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Active phase prebiotic feeding alters gut microbiota, induces weight-
independent alleviation of hepatic steatosis and serum cholesterol in
high-fat diet-fed mice
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Growing evidence suggests that prebiotics may induce weight loss and alleviate non-alcoholic fatty
liver disease (NAFLD) via modulation of the gut microbiota. However, key members of the gut micro-
biota that may mediate the beneficial effects of prebiotics remain elusive. Here, we find that restricted
prebiotic feeding during active phase (HF-ARP) induced weight-independent alleviation of liver steato-
sis and reduced serum cholesterol in high-fat diet (HF) fed mice more significantly than unrestricted
feeding (HF-UP). HF-ARP mice also showed concomitantly altered gut microbiota structure that was
different from HF-UP group along with significantly increased production of total short-chain fatty-
acids (SCFAs). Amplicon sequence variants (ASVs) were clustered into co-abundant groups (CAGs) as
potential functional groups that may respond distinctively to prebiotic consumption and prebiotic feed-
ing regime. Prebiotic feeding induces significant alterations in CAG abundances by day 7. Eight of 32
CAGs were promoted by prebiotics, including CAG17 with the most abundant ASV from
Parabacteroides, CAG22 with Bacteroides thetaiotamicron and CAG32 with Fecalibaculum and
Akkermansia. Among the prebiotic-promoted CAGs, CAG20 with ASVs from Lachnospiraceae and
CAG21 with ASVs from Bifidobacterium and Lachnospiraceae were significantly enhanced in HF-ARP
compared to HF-UP. Moreover, most of the prebiotic-promoted CAGs were also significantly associated
with improvements in hepatic steatosis, reduction in serum cholesterol and increased cecal propionate
production. Together, these results suggest that the impact of prebiotics on weight-independent allevi-
ation of liver steatosis and cholesterol-lowering effect can be optimized by restricting prebiotic intake
to active phase and is associated with a distinct change of gut microbiota with increased SCFA
production.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is currently the most
common chronic liver condition and its prevalence has increased
in concordance with the obesity epidemic [1,2]. NAFLD comprises
a spectrum of liver conditions starting with steatosis characterized
by intrahepatic accumulation of triglyceride and progressing to
non-alcoholic steatohepatitis and even hepatocellular carcinoma
[1]. To date, weight loss has been considered as the only effective
way to manage NAFLD [1,3]. However, to achieve successful weight
loss is challenging and often not sustainable over long-term [4].
Thus, the need for feasible approaches to treat or prevent NAFLD
arises.

Growing evidence suggests the importance of gut microbiota in
mediating NAFLD [5,6]. Several studies have established the role of
gut microbiota in lipid and cholesterol metabolism by displaying
that germfree mice fail to develop NAFLD, even under hypercaloric
diet [7–10]. It was further shown that NAFLD phenotype can be
transferred via the gut microbiota by transplanting the gut
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microbiota from NAFLD-resistant and NAFLD-prone mice into
germfree mice, regardless of obesity [11]. Moreover, studies with
fecal transplantation involving human donors, further support
the involvement of the gut microbiota in NAFLD. In one such study,
fecal microbiota transplantation from human donors with hepatic
steatosis induced development of hepatic steatosis in mice within
a short period [12]. Another study showed that fecal microbiota
transplantation from a genetically obese child induced hepatic
steatosis in germfree mice fed on normal diet, but when the mice
received the fecal microbiota transplant from the same donor after
dietary intervention, the mice presented normal liver physiology
[13]. Also, NAFLD-associated pathologies developed in high-fat diet
(HFD) fed germfree mice inoculated with microbiota from nonalco-
holic steatohepatitis patients, instead of healthy donors [14].
Recently, a study demonstrated that nonvirulent endotoxin pro-
ducing strains of pathobionts overgrowing in the gut of obese
human volunteers with severe fatty liver, can induce NAFLD in
combination with HFD in germfree mice [15]. These evidence sug-
gest that the gut microbiota plays a fundamental causal role in the
development of NAFLD. Consequently, the gut microbiota has
become a potential target for improving NAFLD-associated
pathologies.

Prebiotics have been shown to alter the gut microbiota, pro-
mote the growth of beneficial bacteria, improve obesity-
associated metabolic syndrome and NAFLD [6,16–18]. Rodent
studies have shown that prebiotic feeding can prevent the develop-
ment of NAFLD-associated pathologies. In one of the earlier studies
it was demonstrated that inulin consumption induced weight loss
and decreased hepatic triglyceride accumulation in obese rats [19].
In another study, fructo-oligosaccharides supplementation
reduced the accumulation of hepatic triglyceride by modulating
the gut microbiota, increasing fatty acid oxidation and glucagon-
like peptide 1 expression [20]. A variety of prebiotics such as inulin
[21,22], chitin-glucan [23], polysaccharides from fungi [24], arabi-
noxylan [25] have shown to alleviate NAFLD along with reduction
in body weight in HFD-fed mice possibly via production of short
chain fatty acids (SCFAs).

Often the reported improvement in NAFLD phenotype is associ-
ated with weight loss induced by prebiotic consumption. This
makes it difficult to assess the contribution of prebiotic-induced
alterations in the gut microbiota in the improvement in NAFLD rel-
ative to body weight regulation. Although, the studies mentioned
above [19–25] suggest that prebiotic consumption can induce
weight loss and improve NAFLD associated pathologies via modu-
lation of the gut microbiota, the key members of the gut microbiota
that may mediate the beneficial effects of prebiotics remain
elusive.

