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pH is highly variable in different tissues and affects many enzymatic reactions in neutro-
phils. In response to calcium ionophores such as A23187 and ionomycin, neutrophils 
undergo nicotinamide adenine dinucleotide phosphate oxidase (NOX)-independent 
neutrophil extracellular trap (NET) formation (NETosis). However, how pH influences 
calcium-dependent Nox-independent NET formation is not well understood. We 
hypothesized that increasing pH promotes Nox-independent NET formation by promot-
ing calcium influx, mitochondrial reactive oxygen species (mROS) generation, histone 
citrullination, and histone cleavage. Here, we show that stimulating human neutrophils 
isolated from peripheral blood with calcium ionophore A23187 or ionomycin in the 
media with increasing extracellular pH (6.6, 6.8, 7.0, 7.2, 7.4, 7.8) drastically increases 
intracellular pH within in 10–20  min. These intracellular pH values are much higher 
compared to unstimulated cells placed in the media with corresponding pH values. 
Raising pH slightly drastically increases intracellular calcium concentration in resting 
and stimulated neutrophils, respectively. Like calcium, mROS generation also increases 
with increasing pH. An mROS scavenger, MitoTempo, significantly suppresses calcium 
ionophore-mediated NET formation with a greater effect at higher pH, indicating that 
mROS production is at least partly responsible for pH-dependent suppression of Nox-
independent NETosis. In addition, raising pH increases PAD4 activity as determined by 
the citrullination of histone (CitH3) and histone cleavage determined by Western blots. 
The pH-dependent histone cleavage is reproducibly very high during ionomycin-induced 
NETosis compared to A23187-induced NETosis. Little or no histone cleavage was noted 
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in unstimulated cells, at any pH. Both CitH3 and cleavage of histones facilitate DNA 
decondensation. Therefore, alkaline pH promotes intracellular calcium influx, mROS 
generation, PAD4-mediated CitH3 formation, histone 4 cleavage and eventually NET 
formation. Calcium-mediated NET formation and CitH3 formation are often related to 
sterile inflammation. Hence, understanding these important mechanistic steps helps to 
explain how pH regulates NOX-independent NET formation, and modifying pH may help 
to regulate NET formation during sterile inflammation or potential damage caused by 
compounds such as ionomycin, secreted by Streptomyces, a group of Gram-positive 
bacteria well known for producing antibiotics.

Keywords: neT, nOX-independent, ph, calcium, mitochondrial rOs, PaD4, histone 3 citrullination, histone 
cleavage

inTrODUcTiOn

Neutrophils are the most abundant leukocytes in human periph-
eral blood, consisting approximately 50–70% of white blood 
cells. Their functions include phagocytosis, granule release, and 
neutrophil extracellular trap (NET) formation or NETosis. NET 
formation was discovered in 1996, and the study of NETosis has 
been very active after showing that NETs could kill bacteria, in 
2004 (1, 2). To date, two distinct types of NETosis have been estab-
lished: NOX-dependent and NOX-independent pathways (2–4). 
NOX-independent pathway does not require NOX-mediated 
reactive oxygen species (ROS) production; instead, mitochon-
drial reactive oxygen species (mROS) generation occurs in this 
pathway (5). Compared to NOX-dependent NETosis, NOX-
independent NETosis induced by calcium ionophores A23187 
and ionomycin is rapid (4, 5). Peptidylargininedeiminase 4 
(PAD4), an enzyme that catalyzes protein citrullination, plays 
a key role in NOX-independent NETosis (6, 7). Once bound 
to calcium, PAD4 present in the cytosol translocates into the 
nucleus, where it deiminates positively charged arginine present 
on histones to non-charged citrulline, facilitating chromatin 
decondensation, particularly at promoter regions (6).

pH regulates the activities of several enzymes in cells, includ-
ing neutrophils. PAD4 has an alkaline pH optimum (~7.6–8.0) 
(8); therefore, this enzyme is expected to be more active at alka-
line pH. Neutrophil elastase (NE) cleaves histone H4 (9) that is 
also considered to help chromatin decondensation during NET 
formation. The pH optimum for NE is also alkaline (~8.0–8.5) 
(10). Hence, these are good candidate enzymes that could help 
promote NET formation at higher pHs.

Several studies have demonstrated that lowering intracellular 
pH leads to an impaired neutrophil function (11). The effect of 
pH on NET formation is beginning to be examined (12, 13). 
Nevertheless, how pH affects various steps of NET formation is 
still not completely understood. Particularly, it is unclear whether 
the pH interferes with calcium influx, mROS production and his-
tone cleavage in neutrophils. Therefore, we aimed to understand 
the regulatory mechanism of alkalinization (increased pH) on 
NOX-independent NETosis. Our studies show that extracellular 
pH rapidly affects the intracellular pH, and raising pH increases 
calcium influx, mROS generation, PAD4 activity and histone 
4 cleavage, and consequently promotes NET formation. Taken 

together, our findings help to better understand the molecular 
mechanism of NOX-independent NETosis and suggest the 
potential of modifying pH to regulate NET formation at the sites 
of inflammation.

MaTerials anD MeThODs

research ethics Board approval
The study protocol for using human blood samples was approved 
by the ethics committee of The Hospital for Sick Children, 
Toronto. All the procedures including healthy human volunteer 
recruitment for blood donation were performed in accordance 
with the ethics committee guidelines. All the volunteers partici-
pating in this study gave their signed consent prior to the blood 
donation.

