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Abstract  

Accurate detection of somatic mutations in DNA sequencing data is a fundamental prerequisite 

for cancer research. Previous analytical challenge was overcome by consensus mutation calling 

from four to five popular callers. This, however, increases the already nontrivial computing time 

from individual callers. Here, we launch MuSE2.0, powered by multi-step parallelization and 

efficient memory allocation, to resolve the computing time bottleneck. MuSE2.0 speeds up 50 

times than MuSE1.0 and 8-80 times than other popular callers. Our benchmark study suggests 

combining MuSE2.0 and the recently expedited Strelka2 can achieve high efficiency and accuracy 

in analyzing large cancer genomic datasets. 
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Background 

Cancer arises and evolves by accumulating various types of genetic alterations, such as single 

nucleotide variation (SNV), copy number alteration (CNA) and structural variation (SV). The next-

generation sequencing (NGS) technology has revolutionized the way we look at many human 

diseases, particularly cancer. With its constantly improved capacity and reduced cost, NGS is 

enabling investigations of genetic alterations within large human patient cohorts, hence advancing 

both basic and translational cancer research. Many computational tools have been developed for 

calling somatic variants1, which typically require, as input, whole-genome sequencing (WGS) or 

whole-exome sequencing (WES) data from the tumor tissue, as well as from the blood of the 

patient to serve as the germline control. WGS provides the most comprehensive coverage to 

sequence both protein-coding and non-coding regions across the entire genome; whereas WES 

provides an efficient alternative to WGS by targeting only protein-coding regions that accounts for 

1-2% of the genome2, hence achieving both higher read depth3,4 and lower sequencing cost.  

We previously launched MuSE 1.05, a statistical approach for somatic mutation calling, where 

we introduced a combination of nucleotide base-specific Markov substitution model for molecular 

evolution and a tumor sample-specific error model to estimate tier-based cutoffs for selecting 

SNVs. Due to its high sensitivity and specificity, MuSE 1.0 was adopted in multiple pipelines, 

including as a major contributing caller to reach final consensus calls by the TCGA PanCanAtlas 

project6 across ~13,000 tumor samples, and the International Cancer Genome Consortium Pan-

Cancer Analysis of Whole Genomes (ICGC-PCAWG) initiative7 across ~2,700 tumor samples. 

One major limitation of MuSE 1.0, like many other mutation callers8–10, is the computational speed. 

It takes 2-3 days to finish running the WGS data of a tumor-normal pair on a typical Linux server 

with an Intel Xeon processor and more than 100 gigabytes (GB) random access memory (RAM), 

which explains the commonly seen long wait-times for completing mutation calling before any 

downstream analysis in large patient cohort studies. Here, we present MuSE 2.0, which maintains 

the same input, output and mathematical model as MuSE 1.0, but accelerates significantly for 
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both WES and WGS data by adopting a new algorithmic programming backbone. MuSE 2.0 

employs a multithreaded producer-consumer model and the OpenMP library for parallel 

computing, including parsing and uncompressing reads from binary sequence alignment/map 

formatted (BAM) files, detecting and filtering variants, and writing output. It is also optimized by 

adopting a more efficient memory allocator. In this paper, we have benchmarked the speed 

performance of MuSE 2.0 against MuSE 1.0, as well as the other three somatic mutation callers, 

i.e., MuTect29, SomaticSniper8 and VarScan210, which are the other highlighted somatic mutation 

callers in the National Cancer Institute Genomic Data Commons (GDC) DNA-seq analysis 

pipeline 

(https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/

). To further demonstrate the potential gains, we have benchmarked mutation calling using 

MuSE2.0 and the other recently expedited mutation caller Strelka211 against consensus mutation 

calls generated by previous consortial studies using 4 to 5 un-expedited callers6,7. We 

demonstrated the improved utility of our new caller using WES and WGS data generated from 5 

tumor-normal pairs with varied average read depths, respectively.  

 

Results 

MuSE 2.0 takes as input the indexed reference genome FASTA file, the BAM format sequencing 

data from a pair of tumor-normal tissues (Supplementary Figure 1) and the dbSNP variant call 

format (VCF) file, which is bgzip compressed, tabix indexed using the same reference genome. 