In addition, recent studies have shown that the composition
and abundance of gut microbiota and its metabolites undergo diur-
nal oscillations [26,27]. These microbial oscillations depend on fac-
tors such as diet and feeding time [27–29]. As a result, the gut
microbiota would present variable states specific to the time of
day for dietary interventions. Prebiotics selectively modulate the
gut microbiota and the impact of timed feeding of prebiotics on
the gut microbiota and metabolic health has not been studied
before. Therefore, in this study we examined if timed feeding of
prebiotics can impact the development of NAFLD by interacting
with the gut microbiota.

In this study, we evaluate the efficacy of prebiotic feeding
regime on gut microbiota and NAFLD-associated pathologies. We
find that prebiotic consumption improved the alleviation of hep-
atic steatosis along with cholesterol-lowering effect, regardless of
weight loss. Additionally, we show that restricting prebiotic feed-
ing to active phase of the day can exert a more robust impact on
gut microbiota, SCFAs production and metabolic phenotype with-
out the involvement of weight loss.
449
2. Material and methods

2.1. Animal experiment and sample collection

Specific pathogen-free (SPF), 5-week-old male mice (C57BL6/J)
were procured from SLAC Inc. (Shanghai, China) and acclimated
at the animal center under a strict 12 h light: 12 h dark cycle, with
lights being turned on from 7 a.m. to 7 p.m. (Zeitgeber time: ZT 0
denotes lights on and ZT12 denotes light off) with normal control
diet (NCD, AIN93G Research Diet, NJ, USA) available ad libitum
for 3 weeks with 5 mice per cage at constant temperature
(22 �C ± 3 �C) with access to autoclaved water. After the acclima-
tion phase the mice were randomly assigned to one of the follow-
ing three groups as described in Fig. 1A: (i) control group with no
access to prebiotic (HF, n = 10), (ii) unrestricted access to prebiotic
(HF-UP, n = 10) and (iii) active phase (ZT12-ZT0) restricted access
to prebiotic (HF-ARP, n = 10). During the experimental period all
three groups had ad libitum access to HFD (D12492, 60% kcal fat
Research Diet, NJ, USA, Table S1). The prebiotic Formula 3 used
in this study was manufactured by Perfect (China) Co., Ltd and is
a mixture of resistant starch, fructooligosaccharide, inulin and
xylooligosaccharide (Table S2). The prebiotic was administered
via drinking water at 10% (w/v) for 11 weeks followed by 20%
(w/v) for 4 weeks. The prebiotic solution was prepared fresh at
the beginning of each phase of the day and distributed according
to the feeding regime described in Fig. 1A and at the same time
the cage of the mice was changed. During the study period, food
and water intake was measured twice daily. Body weight was mea-
sured twice per week and at the same time every week. At the end
of the study period, mice were sacrificed after 6 h of fasting fol-
lowed by collection of serum and tissue samples, which were
stored at �80 �C until further analysis. Fresh fecal samples (2–3
fecal pellets/mice) were collected from the mice individually and
stored at �80 �C until DNA extraction. All animal experiments
were approved by the Institutional Animal Care and Use Commit-
tee (IACUC) of the School of Life Sciences and Biotechnology of
Shanghai Jiao Tong University (No. 2018035).

2.2. Serum cholesterol measurement

Levels of serum total cholesterol was measured using enzy-
matic colorimetric assay kit according to the manufacturer’s
instructions (Nanjing Jiancheng Bioengineering Institute, China).

2.3. Liver histology and hepatic lipid measurement

Specific sections of the fresh liver from each mouse were fixed
in paraformaldehyde. The samples were then embedded in paraffin
and subsequently sectioned and stained with hematoxylin and
eosin. The samples were observed and images were captured using
Leica DMRBE microscope. Hepatic triglyceride was measured as
described previously [13] using an assay kit according to the man-
ufacturer’s instructions (Nanjing Jiancheng Bioengineering Insti-
tute, China).

2.4. Measurement of SCFAs

The concentrations of SCFAs was measured in the cecal content
collected from the mice, by mixing 0.2 g of the cecal content in
1 ml PBS to prepare a homogenous mixture and then centrifuged
at 16000g for 15 min at 4 �C. Next, the supernatant was filtered
through 0.22-mm filter. Then, 200 ll of the filtrate was acidified
using 0.1 ml of 50% (v/v) sulfuric acid and extracted using 0.4 ml
of diethyl ether. Consequently, concentration of SCFA (acetic acid,
propionic acid and butyric acid) was determined on Agilent 6890



