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Background: The retina and brain share a similar embryologic origin, blood

barriers, and microvasculature features. Thus, retinal imaging has been of

interest in the aging population to help in the early detection of brain

disorders. Imaging evaluation of brain frailty, including brain atrophy and

markers of cerebral small vessel disease (CSVD), could reflect brain health

in normal aging, but is costly and time-consuming. In this study, we aimed

to evaluate the retinal microvasculature and its association with radiological

indicators of brain frailty in normal aging adults.

Methods: Swept-source optical coherence tomography angiography (SS-

OCTA) and 3T-MRI brain scanning were performed on normal aging adults

(aged ≥ 50 years). Using a deep learning algorithm, microvascular tortuosity

(VT) and fractal dimension parameter (Dbox) were used to evaluate the

superficial vascular complex (SVC) and deep vascular complex (DVC) of the

retina. MRI markers of brain frailty include brain volumetric measures and

CSVD markers that were assessed.

Results: Of the 139 normal aging individuals included, the mean age was

59.43 ± 7.31 years, and 64.0% (n = 89) of the participants were females. After

adjustment of age, sex, and vascular risk factors, Dbox in the DVC showed

a significant association with the presence of lacunes (β = 0.58, p = 0.007),

while VT in the SVC significantly correlated with the score of cerebral deep

white matter hyperintensity (β = 0.31, p = 0.027). No correlations were found

between brain volumes and retinal microvasculature changes (P > 0.05).

Conclusion: Our report suggests that imaging of the retinal microvasculature

may give clues to brain frailty in the aging population.
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cerebral small vessel disease, brain frailty, brain volume, retinal microvasculature,
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Introduction

Brain frailty is usually recognized as the product of
physiologic changes associated with advancing age and the
accumulation of multiple diseases (Yassi et al., 2020). Evidence
showed that it would cause a loss of resilience to acute
health problems, which may result from both the diseases and
extrinsic stressors (Bu et al., 2021). Brain frailty is detected
on neuroimaging or postmortem as atrophy and markers
of cerebral small vessel disease (CSVD), including white
matter hyperintensities (WMHs), lacunes, enlarged perivascular
spaces (EPVSs), lacunar infarcts, and microbleeds (Tschirret
et al., 2018; Appleton et al., 2020). These brain parenchyma
lesions can cause an acute stroke syndrome known as lacunar
stroke, or more subtle pathological alteration, which may
eventually lead to neurological deficits and cognitive decline
in the long term. In the aging population, the absence of
CSVD and the presence of large brain volumes are imaging
markers of brain health (Gardener et al., 2018; Pase et al.,
2018). Although neuroimaging is sensitive to brain frailty, it
is costly, time-consuming, and hardly used as a screening
tool for a healthy brain; thus, simpler, inexpensive, and
reproducible biomarkers that can be used on a large population
would offer the prospect of enabling earlier evaluation of
brain global health.

The retina shares embryologic origin and microvascular
characteristics with the brain and is widely regarded as part
of the central nervous system (Chang et al., 2014; Hart
et al., 2016). Retinal thickness and microvasculature offer a
unique route to evaluate tissues that are associated with the
cerebral structures suggesting a clear link between retinal and
cerebral changes (Mutlu et al., 2016, 2017; McGrory et al.,
2017; Méndez-Gómez et al., 2018). Consequently, the retina
is vulnerable to similar neurodegeneration processes that are
associated with cerebral small vessel disease (CSVD) features
and cerebral atrophy.

Previous reports using fundus photography showed that
retinal vessels are associated with radiological indicators
of CSVD in the aging population (Cheung et al., 2010b;
Ballerini et al., 2020); however, fundus photography cannot give
information on the deeper microvasculature. Accumulating
reports using optical coherence tomography (OCT) have
shown that retinal structure is associated with cerebral
microstructural changes and radiological indicators of CSVD
in the aging population (McGrory et al., 2019; Chua et al.,
2021). OCT angiography (OCTA) is an extension of the OCT
that non-invasively images the retinal microvasculature at
a high resolution; this imaging modality provides in-depth
information and visualization of the retinal microvasculature
in different retinal layers (i.e., the superficial and deep
microvasculature). To date, retinal assessment in the
aging population was mainly confined to conventional

angiography, which cannot give information on the deeper
retinal microvasculature.

