]. The original premise of
the complement system as a member of the innate immune
system, however, was redefined three decades ago when it
was shown that complement participates in B- and T-cell
responses especially the induction and regulation of type I
helper (Th1) CD4

+ T-cell responses [26].

3. DAF in Human Autoimmune Diseases

Deficiency of DAF is found in PNH patients, a GPI
linked protein deficiency, which leads to systemic com-
plications particularly through intravascular hemolysis and
platelet activation [27–30]. Interestingly, however, it has
been reported that DAF (CD55) deletion, also known as
the Inab phenotype, hardly alters the sensitivity of cells to
lysis by complement and only with inhibition of CD59 does
hemolysis occur in vitro [31–34]. Deficient expression of
the complement regulatory proteins CD55 and CD59 has
been found in a variety of human diseases (Table 1) [35–61],
however, most prevalently in autoimmune hemocytopenia,
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Figure 1: Overview of the complement system. Stimulated by anti-
gen : antibody complexes, bacterial cell surfaces, and spontaneous
hydrolysis, respectively, the classical, lectin, and alternative pathways
converge to convert C3 to C3 convertase, an enzyme capable of
initiating a cascade that results in cell membrane pore formation
and subsequent cell lysis known as the membrane attack complex
(MAC). To protect host cells from complement activation four main
plasma membrane complement regulatory proteins are expressed,
CD59 (membrane inhibitor of reactive lysis (MIRL)), CD35 (type
1 complement receptor (CR1)), CD46 (membrane cofactor protein,
(MCP)), and CD55 (decay accelerating factor (DAF)), that interrupt
the complement cascade on self-cells. CD59 blocks MAC complex
formation, CD35 acts as a cofactor to inactivate C3b and C4b by
factor I, and interacts with C3b and C4b to promote immune-
complex removal, CD46 acts as a cofactor to inactivate C3b and
C4b through factor I and DAF inhibits the cleavage of C3 and C5
by blocking the formation of C3 andC5 convertases and accelerating
their decay.MBL:mannose-binding lectin;MASPs:MBL-associated
serine proteases; PAMP: pathogen-associatedmolecular pattern; Fb:
factor B.

autoimmune vasculitis, and other diseases involving dysreg-
ulated immune responses [41, 44, 62–68]. It is important to
note that deficient expression seen in these diseases does not
always mimic the PNH pattern of deficiency on specific cell
populations but instead shows decreased expression of all
cells, suggesting the nonclonal nature of the deficiency [44].

A paradox exists in SLE where complement activation
is associated with tissue injury, yet deficiencies in the early
classical complement component pathways predispose to SLE
[69, 70]. C1q deficiency due to either gene deletion or anti-
C1q autoantibodies has been shown to be related to disease
activity; in fact between 53 and 93% of SLE patients have
been reported to have low C1q during active disease [71].This
has been reconciled by studies demonstrating the protective
role of classical complement pathway components (C1, C2,
and C4) in facilitating the clearance of immune complexes
as well as autoantigens in apoptotic debris [70, 72]. However,
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Table 1: Decreased DAF expression in human disease.

Disease Cell surface DAF deficiency Citation
Immune dysregulation

Sjogren’s Syndrome T-lymphocytes [36]

SLE with lymphopenia and anemia T-lymphocytes (CD8+), endothelium,
lymphocytes, and anemia [38, 41, 73]

Psoriatic skin Epithelium and endothelium [39]
Systemic sclerosis Endothelium [37]
Vasculitic skin lesions Endothelium [35]
Recurrent pregnancy loss in aPL Endometrium [42]
Autoimmune hemocytopenia Platelets, lymphocytes, and RBC [43, 44]
Rheumatoid arthritis Neutrophils and RBC [45, 46]
Myasthenia gravis SNP with decreased expression [47]
Vitiligo Whole epidermis [48]
Asthma Bronchial epithelial cells and SNP [49, 50]

Proliferative disorders
Myelodysplastic syndrome Granulocytes and RBC [51, 52]
Plasma cell dyscrasias RBC [53]
Lymphoproliferative disorders RBC [54]

Anemias
Anemia of malaria RBC [55–59]
Aplastic anemia RBC [51]
HIV RBC, lymphocytes, and PBMC [60, 61]

RBC: red blood cell; SNP: single-nucleotide polymorphism; aPL: antiphospholipid; PBMC: peripheral blood mononuclear cell.