Fig. 1. Prebiotic consumption reduces hepatic steatosis and cholesterol levels independent of body weight regulation. (A) Outline of the three different prebiotic feeding
regimes used in this study. The three groups have different access to prebiotics; HF = no access to prebiotics, HF-UP = unrestricted access to prebiotics and HF-ARP = active
phase (ZT12-ZT0) restricted access to prebiotics. During the experimental period all three groups had ad libitum access to HFD. (B) Daily food intake during the study period.
(C) Prebiotic intake during the study period. (D) Body weight gain over time. (E) Final body weight gain (n = 10). (F) Quantification of serum cholesterol (n = 8/group). (G)
Representative histology images of H&E-stained liver sections. (H) Quantification of hepatic triglyceride (n = 10/group except HF-ARP n = 9). (I) Relative mass of liver (n = 10).
Data expressed as mean ± SEM and statistical significance assessed by two-way repeated measures ANOVA (B, D) ANOVA one-way ANOVA (E-F, H-I), followed by a Tukey
post-hoc test for multiple group comparison and unpaired t test for (C) (*p < 0.05, **p < 0.01, ***p < 0.001).
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gas chromatography system coupled with flame ionization detec-
tor using a polar HP-FFAP (0.25 mm � 0.25 mm � 30 m) capillary
column (Agilent Technologies, USA). Hydrogen gas was used as
carrier gas, with a flow rate of 1.0 ml/min. The oven temperature
was initially set at 140 �C for 10 min, then increased to 165 �C at
5 �C/min and then to 270 �C at 25 �C/min for 2 min. The detector
temperature was set at 280 �C and the inlet temperature at
250 �C. Sample volume of 5 ll was used and running time for each
sample was 30 min. SCFAs were quantified by comparing peak
areas with those of chemical standards and data was acquired with
the Agilent ChemStation (version G2070AA, Agilent Technologies).

2.5. Microbial DNA extraction and 16S rRNA gene V3-V4 region
sequencing

Microbial DNA was extracted from the fecal samples collected
from the individual mice on the day before the start of the prebi-
otic feeding regime for baseline/day 0 timepoint and subsequently
7, 77, 84 and 105 days after initiating the prebiotic feeding regime
to explore the variation of gut microbiota during the study period,
according to a method described previously [30]. A total of 149
samples were sequenced (HF, n = 10; HF-UP, n = 10; HF-ARP,
n = 10 for each timepoint except HF-UP d7, n = 9). The V3-V4
regions of 16S rRNA gene amplicons were sequenced on the MiSeq
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instrument (Illumina Inc., USA). A 16S rRNA gene sequencing
library for the V3-V4 regions was prepared according to a modified
version of the instructions provided by the manufacturer [31].
Briefly, for the amplicon PCR; 25-ll reaction mix for each DNA
sample was prepared containing 2x Phanta Max Buffer, 10 mM
dNTP Mix, 1 lM of each specific primer for V3–V4 region of 16S
rRNA gene as described in protocol, 0.5 U of Phanta Max Super-
Fidelity DNA polymerase (Vazyme, China) and 10 ng microbial
DNA. PCR was performed according to the following program: a
pre-denaturation step at 95 �C for 3 min followed by 21 cycles of
denaturation (30 s at 95 �C), annealing (30 s at 55 �C), extension
(30 s at 72 �C) and a final extension step (5 min at 72 �C). Then,
PCR products were detected by 1.2% agarose gel electrophoresis
and purified by Hieff NGS� DNA Selection Beads (Yeasen Biotech
Co. Ltd., China) beads followed by detection of purified PCR prod-
ucts by 1.2% agarose gel electrophoresis. Next, for the index PCR
(Nextera XT Index Kit); 25-ll reaction mix contained 2x Phanta
Max Buffer, 10 mM dNTP Mix, 2.5 ll of each Index primers (Nex-
tera XT Index F-indexing primer and R-indexing primer), 0.5 U of
Phanta Max Super-Fidelity DNA polymerase, and 2.5 ll of purified
PCR product from the previous step. PCR was performed according
to the following program: a pre-denaturation at 95 �C for 3 min fol-
lowed by 8 cycles denaturation (30 s at 95 �C), annealing (30 s at
55 �C), extension (30 s at 72 �C) and a final extension step (5 min
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at 72 �C). The purification of index PCR products was carried out
with Hieff NGS� DNA Selection Beads according to the protocol
and detected by gel electrophoresis. The purified products were
mixed at an equal ratio, quantitated by Qubit (Life Technologies,
United States) and gel electrophoresis to ensure correct
amplicon size. The final pooled sample library was denatured
with NaOH, diluted to 12 pM with hybridization buffer
Illumina-HT1, spiked with 30% PhiX and then heat denatured at
96 �C for 2 min prior to loading it onto a MiSeq v3 reagent cartridge
and sequenced using the Illumina Miseq System (Illumina Inc.,
United States).

2.6. Microbiota data analysis

The 16S rRNA gene sequence data was processed and analyzed
on the QIIME2 software (v2018.11) [32]. The raw sequence data
was demultiplexed and then denoised with DADA2 pipeline (q2-
dada2 plugin) [33] to obtain the amplicon sequence variants
(ASVs) frequency data table. Alpha diversity metrics (Observed
ASVs and Shannon’s index), beta diversity metric (Bray-Curtis dis-
similarity), and Principle Coordinate Analysis (PCoA) were per-
formed using the q2-diversity after rarefying the samples to
16,500 sequences per sample. One sample was excluded from
downstream diversity analysis as the number of high-quality reads
obtained was less than 16,500. The alpha diversity indices were
compared at each timepoint with Kruskal-Wallis tests and the p
values were adjusted for multiple comparison with Benjamini-
Hochberg method [34]. The structure of the gut microbiota was
compared using beta diversity with Bray-Curtis dissimilarity met-
ric, visualized by principal-coordinate analysis (PCoA) plots and
statistical significance assessed by permutational multivariate
analysis of variance (PERMANOVA) via q2-diversity with 9,999
permutations and p values were adjusted with Benjamini-
Hochberg correction method [34]. Taxonomic assignment for ASVs
was performed via the q2-feature-classifier [35] using the SILVA
rRNA gene database [36].