The recent development of new quantitative OCTA
indicators provided a step forward in evaluating the retinal
microvasculature features such as fractal dimension (Dbox) and
microvascular tortuosity (VT) (Lemmens et al., 2020); these
features are considered an indirect measure of blood flow in the
retinal microvasculature. To the best of our knowledge, these
parameters have never been used in reports focusing on the
aging population.

Our current study employed the swept-source optical
coherence tomography angiography (SS-OCTA) and evaluated
microvascular changes in the retina and its correlation
with frailty imaging markers assessed on MRI in an aging
volunteer cohort.

Materials and methods

Study population

Neurologically normal individuals (aged ≥ 50 years) were
recruited as part of a healthy aging study from the Neurology
Department at West China Hospital, China. Inclusion criteria
included neurologic and neuropsychological examination with
normative standards as previously reported (Casaletto et al.,
2017), no major memory concerns or a diagnosed memory
condition, and the capability to independently complete
activities of daily living by a clinical dementia rating of 0
(Duff et al., 2022). Participants were additionally screened
for sarcopenia by the SARC-F questionnaire (5 components:
Strength, Assistance with walking, Rise from a chair, Climbing
stairs, and Falls) (Malmstrom and Morley, 2013). The SARC-F
scores ≥ 4 are predictive of sarcopenia, which could potentially
indicate an unhealthy state and will not be included. In addition,
individuals who were diagnosed with mental diseases, including
depression or taking antipsychotics, were also not included.

Additionally, individuals were screened for ophthalmic
conditions that could potentially impact the structure
and microvasculature of the retina such as diabetic
retinopathy, preexisting glaucoma, cataract, age-related
macular degeneration, optic neuritis, and high myopia.

Participants answered a wide-ranging questionnaire
covering demographic, education, and self-reported vascular
risk factors, including hypertension, diabetes, smoking, and
alcohol consumption information. Cognitive measures included
the Mini-Mental State Examination (MMSE) and the Montreal
Cognitive Assessment (MoCA-BJ) (Yu et al., 2012).

The Medical Ethics Committee of West China Hospital,
Sichuan University approved the study under the principles
of the Declaration of Helsinki (2020–104). Written informed
consent was obtained from every participant.
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Brain image acquisition and volumetric
measures of brain structure

Image acquisition was performed using a standard 3T
scanner (Siemens Skyra) with a 32-channel head coil at
West China Hospital of Sichuan University. Sequences
consisted of T1- and T2-weighted imaging, fluid-attenuated
inversion recovery (FLAIR), and susceptibility-weighted
imaging (SWI). T1-weighted high-resolution images were
acquired by a 3D magnetization-prepared rapid gradient-
echo (MPRAGE). Imaging parameters were repetition time
(TR) = 1,900 ms; echo time (TE) = 2.4 ms; FA = 9◦; field of
view (FOV) = 250 mm; 256 × 192 matrix; 191 slices; and voxel
dimension = 1.0 mm × 1.0 mm × 1.0 mm.

T1-weighted structural images were processed using
Computational Anatomy Toolbox 12 (CAT12)1 for Statistical
Parametric Mapping (SPM) 12 (Wellcome Trust Center for
Neuroimaging, London, United Kingdom). Each structural
image was first visually inspected for artifacts and then
manually reoriented to set the image origin at the anterior
commissure. The reoriented images were spatially normalized
to the Montreal Neurological Institute space and segmented
into gray matter (GM), white matter (WM), and cerebrospinal
fluid, using the standard tissue probability maps provided
in SPM12. Volume changes induced by normalization
were adjusted using the Jacobian modulation. Spatially
normalized GM images were finally smoothed using a
Gaussian kernel with a full width at half a maximum of
8 mm. Total intracranial volumes (TIVs) were calculated
by summing the volume values of the gray matter, white
matter, and cerebrospinal fluid. Bilateral hippocampus
volumes were calculated using the automated anatomical
labeling (AAL) template.

