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Introduction
There is an electrical imbalance between excitatory and 
inhibitory neurotransmission in the brain that causes epi-
lepsy, a chronic neurological condition characterized by peri-
odic seizures.1 In addition to the basic excito-inhibitory 
mechanisms, there are other factors that contribute to epi-
leptic seizures, such as non-synaptic electrical transmission 
through gap junctions, involvement of non-neuronal glial 
cells, namely astrocytes and microglia, and metabolic distur-
bances caused by oxidative stress.2-4 Conventional antiepi-
leptic drugs (AEDs) act via synaptic neuronal signal 
transmission by either prolonging excitation or facilitating 
inhibitory neurotransmission. It remains unclear what the 
exact epileptogenic mechanism is that causes seizures despite 
all the research done so far on epilepsy. Furthermore, the 
available AEDs only provide symptomatic relief and do not 
provide insights into what causes epilepsy in the first place.5,6 
A patient may become resistant to conventional AED thera-
pies due to accumulating seizures along with other associated 
conditions such as memory impairment, anxiety, depression, 
and so on, thus decreasing their quality of life. The identifi-
cation of biomarkers (genetic, structural, functional, electro-
physiological, and neuroinflammatory) for the treatment of 
epilepsy has been recognized as valuable for improving the 
outcome of the disease condition, but these markers come 
with their own set of challenges that need to be addressed 
very pragmatically.7 To this end, efforts are being made to 
understand the exact molecular pathways underlying 

epileptogenic processes so that better drugs can be developed 
for epilepsy treatment.8,9

Phosphatidylinositol-3-kinase (PI3K) has become an 
increasingly important molecular target in the pathogenesis of 
diseases. PI3K belongs to a family of lipid kinases that are 
involved in many different cellular functions such as growth, 
proliferation, metabolism, and other characteristics of a cell.10 
Growth factors (epidermal growth factor, insulin-like growth 
factor, human epidermal growth factor, etc.) or receptor tyrosine 
kinase can attach to this, causing it to release phosphatidylinosi-
tol into the cell.11 The PI3K phosphorylation of the AKT acti-
vates the mTOR pathway and its downstream genes, which then 
lead to epilepsy progression.12 A growing body of evidence indi-
cates that mTOR hyperactivation can be suppressed using spe-
cific inhibitors.13 Therefore, inhibition of the mTOR pathway 
can effectively treat epilepsy.14 Furthermore, PI3K is activated 
and subsequently cellular processes occur when it is phosphoryl-
ated.15 Class I PI3Ks (which consist of a catalytic subunit, p110, 
and a regulatory adaptor subunit, p85) are widely implicated in 
different diseases that alter normal physiological function.16

Duvelisib (DUV) is the first-in-class, small-molecule, selec-
tive inhibitor of both δ and γ isoforms of PI3K. It is being 
developed as treatment for various cancer indications. B and T 
cells are activated, proliferate and survive by modulating PI3K 
activity. In response to PI3K activation, some intracellular 
enzymes that control cell proliferation, survival, and motility 
are activated.17 Research has suggested that PI3K inhibitors 
are associated with neuronal death during embryogenesis and 
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apoptosis during primary culture, though PI3K/AKT is critical 
to brain development and promotes neuroprotection.18,19 Based 
on the available literature, it is apparent that PI3K inhibitors 
such as DUV act as both neuroprotectants and apoptosis 
inducers. However, a potent mTOR inhibitor, such as rapamy-
cin, possessed similar characteristics, such as antiepileptic 
properties, neuroprotective properties, and pro-apoptotic 
effects,20,21 thus justifying the use of DUV in our study.

Using pentylenetetrazole (PTZ)-mediated convulsions as a 
model, the present study explored the anticonvulsant potential 
of DUV.

Materials and Methods
Drugs and chemicals

PTZ was purchased from Sigma Aldrich, USA. Phenobarbital 
sodium (PHB) procured from Chemidarou Pharmaceutical 
Company, Iran and used in this study as a conventional anti-
convulsant drug. DUV was obtained from Gilead Sciences, 
Inc, Canada. PTZ was prepared as a 1% v/w solution in saline. 
PHB and DUV were dissolved in dimethyl sulfoxide (DMSO) 
(60 mg/mL) and stored at −20°C.