Unlike MuSE 1.0, which can only utilize one core, MuSE 2.0 takes advantage of the multi-core 

resources in a modern computer or a computing node for somatic SNV calling from WES/WGS 

data (Figure 1).  
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Figure 1. Assembly line illustration of the multi-step parallelization implemented in MuSE 2.0. 

a), ‘MuSE call’. Workers (threads) keep fetching chunks from the input BAM files from the tumor and 

normal samples and unzipping them to the text format of reads. Downstream workers combine the 

reads from tumor and normal samples and send to a queue; from there, other workers detect candidate 

variants. b), ‘MuSE sump’. Multiple workers are used to take the candidate variants and their 

corresponding estimated summary statistic 	𝜋’s and scan them against dbSNP database, labeling 

those appearing in the database. For candidate variants from the WGS data, we fit two-component 

Gaussian Mixture Models (GMMs) with multiple initializations, distributed to multiple workers, in order 

to separate true variants from background noise; for candidate variants from the WES data, no 

parallelization is implemented due to computational simplicity as we simply fit a beta distribution to 𝜋’s.  

Since our benchmarking study requires a large amount of computational resources to cover 

multiple callers and scenarios, we only include results for WES data from 5 tumor-normal pairs and 

WGS data from 5 tumor-normal pairs, which are randomly selected and downloaded from the 

Cancer Genome Atlas (TCGA) data portal and the International Cancer Genome Consortium data 
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portal, respectively. The average read coverage of each pre-processed BAM file is show in 

Supplementary Table 1.  

We first compare the SNV entries in the output VCF files generated by MuSE 2.0 with those 

by MuSE 1.0 for each patient sample with the same or different number of cores. Since each SNV 

entry is denoted by one line of string in a VCF file, we compare the strings from both methods line 

by line. The result shows that all the entries from the two methods are identical with the same 

number or different number of cores. 

We next compare the speed of running MuSE 2.0 against MuSE 1.0, MuTect2, SomaticSniper, 

VarScan2 and Strelka2 on a computing cluster. The version information of these methods is listed 

in Supplementary Table 2. Each method is tested with the number of cores at 1, 5, 10, 20, 28, 

40 and 80. All methods are assigned with the same RAM of 50GB for WES data and 150GB for 

WGS data. The time cost of each method for each pair of data is shown in Figure 2a. Since MuSE 

2.0 and Strelka2 continue to gain computational advantages with increasing number of cores, 

while the other four methods do not, we examine the overall speed performances of these 

methods with MuSE 2.0 at 80 cores, Strelka2 at 80 scores, and the average time cost across 

multiple runs over the different numbers of cores except for core=1 (where the computing 

resource is too limited) for the other methods (Figure 2b). Both MuSE 2.0 and Strelka2 achieve 

much faster SNV calling compared to all other methods. For WES data, MuSE 2.0 accelerates 

28-52 times (mean=44) than MuSE 1.0, 68-83 times (mean=77) than MuTect2, 5-8 times 

(mean=8) than SomaticSniper, 33-39 times (mean=36) than VarScan2. Similarly, for WGS data, 

it accelerates 48-59 times (mean=56) than MuSE 1.0, 33-44 times (mean=39) than MuTect2, 7-

8 times (mean=8) than SomaticSniper, 33-43 times (mean=36) than VarScan2 for WGS data. 

Strelka2 achieves about twice the speedup of MuSE 2.0 for both WES and WGS data. 

We further examine the difference between the SNV calls reported by the two expedited 

methods, MuSE 2.0 and Strelka2, for the same patient sample (Figure 2c). For WES data, 46-

78% (mean=66%) of the calls are identified by both; 2-16% (mean=7%) of the calls are unique to 
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MuSE 2.0, and 13-51% (mean=27%) of the calls are unique to Strelka2. For WGS data, 42-74% 

(mean=64%) of the calls are identified by both; 6-18% (mean=11%) of the calls are unique to 

MuSE 2.0, and 16-40% (mean=25%) of the calls are unique to Strelka2. The difference of the 

calls motivates us to look into the utility of the intersection calls, and investigate the feasibility of 

using them to reproduce the consensus calls for these data generated by previous studies6,7. 

These consensus calls previously generated based on 4 to 5 callers are used as the ground truth. 