Cerebral small vessel disease magnetic
resonance imaging markers rating

Small vessel disease MRI markers of lacunes, white matter
hyperintensity (WMH), cerebral microbleeds (CMBs), and
enlarged perivascular spaces (EPVSs) were rated according to
the STandards for Reporting Vascular changes on nEuroimaging
(STRIVE) consensus criteria (Wardlaw et al., 2013).

Lacunes were defined as rounded or ovoid lesions
involving the subcortical regions, 3–15 mm in diameter,
of CSF signal intensity on T2 and FLAIR, generally
with a hyperintense rim on FLAIR and no increased
signal on DWI. WMH was defined as a high signal
intensity region on the FLAIR sequence. The extent of
periventricular and deep WMH was rated using the Fazekas

1 http://dbm.neuro.uni-jena.de/cat/

scale where periventricular WMH extends into the deep
white matter (Fazekas score 3) or deep WMH (Fazekas
score 2 or 3) was regarded as severe WMH. CMBs were
defined as homogeneous rounded hypointense lesions on
susceptibility-weighted imaging with a diameter of 2–10 mm.
EPVSs were defined as small (< 3 mm) round or linear
hyperintense lesions on T2-weighted images in the basal
ganglia or centrum semiovale and rated as 0 to 4 on a
validated semiquantitative scale. We only counted EPVS
in the region of the basal ganglia, which were specifically
identified to be associated with CSVD. An ordinal score
ranging from 0 to 4 was constructed to reflect the total
burden of CSVD, as previously described. The interobserver
agreement of measurements for each CSVD neuroimaging
marker (lacunes, WMH, CMBs, and EPVS) was considered
good to excellent.

Magnetic resonance imaging images were visually inspected
with software (RadiAnt DICOM Viewer1.0.4.4439; Medixant
Ltd., Poznan, Poland) and evaluated by a single rater (TWD)
blind to clinical information and OCT data. A second rater
(YC) evaluated a random sample of 20 patients to assess
inter-rater agreement for the presence of lacunes (kappa 0.83,
P < 0.001), EPVS in CSO (kappa 0.65, P < 0.001), EPVS in
BG (kappa 0.75, P < 0.001), the severity of WMH (kappa
0.70, P < 0.001), and presence of microbleeds (kappa 0.85,
P < 0.001).

Retinal microvascular imaging with
swept-source optical coherence
tomography angiography

With a central wavelength of 1,050 nm and a scan
rate of 200,000 A-scan per second, the SS-OCTA, which
contained a swept-source laser, was used to image the retinal
microvasculature of all the participants. The tool was set with an
eye-tracking function based on an integrated confocal scanning
laser ophthalmoscope to remove eye-motion artifacts. The
lateral resolution, axial resolution, and scan depth were 13 µm,
5 µm, and 3 mm, respectively. Software in the tool segmented
the retinal microvasculature into the superficial vascular plexus
(SVC) and deep vascular plexus (DVC), which was 5 µm
above the inner limiting membrane (ILM) to 25 µm below
the lower layer of the inner nuclear layer (INL), as shown in
Figure 1.

The quality of the macular images was assessed objectively
and subjectively, rejecting images with a signal quality less
than 7 on a scale of 10. Participants who could not cooperate
during imaging were excluded from our data analysis (severe eye
movement and head movement during imaging could produce
artifacts that could affect the data). Angiograms with retinal
diseases such as optic neuritis and age-macular degeneration
were excluded from data analysis.
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FIGURE 1

Illustrative image of the macular microvasculature. The superficial vascular plexus (SVC) and deep vascular plexus (DVC), which was 5 µm above
the inner limiting membrane (ILM) to 25 µm below the lower layer of the inner nuclear layer (INL).