decreased complement regulatory components on lympho-
cytes and erythrocytes, including CD55 and CD59, have been
shown to be associated with lymphopenia and autoimmune
hemolytic anemia (AHIA). In 2003, it was shown that AIHA
patients with SLE had decreased levels of DAF compared
to SLE patients without AIHA but similar levels to patients
with AIHA but without SLE [73]. No correlation was seen,
however, between IgG or IgM antiphospholipid antibodies
[73]. In a follow-up study an analysis of 40 SLE patients with
and without lymphopenia showed that mean fluorescence
intensities (MFI) of CD55 and CD59 were diminished on T-
and B-cells in lymphopenic patients compared to nonlym-
phopenic patients [41].These results were unrelated to disease
activity [41]. In two recent studies Alegretti et al. conducted a
peripheral blood flow cytometric analysis of SLE patients and
healthy controls [67, 68].They found a decrease in the percent
of DAF high peripheral lymphocytes and decreased DAF
MFI in peripheral lymphocytes in patientswith lymphopenia;
however, no difference was seen in non-lymphopenic SLE
patients compared to controls [67, 68]. Mean DAF levels
were also shown to be decreased on red blood cells and
granulocytes but not onmonocytes; however, no relationship
between disease activity andDAF lymphocyte levels was seen
[67, 68]. Collectively, these studies suggest a role for comple-
ment regulatory proteins in the pathophysiology of a subset
of SLE patients with lymphopenia and AIHA.Themost plau-
sible explanation is antibody-dependent cellular cytotoxicity
and complement-mediated cell lysis which would explain
the correlation between reduced CD55 and CD59 in AIHA

and lymphopenic SLE populations. An alternative hypothesis
that decreased CD55 lymphocyte levels predispose a subset of
SLE patients to lymphopenia should not be ignored.

Not nearly as many studies have investigated the relation-
ship between DAF and other systemic autoimmune diseases.
One study found that percentages of DAF negative CD4+
and CD8+ T-cell subsets were higher in Sjogren’s Syndrome
(SS) patients [36]. The DAF expression observed in other
circulating blood cells was not changed [36]. However, these
results were not thought to be due to increases in DAF
low cells but rather a decrease in DAF high cells [36]. In
patients with systemic sclerosis (Scleroderma or SSc), DAF
was found to be decreased or undetectable in endothelium of
both lesional skin and nonlesional skin compared to controls
[37]. Interestingly this result was later reproduced inmorphea
lesions, suggesting a link between systemic autoimmune
disease skin lesions and low DAF levels, although low DAF
levels are also seen in psoriatic skin lesions [38, 39]. These
studies, however, are limited by their power and lack of
supporting follow-up studies.

4. DAF in Animal Models of Systemic
Autoimmune Disease

DAF1 has been shown to play a role in the maintenance of
immune tolerance in mouse models of autoimmune disease.
Deletion of Daf1 was shown to increase susceptibility to
antiglomerular basementmembrane disease and tomarkedly
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enhance susceptibility in amousemodel ofmyasthenia gravis
[20, 23]. This increased susceptibility was later shown to
result from the influence of DAF1 on T-cell hypersensitivity,
when it was demonstrated that Daf 1−/− T-cells displayed a
C3 dependent enhanced response to antigen restimulation
resulting in increased IFN-𝛾 [24, 74, 75]. Similar results were
found in MRL-𝐹𝑎𝑠𝑙𝑝𝑟 mice, an idiopathic SLE model, where
deletion of Daf1 resulted in exacerbated lymphadenopathy
and splenomegaly, increased serum antichromatin autoan-
tibody, and aggravated dermatitis [21]. In a follow-up study
it was shown that, aside from local skin inflammation, these
effects were largely complement independent [76].

These observations stimulated us to investigate the role of
DAF1 in murine mercury-induced autoimmunity (mHgIA).
Mice exposed to mercury develop lymphadenopathy, hyper-
gammaglobulinemia, humoral autoimmunity, and immune-
complex disease, which are consistent with the systemic
features observed in SLE [77, 78]. All forms of inorganic
mercury tested, including HgCl

2
, vapor, or dental amalgam,

elicit the same disease [79–81] as do different routes of
administration [82, 83]. Sensitivity to mHgIA is influenced
by both MHC and non-MHC genes and covers the spectrum
from nonresponsiveness to overt systemic autoimmunity
[82, 84–86]. Disease expression is influenced by TCR cos-
timulatory molecules including CD28 and CD40L [87, 88],
proinflammatory cytokines, including IFN-𝛾 [80, 89] and
IL-6 [90], and modulators of innate immunity, including
endosomal Toll-like receptors (TLR) [91, 92], demonstrating
that multiple checkpoints and pathways are implicated in
the regulation of the disease. In addition lupus prone strains
exhibit accelerated and more severe systemic autoimmunity
following mercury exposure [93–95]. Environmental factors
have been associated with systemic autoimmune diseases in
humans [96, 97]. Exposure tomercury has been implicated as
an environmental trigger in the induction of autoimmunity
[98–100] including production of autoantibodies and proin-
flammatory cytokines, such as IL-1𝛽, TNF-𝛼, and IFN-𝛾 [101],
and membranous nephropathy [102].