2.7. Microbial CAG network analysis

Co-abundant group (CAG) network analysis was used to iden-
tify the key responsive phylotypes, which were associated with
improvements in hepatic steatosis and cholesterol-lowering
effect. The correlations between the ASVs which were shared
among at least 20% of the samples were calculated by using the
SparCC method (bootstrap value, 100) [37]. Next, on the basis
of SparCC correlation coefficient matrix, SparCC distance matrix
(1-SparCC correlation coefficient) was calculated for the 275
shared ASVs, which were then clustered into 32 CAGs by applying
Ward’s hierarchical clustering method and PERMANOVA with 999
permutations. A cluster tree was constructed and PERMANOVA
was applied sequentially along the tree from top to bottom to
identify the nodes with no significant difference as a single CAG
(p > 0.001). Then, the CAG network was visualized in Cytoscape
v3.8.0 [38].

2.8. Statistical analysis

Statistical analysis was performed using Graphpad Prism 8 soft-
ware and R (version 3.6.2). The following R packages were used for
analysis; ComplexHeatmap [39] and ggplot2. One-way analysis of
variance (ANOVA) followed by Tukey post hoc test for multiple
group comparison was used to compare the HF, HF-UP, and HF-
ARP for physiological and biochemical data. Body weight gain over
time was compared using two-way repeated measures ANOVA.
Prebiotic intake was compared using unpaired t-test. Spearman
correlation analysis was used to determine the association
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between CAGs, metabolic parameters and SCFAs followed by FDR
correction using the Benjamini and Hochberg. Differential abun-
dance of CAGs was tested by the Mann-Whitney test followed by
FDR correction using the Benjamini-Hochberg method.

2.9. Data availability

The 16S rRNA gene sequence data generated in this study has
been submitted to Sequence Read Archive (SRA) maintained by
NCBI under the accession number PRJNA657015.
3. Results

3.1. Prebiotic consumption improved hepatic steatosis and lowered
serum cholesterol independent of weight loss

During the study period, despite similar weight gain in all three
groups (Fig. 1D and E), elevated levels of cholesterol (Fig. 1F), and
hepatic steatosis (Fig. 1G and H) was only observed in HF group. In
contrast, both HF-UP and HF-ARP groups displayed improvement
in hepatic steatosis (Fig. 1G), and this improvement was confirmed
by measuring hepatic triglyceride (Fig. 1H). Interestingly, even
though both HF-UP and HF-ARP showed reduction in liver weight
compared to HF but only HF-ARP showed significant reduction
(Fig. 1I). Hepatic triglyceride was reduced by 55.4% in HF-UP and
59.7% in HF-ARP compared to HF group. Additionally, both HF-UP
and HF-ARP exhibited cholesterol-lowering effect, but HF-ARP
showed larger improvement, where total cholesterol was reduced
by 24% in HF-UP and 37.1% in HF-ARP compared to HF group
(Fig. 1F). Also, in comparison with HF-UP, HF-ARP showed further
reduction in cholesterol levels (p = 0.0745). Interestingly, prebiotic-
induced improvement in hepatic steatosis and cholesterol-
lowering effect observed in this study were independent of weight
loss.

Overall, consumption of prebiotics significantly reduced the
daily food intake, particularly during the active phase (Fig. 1B).
Also, HF-ARP consumed more food than HF-UP (Fig. 1B). However,
this reduction in daily food intake did not alter the cumulative
food intake significantly (Fig. S1). Total daily prebiotic intake
was significantly higher for HF-UP, however active phase specific
consumption of prebiotic was higher in HF-ARP (Fig. 1C). During
the phase I of the study period with 10% (w/v) prebiotic con-
sumption we did not see an impact on the body weight
(Fig. 1D) and subsequently increased the prebiotic consumption
to 20% (w/v) in phase II. However, with increased prebiotic con-
sumption (Fig. 1C), we did not see an impact on the body weight
(Fig. 1D). We did not observe biologically relevant cage-
dependent confounding effect of food or prebiotic intake on body
weight gain (Fig. S8, Tables S3 and S4).

3.2. Restricting the feeding time of prebiotics to the active phase
increased SCFA production

Here, we found that HF-ARP mice displayed a significant
increase in overall SCFA production (Fig. 2D). Specifically, propi-
onate production was increased in both HF-UP and HF-ARP
(Fig. 2B). However, acetate (p < 0.01) and butyrate (p = 0.07) were
increased in HF-ARP (Fig. 2A and C). Moreover, increase in SCFA
production, particularly propionate, was associated with improve-
ment in hepatic steatosis (Fig. S6). Also, we found that the prebiotic
treatment significantly increased the colon length and weight
(Fig. S2A and B). Furthermore, the prebiotic treatment significantly
increased cecum weight and cecal tissue weight (Fig. S2C and D).
These indicate that prebiotic feeding prevented the loss of colonic
and cecal mass.