FIGURE 2

Quantification of macular microvasculature of a healthy and unhealthy retina using the deep-learning algorithm. Enface images of a healthy
and unhealthy retina from the swept-source optical coherence tomography angiography (SS-OCTA) were converted into a skeletonized image.
Fractal dimensions using Dbox and microvascular tortuosity were extracted from the skeletonized image using MATLAB.

Quantification of the macular
microvasculature based on deep
learning

The OCTA-Net was utilized for microvasculature
segmentation. This model consists of a split-based coarse
segmentation and a split-based refining segmentation module,
to produce a preliminary confidence map, and optimize
the contour of the retinal microvasculature, respectively

(Ma et al., 2021). The OCTA-Net was trained on a public
OCTA dataset named ROSE-1, and its efficiency has been
validated; the results had a good performance [the area under
the curve (AUC) = 0.9505, ACC = 0.9235, G-mean = 0.8374,
Kappa = 0.7349, Dice = 0.7808, and false discovery rate
(FDR) = 0.1478] when compared to the ground truth (GT).

In brief, OCTA images in PNG format were exported to
a custom-built algorithm software. Images were segmented
to obtain the microvasculature in the SVC and DVC. The
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images were then skeletonized and the foveal avascular zone
(FAZ) was extracted. The microvascular tortuosity (VT) and
fractal dimension using Dbox were calculated based on the
segmentation map using MATLAB as previously reported (Zhao
et al., 2020). Microvascular tortuosity is a metric to measure
the tortuous level of the vasculature and is calculated by
applying the method proposed by Zhao et al. (2020). Vascular
fractal dimension is a well-known measure of the geometric
complexity of vasculature and is calculated according to the
algorithm proposed in a previous report (Ma et al., 2021).
Figure 2 shows the quantification of the microvasculature based
on deep learning.

Statistical analysis

Continuous variables with normal distribution were
expressed as mean ± SD, while skewed distribution was
expressed as medians and interquartile ranges. Categorical
variables are presented as frequencies and percentages. The
z-scores of all the SS-OCT/SS-OCTA parameters and brain
MRI volumes were calculated by subtracting the mean value
from the value of the observation and dividing by the SD. The
univariate analysis (Pearson’s or point-biserial correlation)
was used to examine the association between vascular risk
factors (hypertension, diabetes mellitus, hyperlipidemia,
present drinker, and present smokers) and CSVD markers and
brain MRI volumes. Variables with P < 0.1 in the univariate
analysis and factors commonly considered as confounders were
included in the multivariate analysis. The multivariate linear
regression based on a generalized estimating equation was used
to investigate the association between SS-OCTA parameters
and neuroimaging parameters. We additionally adjusted
for education years when the outcome was the cognitive
tools (MoCA and MMSE). The ß coefficients represent a
standardized mean difference in z-scores of total brain, gray
and white matter, and hippocampal, per SD decreased in
retinal vascular FD and increased tortuosity normalized. All
the analyses were performed with SPSS (version 24, SPSS
Incorporation.). P-values less than 0.05 were considered
statistically significant.

Results

We initially enrolled 160 neurologically normal individuals
who were dementia- and stroke-free. Out of the participants, 4
participants could not cooperate during MRI and were excluded.
Of the 156 individuals who underwent SS-OCTA imaging,
3 individuals could not cooperate, 8 individuals had severe
cataracts, and 6 individuals had poor imaging signal quality
(presence of artifacts on angiograms due to eye movement or
head movement during imaging).

Our study finally included 139 participants who had their
MRI scans and SS-OCTA angiograms, as well as baseline
information as shown in Table 1. The mean age was
59.43 ± 7.31 years, and 64.0% (n = 89) of the participants were
females. Of 139 normal participants, 27 (19.4%) participants had
hypertension, 5 (3.6%) participants had diabetes mellitus, and
18 (12.9%) participants had dyslipidemia. The mean educational
level was 11.32 ± 4.18 years. The median MMSE score was 28
and the MoCA score was 25.