We found that autoimmune-prone NZB mice had low
endogenous levels of DAF1 while mHgIA-resistant DBA/2
animals have high endogenous levels [103]. Furthermore, we
showed that induction ofmHgIA inB10.Smicewas associated
with reduction of DAF1 on activated CD4+ T cells [103].
Both these observations, reduction of DAF1 in autoimmune-
pronemice and reduction upon induction ofmHgIA, support
the argument that DAF1 is required to maintain immune
tolerance. In a follow-up study the absence of Daf1 in
C57BL/6 mice was shown to cause increased serum autoan-
tibodies and exacerbated hypergammaglobulemia following
mercury exposure (Table 2) [19]. This response, however,
could not be explained by increased T-cell activation but
rather was explained by increased levels of IFN-𝛾, IL-2, IL-
4, and IL-10 (Table 2) [19]. Furthermore, depletion of C3 was
found to have no major effects on development of mHgIA
suggesting that the role of DAF1 in mHgIA is independent
of an intact complement system [104]. This is supported
by results showing that C3 levels are not affected following
mercury exposure of mHgIA sensitive or resistant strains

Table 2: Effect of Daf1 deletion on mHgIA∗.

Serum autoantibodies
ANA ↑↑↑

AntiChromatin abs ↑↑↑

Serum immunoglobulins
IgG ↑

IgG1 NC
IgG2a NC

T-cell activation
CD4+CD44high NC

Cytokines
IFN-𝛾 ↑

IL-4 ↑

IL-2 ↑

IL-10 ↑

IL-17 NC
IL-22 NC
TGF-𝛽 NC

∗Data from Toomey et al., 2010 [19].
↑: 𝑃 < 0.05; ↑↑↑: 𝑃 < 0.0001; NC: no change.

(Pollard, unpublished results). Thus our findings and those
of others [76] suggest that DAF1 may regulate idiopathic and
induced models of systemic autoimmunity in a complement-
independent fashion.

5. How Does DAF1 Regulate
Immune Tolerance?

Several models of systemic autoimmunity exhibit disease
independent of an intact complement system, yet an exac-
erbated phenotype is observed by DAF1 deletion [19, 21, 76,
104, 105].This suggests that complement-independent effects
of DAF1 are the major contributors to tolerance induction
via the interaction of DAF (CD55) with its natural ligand,
CD97. CD97 is amember of the epidermal growth factor-like,
seven span transmembrane (EGF-TM7) family of proteins,
is expressed on macrophages, granulocytes, dendritic cells,
and smooth muscle cells, and is rapidly upregulated on
activated T- and B-cells [106, 107]. In the mouse alterna-
tive RNA splicing produces two isoforms with three or
four epidermal growth factor-like (EGF) domains (namely
CD97(EGF1,2,4) and CD97(EGF1,2,3,4)) and a third isoform
with a protein module inserted between EGF domains 2 and
3 (namely, CD97(EGF1,2,X,3,4)) [108]. DAF (CD55) binds
to both CD97(EGF1,2,4) and CD97(EGF1,2,3,4) but not to
CD97(EGF1,2,X,3,4) [108].

Structural studies of a model of the CD55-CD97 complex
reveal that the sites of interaction of CD97 and complement
components occur on opposite faces of CD55 arguing that
CD55 can bind to CD97 and complement independently
[106]. Activation of human CD4+ T cells in the presence
of anti-CD3 and recombinant CD97 (rCD97) results in
increased IL-10 production that is IL-2 dependent [109].
Costimulation of näıve human CD4+ T-cells via interaction
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Figure 2: Anti-CD3/anti-CD28 but not phorbol 12-myristate 13-acetate (PMA)/ionomycin lowers CD55 expression of CD4+ T-cells. Lymph
node cells from B10.S mice were cultured with no additives (green), Ig isotype controls (light blue), anti-CD3/anti-CD28 (5𝜇g/mL each)
(orange), or phorbol 12-myristate 13-acetate (PMA) (40 ng/mL) and ionomycin (2𝜇g/mL) (dark blue). Cells were incubated at 37∘C and 5%
CO
2
for 72 hr and then analyzed by flow cytometry to determine activation status (CD44hi, CD25hi) and then CD55 expression of activated

cells. 𝑛 = 4/group.