Primary human neutrophils
Peripheral blood from healthy male donors were drawn in K2 
EDTA blood collection tubes (Becton, Dickinson and Co.) in 
the hospital at nursing station. The neutrophils isolation was 
performed using PolymorphPrep (Axis-Shield), according to 
the company protocol (as previously reported). Briefly, equal 
volume of blood was laid over PolymorphPrep solution and 
centrifuged for 35 min at room temperature without applying 
breaks. After centrifugation, the polymorphonuclear neutro-
phil layer was collected and washed with washing solution 
[0.425% (w/v) NaCl with 10 mM HEPES] to eliminate all the 
residues of PolymorphPrep. Then, red blood cells were lysed 
twice with 0.2% (w/v) NaCl hypotonic solution for 30 s followed 
by adding an equal volume of 1.6% (w/v) NaCl solution with 
20 mM HEPES buffer to obtain the isotonic condition. After 
lysis, two more washes were done to eliminate red blood cells 
debris and soluble components. Neutrophils were resuspended 
in RPMI medium (Invitrogen) containing 10  mM HEPES 
(pH 7.2) and counted using hemocytometer. Viability of the 
purified neutrophils were checked by Trypan blue exclusion 
assay. Neutrophils purity was determined by imaging Cytospin 
preparations. Only neutrophil preparations having more than 
95–98% viability and purity were used in the experiments. 
Cells were kept at 37°C and 5% (v/v) CO2 incubator for the 
entire experimental period.
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as a proxy for intracellular pH. Under this format, increasing 
SNARF ratio reflects higher pH.

intracellular calcium levels
Intracellular calcium concentrations were assessed using Fluo-
4-AM calcium indicator dye by a plate reader assay. Briefly, 
1  ×  106 cells per mL were incubated in HBSS-Mg2+ (calcium 
free) media with 4 µM Fluo-4-AM for 15 min at 37°C and 5% 
(v/v) CO2. After washing, the cells were resuspended in RPMI 
(pH 7.2) and 50,000 neutrophils (50 µL) were seeded in a well of 
96-well plates containing 50 µL of media to adjust the pH of cor-
responding wells. Directly after seeding the cells, Fluo-4-AM 
fluorescence was measured using the SpectraMax Gemini EM 
fluorescence microplate reader (0-min; Molecular Devices). 
Cells were incubated for 10 min at 37°C to allow intracellular 
pH changes. After incubation, Fluo-4-AM fluoresce was meas-
ured. Cells were then stimulated with either calcium ionophore 
A23187 or ionomycin. After adding calcium ionophores or 
media controls, the Fluo-4-AM fluorescence intensities were 
recorded every 30 s up to 1,200 s (at 37°C). The plates were not 
taken out from the microplate reader until the end of experi-
ment. The ratio comparing each time point with the 0-min read-
ing was calculated and used for determining the calcium influx. 
To determine whether pH affects Fluo-4 AM fluorescence, the 
experiment was repeated with media containing Fluo-4 with 
no cells.

mrOs Detection
To detect the mROS production, a plate reader assay was 
performed using the MitoSOX probe. Briefly, 1 × 106 cells per 
mL were incubated with 4 µM of MitoSOX Red for 15 min at 
37°C and 5% CO2 and seeded in a black clear bottom 96-well 
plate containing 50  µL of specific media to adjust the pH of 
corresponding wells. The cells were stimulated with 4  µM of 
calcium ionophore A23187 or ionomycin, and the fluorescence 
was measured every 4 min up to 120 min using the SpectraMax 
Gemini EM fluorescence microplate reader (Molecular Devices). 
To determine whether pH affects 4  µM MitoSox fluorescence, 
the  experiment was repeated with media containing MitoSox 
with no cells.

immunofluorescence confocal imaging
The same method described above was used for obtaining the pH 
6.6, 7.2, or 7.8 used in the immunofluorescence. A total of 100,000 
neutrophils were seeded into 12-well chamber slides at 37°C 
(Ibidi, cat #81201) and the cells were activated with either media 
only (negative control), 4 µM of calcium ionophore A23187 or 
ionomycin for 30 min (PAD4 and Citrullinated Histone 3 stain-
ing) or 120 min (MPO and Citrullinated Histone 3 staining). The 
cells and NETs were fixed with paraformaldehyde [4% (w/v) for 
15 min], permeabilized for 15 min with 0.1% Triton-X 100, and 
blocked with 5% (w/v) BSA for 1 h. The following antibodies were 
used for immunostaining: mouse anti-PAD4 antibody (ab128086, 
Abcam; 1:100 dilution) or mouse anti-myeloperoxidase antibody 
(ab25989, Abcam; 1:400 dilution) was used for staining PAD4 
and MPO, respectively (with secondary antibody conjugated 
with a green fluorescence Alexa fluor 488 dye; 1:5,000 dilution; 

Media Preparation to change ph
The volume of HCl (5 M) or NaOH (5 M) necessary to modify 
the initial media pH (7.2) to 6.6, 6.8, 7.0, 7.2, 7.4, 7.6, and 7.8 
was predetermined using a pH meter. The isotonic RPMI media 
with different pHs were added to the neutrophil suspension for 
further experiments. Each experiment performed in this study 
had a technical duplicate, and the assay was repeated with differ-
ent donors to obtain biological replicates (n = 3–5; specific details 
are given in the figure legends).