We calculate the precision, recall and F1 score, i.e., the harmonic mean of precision and recall, 

for the intersection calls of each patient sample, as shown in Figure 2d and Supplementary 

Table 3. For both WES and WGS data, the intersection calls achieve higher precision values 

(0.92-0.96 for WES, 0.89-0.95 for WGS), and higher F1 scores (0.82-0.91 for WES, 0.92-0.96 for 

WGS) compared to the two individual callers. The only exception is that MuSE 2.0 maintains a 

similar F1 score to the intersection calls with WES data (0.82-0.92). The intersection calls maintain 

good recall values at 0.74-0.89 (median =0.86) for WES data, and at 0.96-0.97 (median=0.96) for 

WGS data. The recall values of either the intersection call sets, or the individual call sets from the 

two methods are consistently higher for WGS data than WES (Figure 2d, all results from the 

WGS data fall in the top rectangle). Also, MuSE 2.0 call sets achieve higher precisions and F1 

scores, lower recalls for WES, but higher recalls, lower precisions and F1 scores for WGS data, 

when compared to the calls from Strelka2. In summary, combining mutation calls from the two 

expedited callers MuSE 2.0 and Strelka2, e.g., by simply taking an intersection of the calls, is 

promising to achieve accurate mutation calling in a significantly shorter wait-time, which is 

particularly useful for WGS data and for analysis of large patient cohorts. 
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Figure 2. Benchmarking the speed and usability of MuSE 2.0. a), the runtime of MuSE 2.0 against 

MuSE 1.0 and the other four methods for both WES and WGS data across different numbers of cores. 

The numbers in the plot represent the fold speedup of MuSE 2.0 (with 80 cores) relative to the other 

methods whose time cost is averaged across different numbers of cores (excluding No. of core=1). 

For Strelka2, only the time cost with 80 cores is considered. b), a simplified version of a), in which the 

time cost of each method is averaged across all samples and different numbers of cores. c), Venn 

diagrams showing the unique and shared SNV calls of MuSE 2.0 and Strelka2. d), Scatter plot of the 

precision, recall for the intersection calls from MuSE 2.0 (in red) and Strelka2 (in blue), the calls from 

each of the two methods (in purple) against the previously reported consensus calls which are 

considered as the ground truth. For both WES (circle) and WGS (triangle) data, the median F1 scores 

of the intersection calls, calls from each individual method are shown. Two shaded rectangles highlight 

the difference of the performance metrics between WES and WGS data. Results from the WGS data 

are located in the top rectangle. 

 

Discussion 
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Precision medicine and personalized cancer treatments have advanced remarkably in the last 

decade, which greatly benefited from the accurate identification of genetic variations in the tumor 

tissue using NGS data. An efficient and accurate somatic mutation caller is crucial to the scientific 

studies of all cancers and their clinical management. Previously the accuracy and utility of MuSE 

1.0, either alone5 or as a member of a multi-caller consensus calling strategy has been validated 

by multiple consortial projects6,7. This study further develops MuSE 2.0, in order to fully utilize 

resources on a high-performance computing machine, including both the CPU cores and memory 

allocation. The producer-consumer model behind the parallelization implemented in the step of 

‘MuSE call’ gives MuSE 2.0 the ability to manage multiple processes (workers) at the same time: 

they run independently at their own rates without being affected by the computing load of other 

processes. Since the calculation in the step of ‘MuSE sump’ is more straightforward – the 

computing speed bottlenecks only reside in several for-loop iterations, we therefore use the 

OpenMP library, with which the parallelization is relatively trivial.  

MuSE 2.0 is much faster than the other three benchmarked callers, including MuTect2, 

SomaticSniper and VarScan2. Although it is slightly slower than Strelka2, its intersection with 

Strelk2 calls can substantially improve precisions without much loss in recalls, hence improving 

the overall F1 scores. We therefore demonstrate the utility of the intersection calls from these two 

fast callers, as compared to using each caller individually or using un-expedited callers. The 

recalls of the 2-caller intersection calls are lower for WES (TCGA) than WGS (PCAWG). In this 

case, we suggest adding a third caller such as MuTect2 or more callers, and then take a two out 

of three consensus approach as previously implemented. 

 

Conclusion 

This study presents MuSE 2.0, improving the mutation calling utility by accelerating its computing 

speed by up to 50-60 times for both WES and WGS data. MuSE 2.0 reduces the computational 
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time cost of a somatic mutation calling project from ∼40 hours to < 1 hour for WGS data, and from 

2-4 hours to ~5 minutes for WES data, from each pair of tumor-normal samples.  