Animal maintenance and ethical consideration

Male Wistar rats (200-250 g) of 8 weeks old were purchased 
from the Hamadan University of Medical Sciences and were 
housed in standard cages at 20 to 24°C and supplied with fresh 
water and food ad libitum, with light and dark cycles 
(12:12 hours). All methods were carried out in accordance with 
relevant guidelines and regulations, the ethics of working with 
animals were observed throughout the whole study in accord-
ance with the Animal Research Reporting In Vivo Experiments 
(ARRIVE) guidelines and the research protocol was also 
approved by the Bu-Ali Sina University’s Research Ethics 
Committee (IR.BASU.REC.1400.055).

PTZ-mediated seizures in rats

The animals were randomly assigned into 4 groups via simple 
randomization (n = 5/group) as follow:

•• Negative control group (NC): In this group, adult male 
rats administrated with vehicle (dimethyl sulfoxide 
(DMSO) diluted in distilled water) 30 minutes prior to 
PTZ (70 mg/kg) exposure.

•• Positive control group (PHB): In this group, adult male 
rats administrated with PHB (30 mg/kg) 30 minutes 
prior to PTZ (70 mg/kg) exposure.

•• Experimental group 1 (DUV 5): In this group, adult 
male rats administrated with DUV (5 mg/kg) 30 minutes 
prior to PTZ (70 mg/kg) exposure.

•• Experimental group 2 (DUV 10): In this group, adult 
male rats administrated with DUV (10 mg/kg) 30 min-
utes prior to PTZ (70 mg/kg) exposure.

Over the course of the study, fresh solutions of vehicle, phenobar-
bital, and duvelisib were injected intraperitoneally (IP) in a con-
stant volume of 4 mL/kg. The doses of PTZ, PHB, and DUV 
were chosen based on previous studies on experimental animal 
models.22-24 Also, the prolonged administration of DMSO via IP 
route at this concentration did not result in any detrimental phys-
iological effects as evidenced in previous studies.25,26 An upper 
cut-off time of 30 minutes was used in measuring behavior after 
each rat had been exposed to PTZ. PTZ convulsive behavior was 
graded on a 5-point scale based on Racine’s stages as, Stage 1: ear 
and facial twitching; Stage 2: head nodding and myoclonic jerks; 
Stage 3: unilateral forelimb clonus with lorditic posture; Stage 4: 
bilateral forelimb clonus with rearing and falling; and Stage 5: 
generalized tonic-clonic seizure (GTCS) with loss of postural 
tone.27 Video of rat seizures was captured using camera in the 
center of the chamber and software (SMART V3.0, Panlab, 
Barcelona). The latency to each stage (S1-5),27 number of myo-
clonic jerks, and GTCS duration was also recorded in a blind 
fashion with help of 2 independent observer.

Statistical analysis

All the results were expressed as mean ± standard deviation. 
Data was tested for normality using the Shapiro-Wilk test. 
Given to the normal distribution of the data the statistical sig-
nificant difference in behavioral parameters among different 
groups was examined by one-way analysis of variance followed 
by Tukey’s post hoc test using GraphPad Prism version 9.4.0 
for Windows (GraphPad Software, San Diego, California, 
USA). Significant results were determined at a P value of <.05.

Results
Effect of DUV on PTZ-mediated seizures in adult 
rats

The latency to S1 was significantly (P = .006) increased in the rats 
treated with 10 mg/kg of DUV as compared to NC group 
[F(3,16) = 32.80, P < .001]. However, insignificant (P = .390) change 
was observed at 5 mg/kg of DUV as that of NC group (Figure 1).

PHB group showed significant (P < .001) increase in 
latency to S2 as compared to NC group of rats [F(3,16) = 38.13, 
P < .001]. The latency to S2 was significantly (P = .003) 
increased in the group preexposed to DUV at dose of 10 mg/kg 
followed by PTZ (Figure 2).

The seizure latency to S3 was significantly (P < .001) increased 
in the rats treated with 10 mg/kg of DUV as compared to NC 
group [F(3,16) = 59.18, P < .001]. Also, significant (P = .009) change 
was observed at 5 mg/kg of DUV as that of NC group (Figure 3).

The latency to S4 seizures onset in rats was 42.80 ± 17.60 sec-
onds following 70 mg/kg PTZ exposure in NC group (Figure 2). 
The latency to S4 was significantly increased in the groups of 
rats pre-treated with PBH (P < .001), however significantly 
change was observed at 5 and 10 mg/kg (DUV group) as com-
pared to NC group (P = .030 and P = .001, respectively) 
[F(3,16) = 47.04, P < .001] (Figure 4).
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The latency to S5 was significantly (P < .001) increased fol-
lowing PTZ exposure in rat of PHB group as compared to NC 
group [F(3,16) = 36.88, P < .001]. The increased latency to S5 was 
found to be significantly (P = .006) increased in 10 mg/kg DUV 
pre-incubated group as compared to NC group (Figure 5).