sytox green neT Formation assay
The NETotic index was measured by Sytox Green, a cell-
impermeable DNA dye (Life Technologies), fluorescence. 
Briefly, neutrophils were resuspended at 1  ×  106 cells per mL 
in RPMI media (pH 7.2), containing 5  µM of Sytox Green 
dye. Later, 50,000 neutrophils were seeded into 96-well plates 
containing 50  µL of media with predetermined pH to adjust 
the pH of corresponding wells. The cells were stimulated with 
NOX-independent agonists calcium ionophores A23187 (4 µM) 
or ionomycin (5 µM) and kept at 37°C and 5% (v/v) CO2 incu-
bator. Sytox Green fluorescence intensities were detected by a 
POLARstar OMEGA fluorescence microplate reader (BMG 
Labtech) every 30-min intervals for 240  min. The plates were 
briefly (~2–5 min) taken out of the incubator for the readings. 
The NETotic index was calculated based on the value of 100% 
NET formation obtained by lyzing the cells with 0.5% (v/v) 
Triton X-100 (representing total DNA presenting in the sample). 
The baseline green fluorescence at time 0-min was subtracted 
from the fluorescence at each time point and was then divided 
by the fluorescence values of cell lysed with Triton X-100. To 
determine whether pH affects SYTOX Green fluorescence, the 
same number of cells were lyzed with Triton in various pH 
buffers, and the green fluorescence of 5 µM SYTOX Green was 
recorded every 30 min for 240 min.

changes in intracellular ph
We used the SNARF®-4F 5-(and-6)-carboxylic acid (Thermo 
Fisher Scientific) dye to determine the changes in intracellular 
pH after adjusting extracellular pH. First, cells were preloaded 
with 10 µM dye for 30 min at 37°C and 5% (v/v) CO2, washed 
and resuspended in fresh RPMI (pH 7.2) at a concentration of 
1  ×  106 cells/mL. Neutrophils (0.5  ×  105 cells in 50  µL) were 
seeded into a 96-well plate containing the same volume of media 
to adjust the pH to different values (6.6, 6.8, 7.0, 7.2, 7.4, 7.6, and 
7.8). These neutrophils were stimulated either with only media 
(negative control), A23187 (4 µM; Sigma-Aldrich) or ionomycin 
(4 µM; Sigma-Aldrich) and dual emission spectra of SNARF were 
measured. pH changes were recorded every 10 min up to 60 min. 
The emission spectrum of SNARF undergoes a pH-dependent 
wave length shift; therefore, the ratio (580/640 nm) of the fluores-
cence intensities from the dye at two emission wavelengths were 
used for intracellular pH determinations. Carboxy SNARF-4F is 
typically used by exciting the dye at one wave length (between 
488 and 530 nm), while monitoring the fluorescence emission at 
two wave lengths (580 and 640 nm). The ratio of the fluorescence 
intensities of two emission wavelengths 640/580 nm were used 
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Thermo Fisher Scientific), while rabbit anti-citrullinated histone 
3 antibody (ab5103, Abcam; 1:400 dilution) was used for detect-
ing the presence of CitH3 (with secondary antibody conjugated 
with a far red fluorescence dye Alexa fluor 647; 1:5,000 dilution; 
Thermo Fisher Scientific). DAPI was used to stain the DNA (1:100 
dilution). As isotype controls, we used Mouse IgG (eBioscience 
14-4714-81; 1:100 dilution) and Rabbit IgG (Invitrogen; 31235; 
1:100 dilution). After treating with the secondary antibody, slides 
were washed and mounted by glass cover slips (Fisher Scientific) 
with anti-fade fluorescent mounting medium (Dako). The 
images were then taken using an Olympus IX81 inverted fluo-
rescence microscope with a Hamamatsu C9100-13 back-thinned 
EM-CCD camera and Yokogawa CSU × 1 spinning disk confocal 
scan head with Spectral Aurora Borealis upgrade, four separate 
diode-pumped solid-state laser lines (Spectral Applied Research, 
405, 491, 561, and 642 nm). The images were taken at 40×/0.95 
magnification and processed by Velocity software (version 6.3, 
Cell Imaging Perkin-Elmer).

immunoblotting
Tubes containing 0.5  ×  106 neutrophils in pH adjusted (6.6, 
7.2, or 7.8) media were activated either by negative control 
(only media) or by calcium ionophore A23187 or ionomycin 
for 60 min (at 37°C and 5% CO2 incubator). After incubation, 
cells were lysed using the lysis buffer containing 1% (w/v) 
Triton X-100, 25 mM NaF, 50 mM Tris, 10 mM KCl, 10 µg/mL  
Aprotinin, 2  mM PMSF, 1  mM Levanisole, 1  mM NaVO3, 
0.5 µM EDTA, 25 µM Leupeptin, 25 µM Pepstatin, 1 protease 
inhibitor cocktail tablets per 5 mL (Roche), and 1 phosphatase 
inhibitor cocktail tablet per 10 mL (Roche). A quarter volume 
of 5 × loading dye [125 mM Tris.HCl at pH 6.8, 6% (w/v) SDS, 
8% (v/v) β-mercaptoethanol, 18% (v/v) glycerol, and 5  mM 
EDTA, 5 mM EGTA] was added followed by 10 min of heating 
at 95°C with 350  rcm shaking. The samples were separated 
in a 5% (w/v) stacking and 10% (w/v) resolving gel at 100 V 
and transferred on a nitrocellulose membrane for 70  min at 
350 mA. After transfer, the membranes were blocked with 5% 
(w/v) BSA in 0.05% PBST for 2  h at room temperature. The 
membranes were incubated in the primary antibody at 4°C 
overnight followed by three washes with PBS with 0.1% Tween 
(PBST) for 30  min. The antibodies used were: anti-Histone 
H4 (ab16483, Abcam; rabbit pAb; 1:1,000) and anti-GAPDH 
(FL-335, Santa Cruz; rabbit pAb; 1:5,000). The membranes 
were then incubated with the secondary antibody [donkey 
anti-rabbit IgG-HRP (31458, Thermo Fisher; 1:10,000)] for 1 h 
and then washed three times with 0.1% PBST for 30 min. The 
densitometry analysis of the blots was done using the Image 
Studio software (LI-COR Biotechnology) and normalized to 
GAPDH.