In contrast to the consensus calls from TCGA and PCAWG being generated by five and four 

callers6,7, running MuSE 2.0 and Strelka2 to generate intersection calls may greatly improve the 

efficiency of genomic data analysis for large patient cohorts, especially for those with WGS data. 

We therefore expect the proposed MuSE 2.0 to significantly accelerate the variant calling process 

and benefit the cancer research and clinical communities. 

 

Methods 
Sample selection 

The consensus mutation calls of the TCGA portion of the PCAWG project were downloaded from 

the ICGC data portal (https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel). The 

consensus mutation calls of the TCGA MC3 project were downloaded from GDC 

(https://gdc.cancer.gov/about-data/publications/mc3-2017). We randomly selected 5 patient 

samples from each of the two repositories, and downloaded the BAM files from the corresponding 

data portal.  

BAM pre-processing 

MuSE 2.0 adopts the same preprocessing steps for the unaligned sequencing reads of the tumor-

normal pair as MuSE 1.0, which include trimming poor-quality bases, removing adapters, marking 

duplicate reads, performing local indel realignment for the paired tumor-normal BAM files jointly, 

and recalibrating base quality scores (Supplementary Figure 1). In this study, the sequencing 

reads are aligned against the hg19 reference genome build using BWA-MEM12.  

Sequencing depth 

The sequencing depth of each BAM file after pre-processing is estimated by samtools with the 

‘depth’ command. For WGS data, the overall depth was calculated as the average of the read 
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depths of all genomic locations. For WES data, the overall depth was calculated as the average 

of the read depths of the genomic locations in the exon regions defined by the exome capture kit 

downloaded from GDC (https://gdc.cancer.gov/about-data/publications/mc3-2017).  

Parallel computing implementation for MuSE 

MuSE call. We implement a multithreaded producer-consumer model which deploys threads for 

parsing and uncompressing reads from BAM files, variant filtering and detection, writing outputs 

and monitoring the whole process. The model connects all the threads concurrently by thread-

safe queues and atomic variables. We also adopt a faster and more efficient memory allocator 

(i.e., TCMalloc: https://github.com/google/tcmalloc) rather than use the default malloc in C and 

new in C++ in this step. The parallelization model starts with creating of 6 threads, 3 for the BAM 

of tumor sample and the other 3 for the BAM of normal sample: 1 of the 3 threads parses the 

compressed binary data and sends its reference to two queues, namely ChunkReadQueue and 

ChunkUnzipQueue; the other two threads take the data from the ChunkUnzipQueue, decompress 

it and label it as ‘processed’. This change is also effective for the data in ChunkReadQueue, since 

these two queues in fact store the same data. Another thread (i.e., read) is then created, which 

takes uncompressed data from ChunkReadQueue and recover it to read format for both the BAM 

tumor sample and the BAM of normal sample, and pushes them to the same queue, ReadQueue. 

A new thread named processReads is created; it parses the reads from ReadQueue and sends 

them to the queue, processQ. n threads named workers are created to take the reads from 

processQ and process them following the same pre-filtering and the evolutionary model as MuSE 

1.0. The last thread is named as ‘monitor’, which prints the sizes of the queues every second. 

Here, users can specify n according to the number of cores available in the input of MuSE 2.0. 

MuSE sump. We use the OpenMP library to parallelize the three most time-consuming parts in 

MuSE sump. The first is the loading of candidate variants, the corresponding estimates of 

equilibrium frequencies for all four alleles (A, C, T, G) for each variant from MuSE call, and filtering 

out the variants whose ratio between the variant allele frequency from the normal sample and the 
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variant allele frequency from the tumor sample above a predefined cutoff5 (0.05). The second is 

scanning for the remaining variants in the dbSNP and marked as ‘true’ or ‘false’ if they appear in 

the database or not. For WGS data, MuSE 1.0 fits a two-component Gaussian mixture model to 

the allele frequencies of the post-filtered variants to separate true mutations from background 

noise. The parameters (e.g., mean, standard deviation and proportion) of the two components 

are estimated using the expectation-maximization algorithm which are repeated 50 times with 

random initializations. For the three parts, we parallel the for-loop iterations using the ‘omp 

parallel for’ clause from OpenMP in MuSE 2.0 to deploy the computation on multiple cores. 