The number of myoclonic jerks was found to be 
54.80 ± 19.27 in NC group (Figure 6). A marked decrease in 
the number was observed in experimental groups treated with 
DUV at doses of 5 and 10 mg/kg as compared to NC group 
(P = .002 and P < .001, respectively) [F(3,16) = 12.84, P < .001].

GTCS duration showed a significant change in the tested 
adult rats between groups [F(3,16) = 12.19, P < .001]. The GTCS 
duration significantly (P = .019) reduced to 24.20 ± 8.25 sec-
onds in groups treated with 10 mg/kg of DUV, as compared to 
NC group. However, insignificant (P = .339) change was 
observed at 5 mg/kg of DUV as that of NC group (Figure 7).

Discussion
In the present study, we examined DUV's anticonvulsant prop-
erties in an experimental model for the first time. Compared to 
the NC group, DUV pre-incubation was associated with a 

Figure 1. The effect of DUV (5 and 10 mg/kg, i.p.) 30 minutes prior to PTZ 

exposure (70 mg/kg, i.p.) on latency to Stage 1 (S1) in male Wistar rats. 

Data are shown as mean ± SD of n = 5 rat/group.
Abbreviations: DUV, Duvelisib; NC, negative control; PBH, phenobarbital sodium; 
PTZ, Pentylenetetrazole.
**P < .01, and ***P < .001 significant difference versus NC group. ###P < .001 
significant difference versus PBH group.

Figure 2. The effect of DUV (5 and 10 mg/kg, i.p.) 30 minutes prior to PTZ 

exposure (70 mg/kg, i.p.) on latency of to Stage 2 (S2) in male Wistar rats. 

Data are shown as mean ± SD of n = 5 rat/group.
Abbreviations: DUV, Duvelisib; NC, negative control; PBH, Phenobarbital sodium; 
PTZ, Pentylenetetrazole.
**P < .01, and ***P < .001 significant difference versus NC group. ###P < .001 
significant difference versus PBH group.

Figure 3. The effect of DUV (5 and 10 mg/kg, i.p.) 30 minutes prior to PTZ 

exposure (70 mg/kg, i.p.) on latency to Stage 3 (S3) in male Wistar rats. 

Data are shown as mean ± SD of n = 5 rat/group.
Abbreviations: DUV, Duvelisib; NC, negative control; PBH, Phenobarbital sodium; 
PTZ, Pentylenetetrazole.
**P < .01, and ***P < .001 significant difference versus NC group. ###P < .001 
significant difference versus PBH group.

Figure 4. The effect of DUV (5 and 10 mg/kg, i.p.) 30 minutes prior to PTZ 

exposure (70 mg/kg, i.p.) on latency of to Stage 4 (S4) in male Wistar rats. 

Data are shown as mean ± SD of n = 5 rat/group.
Abbreviations: DUV, Duvelisib; NC, negative control; PBH, phenobarbital sodium; 
PTZ, Pentylenetetrazole.
*P < .05, **P < .01, and ***P < .001 significant difference versus NC group. 
###P < .001 significant difference versus PBH group.
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significant delay in Racine’s stages. Furthermore, the number 
of myoclonic jerks was significantly reduced following pre-
treatment with either 5 or 10 mg/kg of DUV when compared 
to the NC group. As a result of treatment with 5 or 10 mg/kg 
of DUV, we also found that GTCS duration in adult rats sig-
nificantly decreased after treatment.

Using the chemoconvulsant PTZ, rats undergo seizures and 
bursts of hyperlocomotor activity. Epileptic seizures are induced 
by hyperlocomotion, behavioural seizures, electrophysiological 
events (electrical events occurring in the brain as a result of 
PTZ exposure).28 The conventional antiepileptic drugs are 
shown to decrease locomotion in the PTZ model of rats and 
seizure severity.22,27 In our study, rats treated with 5 or 10 mg/

kg of DUV showed an increased latency to Stages 1 to 5 sei-
zures in comparison to those untreated with DUV. Following 
treatment with DUV, the number of myoclonic jerks and 
GTCS duration decreased, indicating a decrease in the seizure 
activity as a result of PTZ. The results of the present study sup-
ported DUV's anticonvulsant activity.