Taking into account the influence of vascular risk factors
on SVD markers and brain volume change, the univariate
analyses showed hypertension significantly correlated with
more severe total WMH (r = 0.14, p = 0.095) and EPVS
(BG, r = 0.20, p = 0.017; CSO, r = 0.14, p = 0.099), while
diabetes associated with the presence of lacunes (r = 0.34,
p < 0.001) and total WMH (r = 0.15, p = 0.077).
In addition, present drinkers and smoker correlated with
brain volumetric measures (Supplementary Table 1). Thus,
hypertension, diabetes, present smokers, and drinkers were
introduced as independent variables in multivariate models
of analysis. Age, sex, and dyslipidemia were additionally
adjusted and considered as commonly confounding factors.
In the multivariate analysis, no significant associations were
found between brain MRI volumetric measures and retina
microvasculature changes.

TABLE 1 Clinical and neuroimaging information of study participants.

Characteristics Descriptive
Age, y 59.43 ± 7.31

Female 89 (64.0)

Education, y 12 (9–16)

Hypertension 27 (19.4)

Diabetes mellitus 5 (3.6)

Dyslipidemia 18 (12.9)

Present smokers 21 (15.1)

Present drinkers 32 (23.0)

MMSE 28 (27–30)

MoCA 25 (23–28)

Presence of lacunes 6 (4.3)

PWMH 1.0 (0–1.0)

DWMH 1 (1.0–1.0)

Presence of Microbleeds 16 (11.5)

BG-EPVS 1.0 (0–1.0)

CSO-EPVS 2 (1.0–2.0)

Total brain volume, 1386.99 ± 127.05

White matter volume 491.84 ± 55.18

Gray matter volume 596.82 ± 43.48

Hippocampus volume 3.85±0.34

VT in SVC 1.57±0.16

Dbox in SVC 1.63±0.03

VT in DVC 1.30±0.30

Dbox in SVC 1.70±0.01

Data are n (%), mean (SD) or median (IQR).
MMSE, mini-mental state examination; MoCA, Montreal Cognitive Assessment;
PWMH, periventricular white matter hyperintensity; DWMH, deep white matter
hyperintensity; BG-EPVS, basal ganglia-enlarged perivascular spaces; CSO-EPVS,
centrum semiovale-enlarged perivascular spaces; SVC, superficial vascular complex;
DVC, deep vascular complex; VT, microvascular tortuosity; Dbox , fractal dimension.
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Association between macular
microvasculature and brain imaging
markers of cerebral small vessel
disease

Dbox in the DVC showed a significant association with the
presence of lacunes (β = 0.58, p = 0.007, Table 2). Microvascular
tortuosity (VT) in the SVC significantly correlated with the score
of cerebral deep WMH (β = 0.31, p = 0.027, Table 2).

Association between macular
microvasculature and cognitive tools

The MoCA scores significantly correlated with
microvascular tortuosity in the SVC (β = −0.06, p = 0.011,
Table 2). In addition, we could find a marginal significance
between MoCA and Dbox in the SVC (β = −0.05, p = 0.051) and
DVC (β = −0.05, p = 0.055).

Discussion

Magnetic resonance imaging for clinical indications is
becoming frequent and radiological frailty indicators of CSVD
and brain atrophy are commonly reported incidental findings,
especially in aging individuals. WMH and lacunes of presumed
vascular origin are recognized as radiological indicators of

SVD. Our study shows that deep WMH presumed of vascular
origin correlated with retinal tortuosity in SVC, while fractal
dimension values in the DVC correlated with the presence of
lacunes. Importantly, our results showed that SVC tortuosity
significantly correlated with the MoCA scores. Taken together,
these results suggest that macular microvascular changes may
reflect the cerebral radiological indicators associated with brain
frailty in aging individuals.