statistical analysis
All statistical analyses were performed on GraphPad Prism 7. 
One-way ANOVA with Dunnett and Tukey’s post-tests, two-way 
ANOVA with Bonferroni posttest or t-test was done as appropri-
ate. A p-value of less than 0.05 was considered to represent signifi-
cant differences between conditions. All the data are presented as 
mean ± SEM.

resUlTs

alkaline ph Promotes calcium ionophore-
induced neT Formation
To determine the effect of pH on NOX-independent NETosis, we 
incubated purified peripheral blood neutrophils in media with 
seven different pHs (6.6–7.8) in the absence (negative control) 
or presence of calcium ionophores A23187 or ionomycin. The 
percentage DNA release in each condition was calculated by 
comparing the green fluorescent intensity of the cells at specific 
conditions with the cells treated with Triton (100% DNA release). 
The percentage DNA release (or NETotic index) calculated by 
SYTOX Green fluorescence showed that alkaline and acidic 
pHs increased and decreased NET formation, respectively 
(Figures 1A–C; Figures S1A–C in Supplementary Material; pH 
itself does not affect SYTOX Green fluorescence signal, Figure 
S2 in Supplementary Material). A regression line at 120 and 
240-min time points of the Sytox Green-based kinetics showed a 
clear increase in NET formation with increasing pH; the changes 
were small and slow in the negative control, whereas the increase 
was much higher for A2387 and ionomycin (Figures S1D–F in 
Supplementary Material). For example, the slope of spontaneous 
NET formation after 120 min was ~10-fold less steep (3.754) than 
that of A23187 (35.92) and ionomycin (32.92)-mediated NET 
formation, indicating that the effect of pH on calcium ionophore-
mediated NET formation was much higher than the spontaneous 
NET formation. After 4 h, the cells were fixed, and fluorescence 
images were captured to compare the differences in the overall 
structure of the nuclei and NETs between the lowest and the 
highest pH conditions (6.6 and 7.8; Figure  1D). These images 
confirmed the SYTOX Green plate reader data set. Overall, pH 
affected both spontaneous and calcium ionophore-mediated 
NET formation; pH above the normal blood pH of ~7.4 promoted 
higher levels of NET formation, whereas a more acidic pH sup-
pressed NET formation. The effect was very dramatic in calcium 
ionophore-mediated NET formation compared to spontaneous 
NET formation.

calcium ionophores Promote Drastic 
alkalinization of neutrophils
To determine the effect of calcium ionophores on intracellular  
pH (pHi) of neutrophils in the presence of different extracel-
lular pH (pHe), we used a pH sensitive dual-wavelength Semi-
naphtharhodafluor (SNARF) dye. SNARF-loaded neutrophils 
were resuspended in media with seven different pHe, from 6.6 
to 7.8, with or without A23187 or ionomycin and SNARF ratios 
were calculated at 0, 10, and 20  min time points. The 20-min 
time points were chosen to analyze the intracellular pH change 
because the majority (87–98%) of the cells were alive at that 
time point, excluding any bias related to extracellular buffers 
entering the dying cells without any cellular regulation (Table S1 
in Supplementary Material). In this format, increasing SNARF 
ratios (ratio 640/580 nm) reflect higher intracellular pH values 
(Figures 2A–C). In non-stimulated neutrophils, increasing pHe 
increased the pHi and reached a slope of 7.4x + 0.05x3 SNARF 
ratios per pH unit at 20 min (Figure 2A). By contrast, at 20 min 
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FigUre 1 | Higher pHs increase spontaneous and A23187 or ionomycin-mediated neutrophil extracellular trap (NET) formation. Neutrophils resuspended in media 
of predetermined extracellular pH (6.6, 7.2, and 7.8) containing 5 µM Styox Green dye in resting condition (negative control). Florescence was recorded by a plate 
reader for every 30 min up to 4 h. % DNA release (NETotic index) shows more NETosis in higher extracellular pH conditions, in resting neutrophils (negative control) 
(a), and after stimulation with A23187 (B) or ionomycin (c). (D) Neutrophils were resuspended in RPMI media, containing 5 µM of SYTOX Green dye, at two 
different pHs (6.6 and 7.8) and seeded in a chamber slide for 4 h with or without A23187 or ionomycin. After incubation, cells were fixed with 4% (v/v) PFA for 
15 min and analyzed by confocal microscopy. The images clearly show a greater fluorescence at pH 7.8 (D). n = 3–5. SYTOX Green DNA dye-green (scale bar 
22 µm). n = 5, two-way ANOVA with Bonferroni’s post-test. *p < 0.05, **p < 0.01, ***p < 0.001. See Figure S1 in Supplementary Material for the NET formation 
assay in pHs 6.6, 6.8, 7.0, 7.2, 7.4, 7.6, and 7.8 and the regression slope of the NET formation at 120- and 240-min time points at different pH. See Figure S2 in 
Supplementary Material, which indicates that pH does not directly affect SYTOX Green florescence intensity. See Table S1 in Supplementary Material for the SYTOX 
assay in earlier time points.
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stimulation with A23187 (a slope of 95x + 0.64x3; Figure 2B) or 
ionomycin (a slope of 59.3x +  0.4x3; Figure 2C), much higher 
increase in pHi values were detected compared to their respective 
controls (Figures 2D–F; see the full non-linear equations on the 
graphs). For calcium ionophore conditions, a drastic increase in 
pHi was apparent beyond pHe of 7.6. These results indicate that 
both of the calcium ionophores drastically increase intracel-
lular pH at the beginning of NOX-independent NET formation 
process.