of CD97/CD55 leads to T regulatory type 1 (Tr1) activation,
expansion, and function [110]. Antibody mediated block-
ade of CD97-CD55 interaction inhibits proliferation and
IFN-𝛾 production [106]. These properties of CD97-CD55 co-
stimulation, particularly IL-2 dependent IL-10, are consistent
with stimulation of human CD4+ T cells by another comple-
ment regulatory protein, CD46. Activation via CD3/CD46
induces a Th1 phenotype with significant IFN-𝛾 production
[111]. However in the presence of IL-2, immunoregulatory
IL-10 is produced resulting in a T regulatory phenotype
[111, 112] capable of suppressing antigen-specific T cells [113].
We hypothesize that the immunosuppressive potential of
CD55 [24, 75] lies in its interaction with CD97 leading to
a T regulatory cell phenotype under appropriate conditions
of increasing IL-2, as would happen in an inflammatory
response [114]. Thus, like CD46 activation, CD97 mediated
activation of CD55 acts to switch Th1 effector CD4

+ T cells

toward IL-10 producing immunosuppressive cells [112]. We
have shown that activation of murine CD4+ T cells with anti-
CD3 and rCD97 leads to a cytokine profile with increased
IL-10 and reduced IL-17 and IL-21 compared to a more
proinflammatory profile of elevated IFN-𝛾, IL-2, IL-4, IL-
10, IL-17, and IL-21 elicited by conventional costimulation by
anti-CD3/anti-CD28 [19]. Increased IL-10 and reduced IFN-
𝛾 and IL-17 suggest that rCD97 may be driving T cells to
differentiate into T regulatory cells rather than autoimmune
promoting Th1 andTh17 cells, but it remains to be determined
whether rCD97 activated CD4+ T cells have immunoregula-
tory activity.

Our previous studies had established that activated CD4+
T cells have reduced CD55 expression [103, 115]. How-
ever it was unclear if conventional activation of CD4+ T
cells with anti-CD3/anti-CD28 could mimic the in vivo
reduction of CD55 in idiopathic SLE or mHgIA [103].
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Figure 3: CD4+ T-cell expansion in mHgIA-resistant DBA/2 consists of CD25 negative cells. NZB and DBA/2 mice were exposed to PBS
(white bar) or HgCl

2
(black bar) for 5 weeks. Splenocytes were then cultured in the presence of PMA/ionomycin and analyzed for percent

CD4+ T cells (a) and CD4+CD25− T cells (b). Percentages represent cells in total spleen cells. 𝑛 = 4/group.

Experimental comparison between anti-CD3/anti-CD28 and
PMA/ionomycin activation (Figure 2) revealed that anti-
CD3/anti-CD28 activation does indeed reduce CD55 expres-
sion of CD4+ T-cells by about 50% in B10.S mice which is
very similar to the reduction found inmercury-exposedB10.S
mice and constitutively in autoimmune prone NZB mice
[103]. Unexpectedly, PMA/ionomycin activation of CD4+ T
cells did not affect CD55 expression (Figure 2) indicating
that direct intracellular signaling of protein kinase C (PKC)
does not impact CD55 expression and that CD55 reduction
is mediated by events occurring at the cell surface. Whether
CD4+ T cell activation in the presence of anti-CD3/rCD97
also reduces CD55 remains to be determined.

The increased expression of IL-10 in human and murine
CD4+ T cells stimulated by anti-CD3 and rCD97 [19, 109]
suggests a regulatory T-cell phenotype [110, 116, 117]. As
CD55 is required for this response, we asked whether a
difference in CD55 expression might affect the generation
of regulatory T cells. NZB and DBA/2 mice have reduced
and elevated CD55, respectively, and exposure to HgCl

2

exacerbates autoimmunity in NZB while DBA/2 mice are
resistant [103].Thus regulatory T cells may be more common
in DBA/2 than NZB mice. To examine this possibility NZB
andDBA/2micewere exposed toHgCl

2
and splenocyteswere

then cultured in vitro in the presence of PMA/ionomycin and
analyzed for the presence of markers of T regulatory type 1
(Tr1) (CD4+CD25−IL-10+IL-4−) cells [118]. This protocol
increasedCD4+ T cells inHgCl

2
exposedDBA/2mice but not

in NZB mice (Figure 3(a)). This was an unexpected finding
given that DBA/2mice are resistant tomHgIA, however these
cells were primarily of the CD4+CD25− type (Figure 3(b))
indicating that they were not conventionally activated CD4+
T cells which can express CD25 [103]. CD4+CD25− T cells
were then examined for expression of both IL-10 and IL-
4 to identify Tr1-like cells (Figure 4). In total spleen, Tr1-
like cells were dramatically increased following HgCl