Speed benchmarking settings 

For all the benchmarked methods, if the number of cores requested lies in {1, 5, 10, 20, 28}, the 

processor is Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz; if the number of cores requested lies 

in {40, 80}, the processor is Intel(R) Xeon(R) Platinum 8380 CPU @ 2.30GHz. We run each 

method by submitting the LSF (Load Sharing Facility) job script using the bsub command, with 

which we can easily control the random-access memory (RAM) and the number of cores specified 

for each method. The options for the 6 callers can be found in Supplementary Table 4.  

Precision and recall 

We used the consensus SNV calls published previously6,7 as the ground truth to evaluate the 

performance of MuSE 2.0 and Strelka2. For WGS data, we selected all the calls from MuSE 2.0, 

and only calls from the PASS category from Strelka2 for each patient sample; for WES data, we 

selected calls from all the categories except for ‘Tier5’ from MuSE 2.05, and only calls from the 

PASS category from Strelka2 for each patient sample. The intersection of MuSE 2.0 and Strelka2 

calls for each patient sample were identified by matching the SNV ids, which combined the 

columns of CHROM, POS, REF and ALT from the two VCF files. For WES data, we removed the 

SNVs from the intersection calls outside the regions defined by the exome capture kit of TCGA. 
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We considered any calls reported by the consensus, but not by the intersection calls as false 

negatives, any calls reported by the intersection calls, but not by the consensus as false positives. 

We calculated precision, recall and F1 score to evaluate the accuracy of the new calls.  

𝐹! = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 

 

Availability of data and materials 

The ICGC-PCAWG WGS data and the TCGA WES data used in this study can be downloaded 

from https://dcc.icgc.org/repositories and https://portal.gdc.cancer.gov/repository, respectively.  

MuSE 2.0 is implemented in C++ and is available at GitHub https://github.com/wwylab/MuSE. A 

Dockerfile is also included in the repository for building MuSE 2.0 into a Docker image running on 

Linux machines. 
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Supplementary information 
 

 
Supplementary Figure 1. Flowchart of sequencing read pre-processing followed by all 
methods in the benchmarking study. 
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Supplementary Table 1. Sample information for the benchmarking study. 
 

Study ID Sample ID TCGA filename Tissue type Average 
read depth 

WES 

1 TCGA-AA-3811 

TCGA-AA-3811-01A-01W-0995-
10_hg19_Illumina_gdc_realn.bam Tumor 236X 

TCGA-AA-3811-10A-01W-0995-
10_hg19_Illumina_gdc_realn.bam Blood normal 131X 

2 TCGA-AA-A01R 

a766b78f-5ed9-447b-ae83-
6e06d6f7a8e1_wxs_gdc_realn.bam Tumor 271X 

54523ac8-0dd8-4256-b33e-
f0a802fee3e8_wxs_gdc_realn.bam Blood normal 191X 

3 TCGA-05-4424 

fc500ff5-24c8-4965-94da-
b4afafafe2dd_wxs_gdc_realn.bam Tumor 102X 

e785fabf-7b0f-49cd-a423-
0c6372147f9b_wxs_gdc_realn.bam Blood normal 105X 

4 TCGA-EE-A2GD 

ecc80084-895a-4810-b1ec-
a1039aa7260d_wxs_gdc_realn.bam Tumor 66X 

b42231d7-56a6-4b1b-8477-
406f3b32c8e7_wxs_gdc_realn.bam Blood normal 94X 

5 TCGA-VQ-AA6G 

2ed43bef-b90e-4029-be14-
cfdfa58bec9a_wxs_gdc_realn.bam Tumor 69X 

6f381501-d383-443d-9102-
96fcce2ae971_wxs_gdc_realn.bam Blood normal 62X 

 

6 TCGA-MH-A55Z 

TCGA-MH-A55Z-01A-11D-A26P-
10_Illumina_gdc_realn.bam Tumor 66X 

 
TCGA-MH-A55Z-10A-01D-A26P-
10_Illumina_gdc_realn.bam Blood normal 41X 

WGS 

7 TCGA-MO-A47R 

PCAWG.cff273a0-2c77-43c2-b0e8-
9ec7d3878d83.bam Tumor 45X 

 
PCAWG.f4a4dfa6-d5bc-4115-a16e-
3edd999ad8f9.bam Blood normal 34X 

 

8 TCGA-NH-A50T 

TCGA-NH-A50T-01A-11D-A28G-
10_Illumina_gdc_realn.bam Tumor 75X 

 
TCGA-NH-A50T-10A-01D-A28G-
10_Illumina_gdc_realn.bam Blood normal 43X 

 