higher ph induces calcium influx in 
resting and a23187- or ionomycin-
activated neutrophils
Increase in intracellular calcium (Ca2+) is important for increas-
ing NET formation-related cellular functions (5). However, 
the effect of pH on calcium influx in neutrophils is not clearly 

established. Therefore, we asked whether pH levels could affect 
the intracellular Ca2+ levels in resting and activated neutrophils. 
First, neutrophils were preloaded with the Ca2+ dye Fluo-4 
AM and activated with media (negative control), A23187, or 
ionomycin in three different pH conditions (6.6, 7.2, and 7.8). 
Cytosolic Ca2+ concentration was measured every 30 s for 20 min. 
Plate reader assays showed that increased pH facilitated Ca2+ 
influx in resting and stimulated neutrophils (Figures  3A–D; 
increasing pH does not increase the fluorescence of Fluo-4 AM 
dye, Figure S3 in Supplementary Material). The magnitude of 
calcium increase is about the same (~0.2-fold) between two pHs; 
however, the total calcium levels are much higher in the pres-
ence of calcium ionophores. To confirm the effect of pH in Ca2+ 
influx, we performed fluorescence imaging, in resting (negative 
media) or calcium ionophore-activated neutrophils (A23187 or 
ionomycin), in three different pH conditions (6.6, 7.2, and 7.8; 
Figure 3E). Images were taken directly after cells stimulation. 
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FigUre 2 | NOX-independent neutrophil extracellular trap formation stimuli drastically increase intracellular pH. Intracellular pH of the neutrophils in resting  
(negative control) and A23187 or ionomycin conditions was determined using the fluorescent probe SNARF. Readings were done at time point, 0, 10, and 20 min. 
The fluorescence kinetics analysis shows that, after 10 min, extracellular pH alters intracellular pH in negative control (a), A23187 (B), or ionomycin conditions (c). 
(D–F) Polynomial regression for the last time point (20 min) shows that the intracellular pH values after stimulation with A23187 or ionomycin are higher than the  
control in higher pHs.
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This data set confirmed the plate reader data showing an 
increase of the fluorescence in higher pH conditions. Therefore, 
increasing pH helps to increase intracellular calcium levels in 
neutrophils, particularly in the presence of calcium ionophores.

mrOs is a Key Factor regulating the ph 
effect on nOX-independent neTosis
Mitochondrial reactive oxygen species production is related to 
NOX-independent NET formation (5, 14, 15). Therefore, first we 
verified the importance of mROS for NOX-independent NET 

formation by performing MitoSOX (a specific fluorescent probe 
for mROS detection) and SYTOX Green assays in the presence 
of an mROS scavenger (MitoTEMPO). Purified neutrophils were 
incubated with 200  µM MitoTEMPO for 15  min under physi-
ologic pH conditions (7.4), and stimulated with media (negative 
control), A23187, or ionomycin. MitoTEMPO decreased mROS 
generation induced by both stimuli (Figures  4A,B). SYTOX 
Green assays showed that NET formation was also significantly 
decreased in the presence of mROS scavenger, confirming that 
mROS production is a key factor for NOX-independent NET 
formation (Figures 4C,D). Using PMA (a prototypical agonist for 
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FigUre 3 | Alkalinization increases intracellular calcium influx. Neutrophils preloaded with calcium probe Fluo-4 AM were incubated for 15 min in HBSS calcium-free 
media. After washing, neutrophils were incubated in three different RPMI pH levels and stimulated or not with A23187 or ionomycin. Even in resting cells, at higher 
pHs, the calcium influx/mobilization is increased (a). The same occurs after stimulation with A23187 or ionomycin, but to much higher levels (B,c). Area under the 
curve (AUC) of three independent experiments shows difference between pH 7.2 and 7.8 compared to 6.6 in resting cells or ionomycin-treated cells. A23187 shows 
difference between pH 6.6 and 7.8 conditions (D). Fluorescence microscopy images corroborate the plate reader assays and show an increase of calcium influx 
after stimulation of neutrophils at higher pH buffers (e). Two-way ANOVA with Bonferroni’s post-test. n = 3; *p < 0.05, ***p < 0.001. See Figure S4 in Supplementary 
Material, which indicates that pH does not directly affect Fluo-4 AM florescence intensity.
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the NOX-dependent NET formation), we confirmed that mROS 
does not play a major role in NOX-dependent NET formation 
(Figure S4 in Supplementary Material).

Since calcium influx plays an important role in the mROS 
production (16–19), we asked whether increasing pH could 
affect the mROS production. To measure mROS, neutrophils 
were treated with 4  µM MitoSOX, and stimulated either with 
media control (negative control), A23187 or ionomycin in 
three different pH conditions (pH 6.6, 7.2, and 7.8). mROS 
fluorescence in these cells was measured every 4  min up to 