Microvascular tortuosity is suggested as a measure of
blood flow (Vilela et al., 2021). Our current report showed
that tortuosity in the SVC correlated with deep WMH as
measured with the Fazekas scale in our aging population.
Increased microvascular tortuosity is reflective of dysfunction
of the microvascular wall, disturbed blood flow, tissue
hypoxia, and dysfunction of the blood–retina barrier (Cheung
et al., 2012; Tapp et al., 2019). Related processes have been
detailed to result in cerebral WMH proposing that similar
mechanisms on the microvascular level occur concurrently
in the retina and the brain. On the other hand, increased
macular microvasculature tortuosity has been linked with
hypertension, cognitive impairment, and stroke and is suggested
to represent microvascular impairment due to the fall of the
vessels (Cheung et al., 2013; Ong et al., 2013; Tapp et al., 2019;
Wu et al., 2020). Deep WMH reflects microvascular damage
in the brain and is associated with CSVD, thus we suggest
that microvascular changes in the SVC may be associated
with cerebral microvascular changes, which are in line with
previous reports (Ikram et al., 2006; Doubal et al., 2010a;
McGrory et al., 2019).

TABLE 2 Correlation between MRI parameters and OCTA measures.

SVC DVC

Variable VT Dbox VT Dbox

β Coefficient P value β Coefficient P value β Coefficient P value β Coefficient P value

(95% CI) (95% CI) (95% CI) (95% CI)
Total brain 0.02 (–0.19 to 0.22) 0.881 −0.002(−0.008 to 0.004) 0.550 0.09 (–0.12 to 0.31) 0.406 0.02 (–0.15 to 0.19) 0.817

White matter −0.007(−0.20 to 0.19) 0.943 0.01 (–0.15 to 0.17) 0.873 0.05 (–0.13 to 0.24) 0.553 −0.03(−0.18 to 0.13) 0.749

Gray matter −0.03(−0.20 to 0.14) 0.735 0.10 (–0.05 to 0.24) 0.19 −0.04(−0.25 to 0.17) 0.705 −0.07(−0.20 to 0.06) 0.301

Hippocampus −0.08(−0.26 to 0.10) 0.385 0.03 (–0.14 to 0.21) 0.721 0.08 (–0.09 to 0.25) 0.386 −0.03(−0.18 to 0.12) 0.706

CSVD markers

Lacunes 0.47 (–0.26 to 1.20) 0.208 0.20 (–0.12 to 0.52) 0.222 −0.15(−0.93 to 0.63) 0.703 0.58 (0.15 to 0.93) 0.007

PWMH 0.13 (–0.10 to 0.36) 0.274 0.20 (–0.04 to 0.44) 0.107 −0.12(−0.37 to 0.16) 0.419 0.04 (–0.16 to 0.24) 0.683

DWMH 0.31 (0.03 to 0.58) 0.027 0.02 (–0.32 to 0.36) 0.928 −0.14(−0.42 to 0.15) 0.350 −0.06(−0.30 to 0.19) 0.640

Microbleeds 0.20 (–0.21 to 0.61) 0.343 −0.11(−0.58 to 0.36) 0.647 −0.21(−0.82 to 0.40) 0.496 −0.11(−0.50 to 0.28) 0.581

BG-EPVS 0.04 (–0.21 to 0.28) 0.774 −0.13(−0.32 to 0.05) 0.162 0.0 (–0.24 to 0.25) 0.983 0.12 (–0.07 to 0.32) 0.221

CSO-EPVS 0.09 (–0.11 to 0.29) 0.385 0.05 (–0.10 to 0.19) 0.529 −0.14(−0.34 to 0.07) 0.196 0.02 (–0.13 to 0.17) 0.794

MoCA −0.06(−0.11 to −0.02) 0.011 −0.05(−0.09 to 0.0002) 0.051 0.05 (–0.013 to 0.104) 0.128 −0.05(−0.09 to 0.001) 0.055

MMSE −0.08(−0.17 to 0.005) 0.064 −0.02(−0.11 to 0.08) 0.759 0.02 (–0.08 to 0.12) 0.702 −0.03(−0.11 to 0.06) 0.575

Values represent standardized mean difference in z-scores of brain MRI volumetric measures (95% confidence interval) per SD decrease in average SVD and DVC tortuosity and
Dbox change.
Values are adjusted for age, sex, hypertension, diabetes mellitus, hyperlipidemia, alcohol intake, and current smokers.
Additional adjusted for education.