9 TCGA-NH-A50V 

TCGA-NH-A50V-01A-11D-A28G-
10_Illumina_gdc_realn.bam Tumor 75X 

 
TCGA-NH-A50V-10A-01D-A28G-
10_Illumina_gdc_realn.bam Blood normal 42X 

 

10 TCGA-PD-A5DF 

TCGA-PD-A5DF-01A-11D-A27I-
10_Illumina_gdc_realn.bam Tumor 81X 

 
PCAWG.af9e5e0d-db6b-4dee-84a6-
c99462e9f71e.bam Blood normal 45X 
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Supplementary Table 2. Version information of the benchmarked tools. 
Tool Version 

MuSE 2.0 2.0.1 

MuSE 1.0 1.0rc 

MuTect2 4.1.9.0 

SomaticSniper 1.0.5.0 

Varscan2 2.4.2 

strelka2 2.9.x 
 
Supplementary Table 3. Precision, recall and F1 scores of the calls from Strelka2, MuSE 
2.0 and their intersections for both WES and WGS data. 
 

Sample ID Data type 
Intersection of MuSE 2.0 and Strelka2 Strelka2 MuSE 2.0 

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score 

1 

WES 

0.92 0.74 0.82 0.53 0.90 0.67 0.90 0.76 0.82 
2 0.94 0.78 0.85 0.79 0.84 0.81 0.93 0.79 0.85 
3 0.95 0.88 0.91 0.86 0.92 0.89 0.90 0.93 0.91 
4 0.96 0.86 0.91 0.76 0.91 0.83 0.94 0.90 0.92 
5 0.94 0.89 0.91 0.70 0.92 0.80 0.79 0.94 0.86 
6 

WGS 

0.95 0.97 0.96 0.84 0.97 0.90 0.67 0.99 0.80 
7 0.89 0.96 0.92 0.62 0.96 0.76 0.46 0.98 0.63 
8 0.90 0.96 0.93 0.77 0.96 0.86 0.72 0.99 0.83 
9 0.89 0.96 0.92 0.8 0.96 0.87 0.76 0.99 0.86 
10 0.93 0.96 0.94 0.87 0.97 0.91 0.73 0.99 0.84 

 
 
Supplementary Table 4. Running commands of the benchmarked tools. 
 

Tool Command 

MuSE 2.0 

MuSE call -O muse -f -n 10 $reference tumor.bam 
normal.bam 
MuSE sump -I muse.MuSE.txt -O muse.vcf -n 20 -E -D 
dbsnp 

MuSE 1.0 MuSE call -O muse -f $reference tumor.bam normal.bam 
MuSE sump -I muse.MuSE.txt -O muse.vcf -E -D dbsnp 

MuTect2 

gatk Mutect2 -R reference_genome -I tumor.bam -I 
normal.bam -tumor tumor_id -normal normal_id  -O 
mutect2_raw.vcf.gz 
gatk FilterMutectCalls -V mutect2_raw.vcf.gz -R 
reference_genome -O mutect2_filtered.vcf.gz 
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SomaticSniper 

bam-somaticsniper -q 1 -L -G -Q 15 -s 0.01 -T 0.85 -
N 2 -r 0.001 -n NORMAL -t TUMOR -F vcf -f 
reference_genome tumor.bam normal.bam 
somaticsniper.vcf 

Varscan2 

samtools mpileup -f $reference -q 1 -B normal.bam 
tumor.bam > mpileup.pileup 
java -jar VarScan.v2.4.1.jar somatic mpileup.pileup 
varscan_somatic.vcf --mpileup 1 --min-coverage 8 --
min-coverage-normal 8 --min-coverage-tumor 6 --min-
var-freq 0.10 --min-freq-for-hom 0.75 --normal-
purity 1.0 Competing interest statement --tumor-
purity 1.00 --p-value 0.99 --somatic-p-value 0.05 --
strand-filter 0 --output-vcf 
java -jar VarScan.v2.4.1.jar processSomatic 
varscan.vcf.snp --min-tumor-freq 0.10 --max-normal-
freq 0.05 --p-value 0.07 

strelka2 

STRELKA_INSTALL_PATH= 
${STRELKA_INSTALL_PATH}/bin/configureStrelkaSomatic
Workflow.py --normalBam normal.bam --tumorBam 
tumor.bam --referenceFasta reference_genome --
runDir ./  
./runWorkflow.py -m local -j 20 
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