120 min. Within 30 min, we found that neutrophils resuspended 
in higher pH media generated higher amount of mROS after 
stimulation with either A23187 or ionomycin (Figures 5A–F). 
Analysis of the MitoSox data after 120  min of stimulation 
indicates that resting neutrophils also generate mROS at higher 
pH, albeit lower levels than measured in calcium ionophore-
stimulated neutrophils (Figure S5 in Supplementary Material). 
We also measured the MitoTEMPO-mediated suppression of 
mROS production measured by MitoSox and NET formation 
measured by three other pH conditions. These data suggest 
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FigUre 4 | Mitochondrial reactive oxygen species (mROS) is a key factor for NOX-independent neutrophil extracellular trap (NET) formation. Purified neutrophils,  
at physiologic pH conditions (7.4), were incubated with or without 200 µM MitoTEMPO, an mROS scavenger, for 15 min and 4 µM of MitoSOX, a specific probe to 
detect mROS production. Neutrophils were then stimulated with A23187 or ionomycin, and mROS production was assessed. Readings were done every 4 min up 
to 120 min. MitoTEMPO decreases mROS induced by A23187 and ionomycin (a,B). To evaluate the importance of mROS production for NET formation, neutrophils 
were incubated with or without MitoTEMPO, and a SYTOX Green assay was performed. Readings were done every 30 min up to 4 h. mROS scavenger reduces 
NET formation after A23187 or ionomycin stimulation (c,D). n = 5, two-way ANOVA with Bonferroni’s post-test. *p < 0.05, **p < 0.01, ***p < 0.001. See Figure S5 
in Supplementary Material, for the mROS production in NOX-dependent and NOX-independent agonists.
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that increasing pH increases mROS generation and scavenging 
mROS suppresses NOX-independent NET formation (Figures 
S6 and S7 in Supplementary Material for the pHs 6.6, 7.2, and 
7.8). Collectively, increasing pH increases mROS generation 
during the activation of neutrophils with calcium ionophores, 
and pH-dependent increase in mROS generation is an important 
component for promoting NOX-independent NET formation.

alkalinization increases PaD4 activity  
and citrullination of histone 3 during 
nOX-independent neT Formation
PAD4 activation is a key step in NOX-independent NET for-
mation. Once bound to cytosolic-calcium, PAD4 is activated 
and translocated to nucleus (6, 20, 21). The translocated PAD4 
deiminates positively charged arginine present on histones 3 
into non-charged citrulline, helping chromatin decondensation 
(22, 23). This step is especially relevant to NOX-independent 

NET formation (5); NET images clearly showed a strong histone 
3 citrullination. To determine the influence of the pH in NET 
formation, we performed a confocal immunofluorescence 
microscopy of PAD4 and citrullinated histone 3. Purified neu-
trophils were seeded in a chamber slide, stimulated with buffer, 
A23187, or ionomycin up to 30 min, fixed and stained the cells 
with monoclonal antibodies to PAD4, citrullinated histone 3, 
and DNA dye. Neutrophils activated with A23187 or ionomycin, 
showed increased immunostaining for PAD4 and citrullinated 
histone 3 in higher pH conditions (Figures 6A,B; Figure S8 in 
Supplementary Material for negative controls and Figure S9 in 
Supplementary Material for isotype controls). Furthermore, 
we performed confocal microscopy of the immunostained 
neutrophils to determine citrullination of histone 3 in different 
pH conditions. Images showed a strong co-localization of MPO, 
DNA, and citrullination of histone 3, in neutrophils incubated 
in higher pH, confirming that A23187 or ionomycin-stimulated 
neutrophils have a greater amount of citrullination of histone 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 5 | Higher pH increases mitochondrial reactive oxygen species (mROS) production by neutrophils after stimulation by A23187 and ionomycin. Purified 
neutrophils were resuspended in RPMI at different pHs (ranging from 6.6 to 7.8) and incubated with 4 µM of mitoSOX. Cells were seeded in a 96-well plate and 
stimulated with A23187 or ionomycin. The mROS production was measured every 4 min up to 32 min. Time-course of mROS production in negative control (a), 
A23187 (B), or ionomycin (c). Area under curve was calculated to measure the total mROS production after 32 min stimulation in negative control (D), A23187 (e), 
or ionomycin (F). n = 6. Two-way ANOVA with Bonferroni’s post-test and one-way ANOVA with Bonferroni’s post-test (area under curve). *p < 0.05, **p < 0.01, 
***p < 0.001. See Figure S6 in Supplementary Material for 120 time point analysis, and Figures S7 and S8 in Supplementary Material for the SYTOX Green and 
mROS assay after MitoTEMPO treatment in different pHs.
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3 and formed a greater amount of NETs with increasing pH 
(Figure 7; Figures S10–S12 in Supplementary Material for single 
channels and Figure S13 in Supplementary Material for isotype 
control). Therefore, increasing pH increases CitH3 formation 
that facilitates NOX-independent NET formation.

histone cleavage
Histone 4 cleavage is another hallmark event of NET formation; 
therefore, we sought to determine whether the pH levels affect 
this process. The cells were seeded in three different media 
conditions (pH 6.6, 7.2, or 7.8) with media (negative control) or 
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FigUre 6 | Higher pH increases PAD4 amount and activity after stimulation with A23187 or ionomycin. 1 × 105 neutrophils/well were seeded in a chamber slide 
and stimulated in the absence or presence of A23187 or ionomycin. After incubation for 30 min, cells were fixed and immunostained for PAD4 and citrullinated 
histone 3, and stained for DNA. Confocal images of PAD4 and citrullinated histone 3 show an increase of PAD4 amount and activity at alkaline condition, after 
stimulation with A23187 (a) or ionomycin (B). Blue, DAPI staining for DNA; green, PAD4; red, histone 3 citrullinated; n = 3; scale bar 22 µm. See Figure S8 in 
Supplementary Material, for the negative controls, and Figure S9 in Supplementary Material for the isotype controls. These images show no background staining 
and confirm the specificity of the antibodies.
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FigUre 7 | Higher pH increases citrullination of histone 3 and neutrophil extracellular trap (NET) formation in resting neutrophils and after stimulation with A23187 or 
ionomycin. 1 × 105 neutrophils/well were seeded in a chamber slide containing 3 different pH buffers (6.6, 7.2, and 7.8). Cells in these three different pH conditions 
were stimulated in the absence or presence of A23187 or ionomycin. After 2 h of incubation, neutrophils were fixed and immunostained for MPO, citrullinated 
histone 3, and DNA. Co-localization of these markers confirms that higher pH conditions increase PAD4 activity (histone 3 citrullinated) and NET formation in control 
and neutrophils stimulated with A32187 or ionomycin. Blue, DAPI staining for DNA; green, MPO; red, citrullinated histone 3; n = 4; scale bar 22 µm. See Figures 
S10–S12 in Supplementary Material for the single channel images, and Figure S13 in Supplementary Material for the isotype controls. These images show no 
background staining and confirm the specificity of the antibodies.
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calcium ionophores (A23187 or ionomycin), and after 1 h the H4 
cleavage was determined by Western blot analysis. Unstimulated 
controls had little or no histone cleavage, whereas both cal-
cium ionophores promoted substantial histone cleavage. The 
pH-dependent effect was much clear for ionomycin condition 
(Figure 8). Therefore, increased cleavage of histone is another 
factor that could promote NET formation at higher pHs, particu-
larly during the activation of neutrophils by calcium ionophores.