PWMH, periventricular white matter hyperintensity; DWMH, deep white matter hyperintensity BG-EPVS, basal ganglia-enlarged perivascular spaces; CSO-EPVS, centrum semiovale-
enlarged perivascular spaces; MMSE, mini-mental state examination; MoCA, Montreal Cognitive Assessment; SVC, superficial vascular complex; DVC, deep vascular complex; VT,
microvascular tortuosity; Dbox , fractal dimension parameter.
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The fractal dimension describes the complexity of the
branching pattern and the density of the vascular system.
Accumulating retinal imaging reports have shown that reduced
fractal dimension in the retina is linked with hypertension,
ischemic stroke, and diabetes and is thought to reflect
microvascular impairment due to the destruction of the
microvasculature, thus creating a simpler microvascular
network (Doubal et al., 2010b; Frydkjaer-Olsen et al., 2015;
Kostic et al., 2018; McGrory et al., 2019; Lemmens et al., 2020;
Rim et al., 2020). Previous reports using retinal photographs
showed that retinal microvascular abnormalities are associated
with subclinical cerebral infarction (Cheung et al., 2010a,b;
Ikram et al., 2013). Our current report showed that fractal
dimension in the DVC significantly correlated with the
presence of lacunes of presumed vascular origin. Lacunes are
an expression of cerebral ischemia (microvascular damage)
from different etiologies and are also suggested as a radiological
marker of CSVD. DVC consists of capillaries (responsible for
the diffusion of oxygen) and is sensitive to the ischemic changes
in the retina (Wang et al., 2018). The correlation between the
DVC and the presence of lacunes of presumed origin suggests
that ischemic changes in the deeper retinal microvasculature
reflect the ischemic changes in the brain.

Neuropsychological assessments such as the MoCA is a
fundamental approach that is used to assess the cognition in
individuals. The association between OCTA variables and the
MoCA has been suggested to be useful in the clinical evaluation
and monitoring of patients with cognitive dysfunction (Zhang
et al., 2020; López-Cuenca et al., 2021). Our current report
showed that the MoCA scores significantly correlated with
SVC changes in aging individuals, which are congruent with
previous reports. The significant association of the MoCA and
SVC gives meaningful evidence for OCTA investigation for
cognitive screening.

Our study has some limitations. The average age in our
volunteer cohort was younger than in other similar studies
(Ikram et al., 2006; McGrory et al., 2019; Chua et al., 2021).
This might be an important reason why we did not find a
significant relationship between markers of cerebral atrophy
and retinal neurodegeneration. Another limitation is that the
participants included in our study did not have eye-related
disorders or brain disorders, resulting in the inclusion of
relatively normal individuals, which might have caused the
underestimation of our report. In addition, as a cross-section
design, we cannot verify the cause and effect of the relationship
between retinal microvasculature and brain abnormality, and
the potential mechanisms need further investigation. The OCTA
imaging procedure requires concentration and cooperation
from individuals, which makes some of the images obtained
inappropriate for analysis; head movement, constant eye
blinking, and eye movement during imaging produce artifacts
that may affect data.

In conclusion, this study represents the first OCTA study
investigating the retinal microvasculature based on a deep

learning algorithm and its relationship with CSVD markers
in the aging population. As the main findings, we showed
that SVC correlated with deep WMH, while DVC correlated
with the presence of lacunes of presumed vascular origin; we
also showed that SVC correlated with the MoCA scores in
the aging population. Our study suggests that OCTA could be
used as a potential marker of CSVD indicators and initiate
extensive cognitive evaluation and reliable monitoring in the
aging population. Future studies with larger sample sizes and
longitudinal study designs will be needed to validate the
suitability of macular microvasculature assessment with OCTA
monitoring as an imaging biomarker of CSVD and cognition in
the aging population.
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