There has been increasing interest in the role played by 
PI3K/AKT/mTOR in a variety of neurological disorders, 
including epilepsy.29,30 In addition, hyperactivation of this 
pathway has been shown to produce and propagate further 
seizures.19,31,32 Certain studies have also suggested PI3K/
AKT signaling cascades are neuroprotective in animal mod-
els.18 According to scientific literature, PI3K is necessary for 
AKT phosphorylation in order to activate mTOR, the mas-
ter regulator of cellular processes, when activated by growth 
factors and receptor tyrosine kinases.33,34 In literature, the 
mTOR pathway is implicated in the propagation of epilepsy, 
thus making it an important target for controlling epilepsy.35 
Epilepsy therapy interventions involving mTOR inhibitors 
have been widely reported, especially for acquired epilepsy. It 
is important to note, however, that the use of these inhibi-
tors, as well as the use of rapamycin, may lead to untoward 
side effects.5,6,34 As a result, continuous research is being 
conducted to identify safe and effective mTOR inhibitors for 
epilepsy treatment that act directly or indirectly. The anti-
convulsant effect of DUV in PTZ-mediated convulsions in 
rats emphasizes the involvement of PI3K/AKT/mTOR 
pathways in epilepsy. PTZ-induced acute seizures in rats 
supported these results on mTOR activation induced by 
acute seizures.36 As a consequence, seizure activity caused by 
acute exposure to PTZ increased PI3K expression, which 
then activated downstream genes AKT and mTOR.

Figure 5. The effect of DUV (5 and 10 mg/kg, i.p.,) 30 minutes prior to 

PTZ exposure (70 mg/kg, i.p.) on latency to Stage 5 (S5) in male Wistar 

rats. Data are shown as mean ± SD of n = 5 rat/group.
Abbreviations: DUV, Duvelisib; NC, negative control; PBH, Phenobarbital sodium; 
PTZ, Pentylenetetrazole.
**P < .01, and ***P < .001 significant difference versus NC group. ###P < .001 
significant difference versus PBH group.

Figure 6. The effect of DUV (5 and 10 mg/kg, i.p.) 30 minutes prior to PTZ 

exposure (70 mg/kg, i.p.) on number of myoclonic jerks in male Wistar 

rats. Data are shown as mean ± SD of n = 5 rat/group.
Abbreviations: DUV, Duvelisib; NC, negative control; PBH, Phenobarbital sodium; 
PTZ, pentylenetetrazole.
**P < .01, and ***P < .001 significant difference versus NC group.

Figure 7. The effect of DUV (5 and 10 mg/kg, i.p.) 30 minutes prior to PTZ 

exposure (70 mg/kg, i.p.) on GTCS duration in male Wistar rats. Data are 

shown as mean ± SD of n = 5 rat/group.
Abbreviations: DUV, Duvelisib; GTCS, generalized tonic clonic seizure; NC, 
negative control; PBH, phenobarbital sodium; PTZ, pentylenetetrazole.
*P < .05, and ***P < .001 significant difference versus NC group. ##P < .01 
significant difference versus PBH group.
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The selective inhibitor of PI3K, DUV, may also have an 
effect on other molecular targets in the pathway, thereby modi-
fying the central signaling pathway, thereby altering the normal 
cellular function.17 The results in this regard need to be con-
solidated through further studies. Researchers have linked 
hyperactivation of PI3K/AKT/mTOR in epileptic rodent 
models to altered gene expression.37,38 We found that inhibi-
tors of PI3K, such as DUV, were effective at inhibiting the 
development and progression of seizures in mice. It is impor-
tant to note that the present study has a number of limitations. 
Since the study was limited to behavioral analysis and did not 
measure the biochemical and molecular component of the 
PI3K/AKT/mTOR pathway, which plays an important role in 
epilepsy pathology, the results of this study could pave the way 
for further research.

Conclusion
Based on our findings, DUV, a PI3K inhibitor, reduced PTZ-
mediated seizures in adult rats. PI3K/AKT/mTOR pathway 
inhibition might explain DUV’s anticonvulsant effect. Results 
of our study demonstrated that DUV may be affect the PTZ-
mediated seizures and pave the way for further studies. It is still 
necessary to conduct more studies to determine whether the 
drug has been proven effective in other epilepsy models.
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