Fig. 2. Active phase restricted feeding of prebiotics results in increased production of SCFAs in HFD-fed mice. Quantification of cecal acetate (A), propionate (B) butyrate (C)
and total SCFA (D) production (n = 8/group except HF-UP n = 10). Data expressed as mean ± SEM and statistical significance assessed by one-way ANOVA, followed by a Tukey
post-hoc test for multiple group comparison (*p < 0.05, **p < 0.01, ***p < 0.001).
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3.3. Gut microbiota structure was altered by both prebiotic
consumption and prebiotic feeding regimen

To analyze the structural changes of the gut microbiota in
response to both prebiotic consumption and prebiotic feeding reg-
imen, we sequenced the V3-V4 region of the 16S rRNA gene using
the fecal samples collected from the mice on the day before the
start of the prebiotic feeding regime for baseline/day 0 timepoint
and subsequently days 7, 77, 84 and 105 after initiating the prebi-
otic feeding regime to explore the variation of gut microbiota dur-
ing the study period. After sequencing, we obtained 4,760,878
high-quality reads and 853 ASVs, with an average of
31,952 ± 5799 reads per sample. The alpha diversity (Fig. 3A and
B) of the gut microbial community was significantly reduced in
HF-UP and HF-ARP compared to HF group after only 7 days of pre-
biotic feeding and continued to be significantly reduced through-
out the study duration. There was no difference in gut microbial
alpha diversity indices between HF-UP and HF-ARP until day 84,
when HF-ARP showed an increase in diversity compared to HF-UP.

Before the start of prebiotic consumption, the three groups dis-
played no significant difference in the gut microbiota structure
(Fig. 3C and D). The overall structure of gut microbiota was signif-
icantly altered in HF-UP and HF-ARP groups compared to HF group
only after 7 days of prebiotic consumption and continued to dis-
play significant differences throughout the study duration, as
shown by the PCoA (Fig. 3C and S7) and PERMANOVA analysis
(Fig. 3D) based on the Bray-Curtis dissimilarity matrix. This indi-
cates that consumption of prebiotics has a strong impact on the
structure of gut microbiota starting within a short duration. More-
over, the difference in prebiotic feeding regime also displayed a
significant impact on the gut microbiota structure starting as early
as day 7. However, the magnitude of dissimilarity index between
HF-UP and HF-ARP decreased over time but was still significantly
different as shown in Fig. 3C and E.

Together, these results suggest that both prebiotics and differ-
ence in prebiotic feeding regime exert a significant effect on the
overall gut microbiota structure in a relatively short duration, long
before alleviation of metabolic phenotypes were observed.

3.4. CAGs were associated with improvements in hepatic steatosis,
cholesterol levels and production of cecal SCFAs

To identify the key members of the gut microbiota which
respond to the prebiotic feeding regime as a functional group, we
used co-abundant analysis to identify potential functional groups
as guilds. A microbial co-abundant network was built to visualize
the plausible interactions between the 275 ASVs which were
shared by at least 20% of the samples, and accounted for 97.18 ± 2
.14% (mean ± S.D.) of the total sequences in each sample. The ASVs
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were further clustered into 32 co-abundant groups (CAGs) by
SparCC method and PERMANOVA analysis (Fig. 4A).

Consumption of prebiotics altered guild-level organization of
the gut microbiota as early as day 7 of prebiotic feeding (Fig. 4B,
S3A and S3B). At day 7, four CAGs including, CAG17, CAG20,
CAG21, and CAG22 were significantly increased in response to pre-
biotic consumption in both HF-UP and HF-ARP, while CAG32 was
significantly increased only in HF-ARP. Also, CAG18 and CAG19
were significantly increased only in HF-UP at day 7 and remained
significantly enhanced compared to HF-ARP over the course of
study duration except for day 105. At day 77, CAG32 was increased
in all three groups, whereas at day 84 and 105 it was significantly
increased in HF-ARP and HF-UP compared to HF. CAG20 started
showing significant difference between HF-UP and HF-ARP from
day 84 and continued to show significant difference also at day
105. Furthermore, CAG21 was significantly increased in HF-ARP
compared to HF-UP at day 105, while CAG17 was enhanced in
HF-UP compared to HF-ARP at day 105. Additionally, CAG23
increased in response to prebiotic feeding at day 77 and showed
significant increase over time. Overall, eight CAGs were promoted
by prebiotic feeding and six of them (CAG17, CAG18, CAG19,
CAG20, CAG21 and CAG32) showed differential enrichment
between HF-UP and HF-ARP over the course of the study duration.
On the other hand, consumption of prebiotic significantly
decreased the relative abundance of fifteen CAGs after 7 days of
prebiotic feeding, these CAGs remained significantly decreased
throughout the study period (Fig. 4B).

As hepatic triglyceride and serum cholesterol were measured at
the end of the study period, we compared the relative abundance
of CAGs between the three groups at day 105 (Fig. 4C). At day
105, five CAGs including, CAG17, CAG21, CAG22, CAG23 and
CAG32 were significantly increased in response to prebiotic con-
sumption in both HF-UP and HF-ARP, while CAG20 was only
increased in HF-ARP. These five CAGs were promoted by prebiotic
feeding and also showed significant negative correlation with
levels of hepatic triglyceride and serum cholesterol (Fig. 5). Inter-
estingly, these five CAGs were also strongly associated with propi-
onate production in the cecum (Fig. 5).