DiscUssiOn

Blood pH is strictly maintained at ~7.34; however, local tissue pH 
changes drastically, often acidifying inflamed areas (12, 24–26). 
During sterile inflammation in joints, for example, the synovial 

fluid pH drops to 6.0–7.0 (27). A recent study demonstrated that 
the alkaline pH of the pancreatic ducts can cause increased NET 
formation, which blocks pancreatic ducts and promotes pan-
creatitis (28). However, the mechanistic details of pH-mediated 
regulation of NET formation are not clearly understood. In this 
study, we confirm that alkaline pH increases calcium ionophore 
A23187- and ionomycin-induced NOX-independent NET for-
mation, and provide several mechanistic details. We identified 
that increase in extracellular pH promotes intracellular calcium 
concentration, mROS generation, histone citrullination, and 
histone cleavage. This effect is dramatic in the presence of calcium 
ionophores such as A23187 or ionomycin, a compound secreted 
by antibiotics producing Streptomyces, a group of Gram-positive 
bacteria. These findings provide better understanding of the 
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FigUre 8 | Raising pH increases Histone 4 cleavage. Histone H4 immunoblot analysis was performed by using neutrophils stimulated with either media (negative 
control), A23187, or ionomycin in different pHs (6.6, 7.2, or 7.8). (a) Histone H4 immunoblot shows histone cleavage during A23187- and ionomycin-induced 
neutrophil extracellular trap (NET) formation, without substantial cleavage observed in spontaneous NET formation. GAPDH blots were used as a loading controls 
(n = 7). (B) The densitometry data of each H4 bands were normalized with GAPDH. The densitometry data show that increase in pH promotes H4 cleavage in 
A23187- and ionomycin-mediated NET formation (n = 7; two-way ANOVA with Bonferroni’s post-test. *p < 0.05, ***p < 0.001).
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mechanism as to how pH regulates calcium-mediated NOX-
independent NET formation.

Our study shows that alkaline pH increases NET forma-
tion, whereas acidic pH suppresses NET formation (Figure 1). 
This is consistent with studies published while our manuscript 
was in preparation (12, 13). We demonstrated that neutrophils 
equilibrate their pHi with the pHe within minutes, and a dramatic 
pHi increase occurs after neutrophil stimulation with NOX-
independent NET formation agonists (Figures  2A–F). Several 
neutrophil functions are suppressed in acidic microenviron-
ment, including chemotaxis, microbicidal activity, and apoptosis  
(11, 24, 29–33). This study further shows that an acidic environment 
suppresses yet another key neutrophil function, NET formation.

By contrast, some important NET formation-related enzymes 
and ion channels are more active in alkaline pH (11, 34).  
Corroborating these points, alkaline pH increases Ca2+ influx 
in resting and calcium ionophore-stimulated neutrophils 
(Figures 3A–E). Binding of calcium to A23187 and ionomycin 
increases with increasing pH (35). A23187 binds effectively to 
calcium at lower pH than ionomycin, and ionomycin is a more 
effective binder of calcium than A23187, particularly at higher 
pHs (35). Hence, the increase in calcium concentration during 
ionophore-mediated uptake at higher pHs is at least partly due to 
the increased binding of calcium to the ionophores. Ionomycin is 
secreted by antibiotics producing unusual group of filamentous 
Gram-positive bacteria Streptomyces, particularly by S. conglo-
batus. Hence, ionomycin-induced NET formation could also 
be relevant to issues related to bacterial defense vs. host defense 
mechanism.

A recent study by Maueröder and colleagues suggested that 
raising pHe by bicarbonate increases Ca2+ influx in resting neu-
trophils (13). The data obtained in this study show an increase of 
intracellular Ca2+ influx, in both resting and activated neutrophils 
placed in different pH buffers that were adjusted using HCl or 
NaOH (Figures 2 and 3). These differences may be due to the 

differences in neutrophil purification and experimental media 
conditions. However, the overall message is that increasing pH 
increases Ca2+ influx in neutrophils.