2
in

DBA/2 mice but were reduced in NZB mice (Figure 4(a)).
A similar situation was found when only CD4+ cells in the
spleen were analyzed (Figure 4(b)). Finally we asked what
percentage of CD4+CD25− cells were IL-10+IL-4− and found
that the vast majority in the DBA/2 mice possessed the
cytokine phenotype of T regulatory cells while such cells
were much fewer in number in the NZB mice (Figure 4(c)).
The greater percentage of putative Tr1 cells in PBS treated
DBA/2 mice compared to NZB mice and the changing
percentages of Tr1-like cells following mercury exposure are
consistent with the sensitivity of these strains to mercury-
induced autoimmunity. We hypothesize that the constitu-
tively reduced CD55 expression in NZB mice [103] reduces
CD55-CD97 interaction and the generation of Tr1 cells but
favors Th1 responses. In contrast, DBA/2 mice, with a higher
level of CD55 that is not impacted bymercury exposure [103],
are able to maintain a higher level of CD55-CD97 interaction
which favors regulatory T-cell generation and tolerance to
mHgIA.

Our hypothesis is supported by studies comparing CD28
and CD55 mediated T cell activation. CD28 and GPI-
anchored proteins, like DAF1, exist in detergent-resistant
microdomains or lipid rafts, and their engagement leads
to redistribution and clustering at the site of the T cell
receptor (TCR) [119]. Moreover, CD28 cross-linking leads to
the formation of lipid raft clusters which exclude CD55 and
vice versa [120]. It has also been argued that recruitment and
crosslinking of GPI-anchored proteins, such as CD55, are less
efficient at T cell activation than that elicited by crosslinking
of CD28 [119–121]. These observations raise the possibility
that the cell surface density of DAF influences T cell activa-
tion by competing with other costimulatory molecules. Thus
reduced levels of DAF favor more efficient T cell activation
via CD28 crosslinking (Figure 5). Conversely increasing the
surface density of DAF1 would affect the effectiveness of
CD28-mediated T cell activation.This supports observations
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Figure 4: CD4+CD25− T cells in mHgIA-resistant DBA/2 possess the cytokine phenotype of regulatory T-cells. NZB and DBA/2 mice
were exposed to PBS (white bar) or HgCl

2
(black bar) for 5 weeks. Splenocytes were then cultured in the presence of PMA/ionomycin and

CD4+CD25− T-cells analyzed for the cytokine phenotype of IL-10+IL-4− (Tr1 cells). (a) shows the percent of Tr1 cells in total spleen. (b) shows
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formation of lipid raft clusters which exclude CD55 (a) resulting in proinflammatory (i.e., IFN-𝛾) cytokine production which, under suitable
conditions, may lead to Th1-mediated autoimmunity such as mHgIA. Conversely, increasing the surface density of DAF leads to less efficient
CD28-mediated T cell activation (b) and in the presence of CD97 potentiates CD55 signaling leading to increased production of IL-10, a T
regulatory cell phenotype and immune tolerance.

by us [19] and others [109] that preferential costimulation via
CD28 elicits a different cytokine profile than that produced
by costimulation via DAF1 (CD55).

6. Conclusion

DAF serves a complex role in the immune system through
complement-dependent and -independent functions in the
regulation of innate and adaptive immunity. Initial reports
on DAF1 in systemic autoimmune disease models suggested
that it played a role in regulating adaptive immune responses.
In the context of mHgIA our lab has shown that (1) DAF1
is constitutively reduced in mice prone to systemic autoim-
mune disease, (2) mHgIA is associated with reduced DAF1
expression on T-cells, and (3) interaction of DAF1 with its

natural ligand, CD97, can regulate cytokine expression.These
results suggest that understanding how mercury exposure
reduces DAF1 expression may lead to approaches to regulate
DAF in SLE. Evidence in patients shows that decreased levels
of DAF on lymphocytes are associated with lymphopenia
in SLE as well as in T cells of SS and the endothelial skin
lesions of SLE, SSc, and other vasculitic diseases. DAF1
has both complement-dependent and- independent effects
by regulating T-cell pro-inflammatory cytokine production
in vivo. In systemic autoimmune disease models, such as
mHgIA, complement-independent effects of DAF1 appear to
be the major contributors regulating disease. Based on our
mHgIA studies, we hypothesize that CD55 : CD97 interaction
at the immunological synapse can regulateCD28 crosslinking
and promote a Tr1-like phenotype, either by direct CD55
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signal transduction or possibly through blocking of CD28
costimulation, and expression of a Treg cytokine profile.
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