Among these CAGs, CAG17 was the dominant CAG with ASVs
from Parabacteroides, Lachnospiraceae, Ruminococcaceae and Mol-
licutes, displaying interaction between ASVs from different phyla
within the same functional guild. Also, CAG 17 was enriched in
HF-UP when compared to HF-ARP (FDR = 0.0518) (Fig. 4C, S3A
and S3B). CAG21, consisting of ASVs from Bifidobacterium and Lach-
nospiraceae was significantly enriched in HF-ARP compared to HF-
UP (Fig. 4C, S3A and S3B), demonstrating that the prebiotic feeding
regime can regulate the impact of prebiotic on the gut microbiota.
CAG22, comprised predominantly of Bacteroides thetaiotamicron,
was not significantly different between HF-UP and HF-ARP



Fig. 3. Active phase restricted feeding of prebiotics modulates the structure of gut microbiota differently than unrestricted access in HFD-fed mice. (A) Alpha diversity
measured by Shannon index and (B) Observed ASVs index. Data expressed as mean ± SEM and compared at each timepoint with Kruskal-Wallis tests and p values adjusted
with Benjamini-Hochberg correction for multiple group comparison, *p < 0.05, ***p < 0.001. (C) Principal-coordinate analysis (PCoA) plot based on Bray-Curtis dissimilarity
index. Each point represents the mean score along with SEM for each group and timepoint (represented by d0, d7, d77, d84 and d105) (D) Heatmap of Bray-Curtis index
between each group along with corresponding PERMANOVA comparisons (9,999 permutations) at each timepoint (left to right), and p values adjusted with Benjamini-
Hochberg correction for multiple group comparison, *p < 0.05, **p < 0.01, ***p < 0.001.
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(Fig. 4C, S3A and S3B). Similarly, CAG23 composed of ASVs from
Lachnospiraceae, Ruminococcaceae and Ruminiclostridium and
CAG32 with ASVs from Fecalibaculum, Akkermansia, and
Enterorhabdus genus were not significantly different between HF-
UP and HF-ARP (Fig. 4C, S3A and S3B). Moreover, these five CAGs
along with CAG20 were positively correlated with each other
(Fig. 4A).

Additionally, CAG20 with 8 ASVs from Lachnospiraceae and one
each from Peptococcaceae and Marvinbryantia (Fig. S3B), was
enriched in HF-ARP and significantly correlated with improvement
in cholesterol levels and modest improvement in hepatic triglyc-
eride levels (FDR = 0.0666) (Fig. 5).

Fifteen CAGs including CAG1, CAG2, CAG3, CAG4, CAG5, CAG6,
CAG7, CAG8, CAG9, CAG11, CAG16, CAG26, CAG28, CAG29,
CAG31 were significantly decreased in response to prebiotic con-
sumption in both HF-UP and HF-ARP, while CAG10, CAG15,
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CAG25 and CAG30 were only decreased in HF-UP and CAG13 in
HF-ARP (Fig. 4B and C). Among the CAGs, which decreased in
response to prebiotic consumption, seventeen CAGs were posi-
tively associated with hepatic triglyceride and thirteen CAGs with
serum cholesterol (Fig. 5). Most of these CAGs, also correlated neg-
atively with propionate production in the cecum (Fig. 5). CAG3 was
the dominant CAG with 29 ASVs, with members from Blautia,
Lactococcus, Acetatifactor, Ruminococcaceae, Ruminiclostridium,
Lachnospiraceae, Anaerotruncus, Tyzzerella, Romboutsia,
Marvinbryantia, which decreased in response to prebiotic
consumption.

Interestingly, in addition to CAG 20 and CAG21 described earlier
as significantly enriched in HF-ARP compared to HF-UP (Fig. 4C and
S4), four more CAGs which decreased in response to prebiotic
consumption were significantly increased in HF-ARP compared to
HF-UP (Fig. 4C and Fig. S4). CAG6, which contained two ASVs from



Fig. 4. Alterations in the abundance of CAGs in response to both consumption of prebiotics and prebiotic feeding regime. (A) Microbial interaction network displays the
interaction between different CAGs. Node size represents the mean abundance of ASV. The edges between the nodes indicate correlation (grey = negative, red = positive), with
width of the edge corresponding to magnitude of the correlation. Correlations with absolute values less than 0.6 are not shown here. (B) Bubble plot shows the variation in the
abundance of CAGs over time. The size and color of the circles represent mean relative abundance and coefficient of variance of each CAG respectively. (C) Heatmap for the
mean relative abundance for each CAG for day 105, are expressed as Z scores along with FDR values for comparison between the groups using Mann-Whitney test followed by
FDR correction using Benjamini and Hochberg procedure. CAGs were ordered by Spearman’s correlation analysis based on their relative abundance. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Lactobacillus murinus, along with one each from Frisingicoccus caec-
imuris and Streptococcus salvarius. Among these ASVs, relative
abundance of ASV11 Lactobacillus murinus and ASV57 Frisingicoccus
caecimuris were increased in HF-ARP compared to HF-UP (Fig. S4).
Within CAG9 relative abundance of ASVs from Intestinimonas and
Lachnospiraceae were significantly increased in HF-ARP compared
to HF-UP (Fig. S4). Also, in CAG28 relative abundance of ASV from
454
Intestinimonas and within CAG30, relative abundance of ASVs from
Lachnospiraceae and Ruminococcaceae were increased in HF-ARP
compared to HF-UP (Fig. S4).

Together, these results show that prebiotic consumption alone
can significantly impact the gut microbiota composition within a
short duration, nevertheless the difference in prebiotic feeding
regime also has a modulating effect.