Calcium is a crucial second messenger for many cellular 
functions, including mitochondrial function (36–40). In 2015, 
our group demonstrated that NOX-independent NET formation 
stimulates mROS production, suggesting that mROS generation 
was an important step during NOX-independent NET formation 
(5). Therefore, by using a specific mROS scavenger we first con-
firmed that mROS is important for calcium ionophore-mediated 
NET formation (Figure 4). Our results further show that neu-
trophils present in more alkaline media produce higher amount 
of mROS in resting and activated (e.g., A23187 or ionomycin 
conditions) neutrophils (Figure 5). Although MitoSox readings 
continued to increase until the end of the experiments, we used 
early time points (e.g., 20–30 min) to draw conclusions. At this 
time point, most of the cells were still viable. Longer time points 
are still relevant to non-stimulated cells that take a long time to 
generate mROS and to undergo cell death. The increase in mROS 
is much higher in activated neutrophils. MitoSox data at later 
time points for calcium ionophore-mediated NET formation 
are confounded by the dye binding to intracellular components 
of dying cells. However, MitoTEMPO that scavenges mROS 
continued to suppress MitoSox and SYTOX Green fluorescence 
(NET formation). Therefore, these results indicate that mROS 
is a key component of NOX-independent NET formation and 
contributes to the pH-dependent increase in NET formation 
induced by calcium ionnophores such as A23187 and ionomycin.

Calcium is also essential for PAD4 activation, where five Ca2+ 
molecules can bind on each PAD4 molecule and change the 
conformation of the enzyme (8, 21, 22, 41, 42). PAD4 is a con-
stitutively expressed enzyme in neutrophils, and present in the 
cytosol (6). When PAD4 is complexed with Ca2+, it is able to reach 
the nucleus and citrullinate histones (20). This process converts 
positively charged arginine residues to neutral citrulline, which 
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helps to decondense chromatin (6, 22, 23, 41). There are numer-
ous reports describing the importance of PAD4 in citrullination 
of histone 3 for NET formation (43–45), and one report showed 
an increase of histone 3 citrullination during alkaline pHs (13).  
A few studies showed an increase of PAD4 after the stimulation of 
neutrophils with other agonists (43, 46). Immunocytochemistry 
images indicate that PAD4 amount and activity (determined 
by CitH3) increase upon activating neutrophils with NOX-
independent NET formation agonists A23187 or ionomycin, at 
higher pH conditions (Figures  6A,B and 7). The optimal pH 
for PAD4 activity is 7.6–8.0 (8). Therefore, increased level and 
activity of PAD4 at alkaline pH would facilitate the chromatin 
decondensation necessary for NET formation.

Another important enzyme that participates in NET forma-
tion is neutrophils elastase (NE). It cleaves histone 4 (9, 47); his-
tone cleavage has been linked to chromatin decondensation, and 
considered as an important step in NET formation (9, 47, 48).  
In resting neutrophils, changes in pH (pH 6.6, 7.2, and 7.8) does 
not significantly alter histone 4 cleavage. By contrast, increase 
in pH significantly increases histone 4 cleavage during the 
stimulation of neutrophils with calcium ionophores (Figure 8). 
This result corroborates with the SYTOX Green assay (Figure 1), 
where very low amount of NET formation was seen at pH 6.6 
whereas high amount of NET formation was observed in pH 
7.8. Paradoxically, the optimal pH for NE is basic (pH 7.5–8.5), 
whereas the optimal pH for MPO is acidic (pH 4.7–6.0) (10, 49, 50).  
Consistent with the optimal pH of NE (10), higher histone 4 
cleavage was detected in neutrophils at alkaline than acidic pHs 
(Figure 8). Therefore, neutrophil proteases, but not MPO, may 
be important for NET formation at alkaline pH. Studies showed 
the importance of NE and MPO in NOX-dependent NET for-
mation (9, 47). A recent study showed that A23187-stimulated 
NET formation does not require the activity of MPO enzyme 
(51). Therefore, NE and MPO activities are necessary to drive the 
NOX-dependent NET formation, but the neutrophil proteases 
may be more important for NOX-independent NET formation.

What type of NET formation occurs during calcium ionophore-
mediated NET formation and other forms of NETosis is not fully 
resolved (52). In general, suicidal NETosis could be either Nox 
dependent or Nox independent, but both use nuclear DNA and 
the cells “almost die” at the end of the process. Some reports sug-
gest that neutrophils with no nuclear DNA could survive for some 
more time as cytoplasts (53–55). By contrast, vital NET formation 
involves Nox-independent nuclear DNA bleb release (3) and 
mitochondrial DNA release (56). This form of vital NETosis is 
considered to be very rapid (5–15 min), and neutrophils contin-
ued to survive (57). Subsequent work established that agonists 
such as calcium ionophores A23187 and ionomycin stimulate 
Nox-independent NET formation that leads to suicidal NETosis 
(4, 5, 14, 58–61). We have previously characterized several 
mechanistic steps involved in calcium-induced Nox-independent 
suicidal NETosis that requires mROS (5). Nox inhibitor DPI does 
not inhibit calcium ionophore-mediated NETosis (5). Therefore, 
suicidal NET formation always does not require nicotinamide 
adenine dinucleotide phosphate oxidase-mediated oxidative 
burst. The data presented in this paper are related to calcium-
dependent Nox-independent suicidal NET formation.

In terms of pathobiological significance, the findings pre-
sented in this paper are likely to be relevant to an inflamma-
tory microenvironment that is often characterized by acidosis.  
It has been suggested that neutrophils can sense the pH changes 
between the border (neutral or alkaline conditions) and the 
center of the inflamed area (acidic conditions) (13). This type 
of pH sensing could help to regulate NET formation at the 
center to avoid excessive tissue damage, while allowing NET 
formation at the border of the wounds to help reduce the spread 
of infection. Airways of cystic fibrosis patients are chronically 
inflamed and have large numbers of neutrophils (62, 63). These 
airways are often acidic and show defects in bacterial clearance 
(62, 64–67). Therefore, altering pH may be useful for treating 
wounds and NET-related disease conditions such as cystic 
fibrosis.
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