Fig. 5. Associations between CAGs, metabolic phenotype and cecal SCFAs. Heatmap of Spearman’s correlation coefficients (with FDR correction) between relative abundance
of CAGs for day 105 and hepatic triglyceride (TG-Liver), serum total cholesterol (TC-Serum) and cecal SCFAs. *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001.
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4. Discussion

In this study, we report that (i) prebiotic consumption can alle-
viate hepatic steatosis and lower cholesterol level regardless of
weight loss; (ii) active phase restricted feeding of prebiotics
showed more significant effects on modulating gut microbiota,
SCFA production and metabolic response, independent of weight
loss; (iii) CAGs promoted by prebiotic feeding were significantly
associated with improvements in hepatic steatosis and
cholesterol-lowering effect.

Previous studies have shown prebiotic-induced alleviation of
NAFLD is dependent on achieving successful weight loss [19–25].
In contrast, in the current study we show that prebiotic consump-
tion can improve hepatic steatosis in HFD-fed mice irrespective of
weight loss which suggests that the prebiotics induced alterations
in the gut microbiota might directly impact liver lipid metabolism
via the gut-liver axis. This difference in response might partly be
attributed to the differential capability of the initial gut microbiota
composition to utilize the prebiotic, which in turn gives rise to an
altered metabolite profile such as SCFAs. Moreover, recent studies
have reported variable metabolic response including adverse reac-
tion to prebiotic consumption, which is dependent on the compo-
sition of the baseline/preintervention gut microbiota with variable
prebiotic metabolizing capacity [40–43]. Additionally, a recent
study reported that discrete structural differences in resistant
starch can alter the gut microbiota selectively to either produce
butyrate or propionate [44]. Nevertheless, our current study allows
us to explore prebiotic-induced changes in gut microbiota which
might be specific for improvements in hepatic steatosis indepen-
dent from weight loss. Also, the mechanisms involved in metabolic
response in weight loss-dependent and weight loss-independent
improvements in NAFLD might be different and need further
evaluation.

So far, the mechanisms by which gut microbiota impacts the
liver health and metabolism is poorly understood. However, the
gut-liver axis via the portal circulation enables the transport of
nutrients and metabolites produced by the gut microbiota. Our
data suggests that the improvement in HFD induced hepatic
steatosis by prebiotics could be associated with the increased pro-
duction of SCFAs. Here, in addition to these two factors, our find-
ings suggest that SCFA production can also be modified by timed
feeding of prebiotics. This implies that the distinct alterations in
the gut microbiota introduced by the difference in prebiotic feed-
ing regime might be an outcome of the gut microbiota undergoing
diurnal oscillation [27]. The molecular mechanisms of prebiotic-
induced improvement of hepatic steatosis is still incompletely
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understood. However, prior studies suggest that prebiotics and
SCFAs, particularly propionate, may reduce accumulation of
triglyceride by regulating the expression of genes involved in lipo-
genesis, fatty acid uptake and oxidation [11,19,40,45–47]. One
such pathway involves the inhibition of the genes in de novo lipo-
genesis pathways such as acetyl-coenzyme A carboxylase (ACC)
and fatty acid synthase (FAS) [45,47]. Another pathway involves
SCFA-induced repression of peroxisome proliferator–activated
receptor-c (PPARc) activity, which via a cascade of reactions stim-
ulates fatty acid oxidation [46]. Still, the current understanding of
the key members of the gut microbiota that may mediate the ben-
eficial effects of prebiotics remain elusive. Here, we observed that
differences in prebiotic feeding regime altered the structure and
composition of fecal microbiota differently over time and the CAGs
promoted by prebiotic were positively correlated with both
improvement in hepatic steatosis and increased propionate pro-
duction. Interestingly, prebiotics selectively enriches a small lim-
ited subset of ASVs compared to the large number of them
available in the gut, suggesting that only a few gut bacteria have
the ability to participate in the metabolic degradation and utiliza-
tion of prebiotics. Prebiotic-promoted CAG17 is composed of the
most abundant ASV from Parabacteroides, ASVs from Rumini-
clostridium 5, Lachnospiraceae and Ruminococcaceae. Recently,
two different species from the genus Parabacteroides have been
reported to alleviate obesity, hyperglycemia and hepatic steatosis
in HFD-fed mice [48]; and members of this genus are enriched in
the gut in response to prebiotic in mice [24,49] and humans [44].
Additionally, members of Parabacteroides genus encode the meta-
bolic pathways for succinate production, which can be converted
to propionate [48]. Lachnospiraceae and Ruminococcaceae mem-
bers have been reported to produce butyrate and propionate in
the gut [50]. Additionally, the members of the remaining
prebiotic-promoted CAGs such as Bacteroides thetaiotamicron,
Akkermansia, Bifidobacterium can potentially produce SCFAs
[51,52]. As mentioned earlier, we identified distinct alterations in
the gut microbiota which were specific to the two prebiotic feeding
regimes. Particularly, increase in CAGs containing Lachnospiraceae,
Ruminococcaceae, Bifidobacterium, and Intestinimonas in the active
phase restricted prebiotic fed group may in part contribute to the
increased production of SCFAs.

On the other hand, prebiotic consumption also decreases the
relative abundance of several CAGs, and some of these CAGs were
also associated positively with hepatic steatosis and higher choles-
terol levels. For example, CAG3 that contains members of Blautia,
and other Lachnospiraceae, known SCFA producers [50], are nega-
tively associated with improvements in metabolic phenotype in
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this study. However, few studies have also found increased abun-
dance of members of the Lachnospiraceae family in mice that
develop hepatic steatosis [11] and in NAFLD patients [53]. Here,
we observed that ASVs assigned to the same taxonomic group
could behave differently in response to the same treatment, such
as Lachnospiraceae. Genomic intra-species diversity can account
for up to 30% difference in bacterial strains belonging to the same
species, which can result in differences in their functions [54].
Based on comparative genomics, core-genome encoded functions
are shared by all members of a species whereas strain-specific
functions are encoded in the pan-genome where either a single
strain or some strains contain the genes [55]. Thus, members
belonging to the same taxon often do not function similarly [56],
and analysis carried out at the highest resolution available (ASV)
will be adequate in such cases. Bacteria in the gut do not occur
in isolation, they interact with each other at strain-level forming
coherent functional groups termed ‘‘guilds” [57]. Guilds are assem-
bled by clustering together individual members based on co-
abundance patterns [58]. This allows members within an ecosys-
tem to interact with each other and form a guild solely based on
their ability to use a resource or otherwise, such as prebiotics in
our study, regardless of their taxonomic affiliation. Also, guild-
based approach can help in reducing the problem of dimensional-
ity associated with microbiome data by identifying functionally
relevant members, which can be explored further. In comparison
to a taxon-based analysis, where different members of a taxon
function in an unrelated manner, guild-based approach offers an
ecologically relevant tool to identify the key members of gut
microbial community associated with a particular host phenotype.
Accordingly, to understand the response of gut microbiota to pre-
biotics, an ecological perspective is essential, as prebiotic fermen-
tation is driven by complex interactions between members of the
gut microbiota via cross-feeding across taxonomic backgrounds
[59,60]. Here, in the current study CAG analysis allows for a more
suitable method to understand the prebiotic-induced alterations in
the gut microbiota. Thus, prebiotic feeding may benefit the host via
promotion of functional groups of gut bacteria that can produce
SCFAs, and this beneficial effect on host metabolism can be further
optimized by restricting prebiotic intake to the active phase in
HFD-fed mice. Further studies would be required to understand
causal links between the selectively promoted gut microbes and
improved hepatic steatosis.

There have been few studies, which show that prebiotics can
influence serum cholesterol levels in mice [20,61] and humans
[62]. Additionally, few cholesterol-reducing bacterial strains from
diverse taxonomic groups, such as Bacteroides genus, Eubacterium
coprostanoligenes and Lactobacillus genus, have been isolated [63–
65]. Recently, a group of microbial cholesterol dehydrogenases,
that participates in the transformation of cholesterol into coprosta-
nol, which is eliminated in feces, was identified in the gut micro-
biome and was reported to be associated with cholesterol-
lowering effects [66]. Moreover, fecal transplant from humans with
elevated plasma cholesterol levels into microbiota-depleted mice
induced hypercholesterolemia [67]. Together, these studies show
that the gut microbiome is involved in cholesterol metabolism.
However, the members of the gut microbiota that mediate or influ-
ence the cholesterol metabolism is poorly understood. Among the
SCFAs, propionate has been found to be associated with
cholesterol-lowering effects, but the mechanisms still needs to be
elucidated [61,62]. The results from our study showed that
prebiotic-induced alterations in gut microbiota were strongly asso-
ciated with both cholesterol-lowering effects and increased propi-
onate production. Based on these findings, we suggest that the
members of prebiotic-promoted CAGs are associated with
cholesterol-lowering effect via SCFA production (propionate and
acetate). Additional studies would be required to understand the
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causal links between these prebiotic-induced gut microbes and
cholesterol-lowering effect.

Lack of treatment modalities for NAFLD have made prebiotic-
induced selective modulation of gut microbiota an interesting tar-
get in improving NAFLD-associated pathologies. As NAFLD is a pro-
gressive liver disease, by preventing the development of hepatic
steatosis, prebiotics could potentially prevent further progression
or susceptibility to liver inflammation and injury. Also, cholesterol
is lipotoxic and can induce NASH [68]. Recently, a cholesterol-
lowering drug was reported to prevent the development of
NAFLD-associated liver cancer by modulating the gut microbiota,
thus the cholesterol-lowering effect of prebiotic reported in this
study might potentially help in preventing liver injury [68]. Taken
together, prebiotics may benefit the host by improving hepatic
steatosis and lowering cholesterol independent of weight loss via
selective promotion of functional groups of gut bacteria that can
produce SCFAs. This can also potentially help in lowering the sus-
ceptibility to liver injury, which needs further studies.

There are limitations to the current study, first, the small differ-
ence in prebiotic intake between the two prebiotic feeding groups.
Interestingly, despite a lower prebiotic intake, active phase
restricted feeding of prebiotics produced increased amounts of
total SCFAs, suggesting that SCFA production efficiency can be
improved by timed feeding of prebiotics. Second, not measuring
lipids excreted in fecal samples over 24 h duration. These can be
helpful in designing further studies.

In summary, prebiotic consumption induced weight loss inde-
pendent alleviation of hepatic steatosis and cholesterol-lowering
effect. Prebiotics had a profound impact on the gut microbiota
structure and composition within a short duration. Furthermore,
we reported that restricting the feeding of prebiotics to the active
phase can further optimize the impact of prebiotics on gut micro-
biota, SCFA production, and overall metabolic response indepen-
dent of weight loss. We identified CAGs, which were promoted
by prebiotics and exhibited significant associations with improve-
ments in hepatic steatosis and cholesterol levels. Further research
is needed to understand the mechanisms underlying how these
prebiotic-enriched guilds of bacteria help in mediating beneficial
metabolic responses in the host.
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