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Abstract

The ability of retroviruses and transposons to insert their genetic material into host DNA makes them widely used tools in
molecular biology, cancer research and gene therapy. However, these systems have biases that may strongly affect research
outcomes. To address this issue, we generated very large datasets consisting of *120000 to *180000 unselected
integrations in the mouse genome for the Sleeping Beauty (SB) and piggyBac (PB) transposons, and the Mouse Mammary
Tumor Virus (MMTV). We analyzed *80 (epi)genomic features to generate bias maps at both local and genome-wide scales.
MMTV showed a remarkably uniform distribution of integrations across the genome. More distinct preferences were
observed for the two transposons, with PB showing remarkable resemblance to bias profiles of the Murine Leukemia Virus.
Furthermore, we present a model where target site selection is directed at multiple scales. At a large scale, target site
selection is similar across systems, and defined by domain-oriented features, namely expression of proximal genes,
proximity to CpG islands and to genic features, chromatin compaction and replication timing. Notable differences between
the systems are mainly observed at smaller scales, and are directed by a diverse range of features. To study the effect of
these biases on integration sites occupied under selective pressure, we turned to insertional mutagenesis (IM) screens. In IM
screens, putative cancer genes are identified by finding frequently targeted genomic regions, or Common Integration Sites
(CISs). Within three recently completed IM screens, we identified 7%–33% putative false positive CISs, which are likely not
the result of the oncogenic selection process. Moreover, results indicate that PB, compared to SB, is more suited to tag
oncogenes.
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Introduction

DNA integrating elements, such as transposons and retrovirus-

es, are an important tool in many areas of molecular biology, e.g.

gene therapy [1,2], oncogene discovery [3,4], gene regulation

[5,6], and functional genetics [7,8]. A current limitation to the use

of retroviruses and transposons is that, even without selective

pressure, integration loci are not uniformly distributed across the

genome. There are significant biases, the molecular determinants

of which are still largely unknown. Such biases can pose problems,

for example in the discovery of novel cancer genes by insertional

mutagenesis (IM), because it can be difficult to distinguish clusters

of integrations arising purely through integration bias from those

giving a selective growth advantage to the cell. More insight into

target site selection would also benefit gene therapy, where adverse

integrational activation of oncogenes resulting from treatment with

retroviral vectors has been observed [9].

Three of the main integrating elements currently used in the

fields mentioned above are the Sleeping Beauty transposon (SB),

the piggyBac transposon (PB), and the mouse mammary tumor

virus (MMTV). During the last decade, some studies have

reported on integration biases in the mouse genome for one or

more of these systems. SB does not integrate randomly on a micro-

scale, since it is dependent on local DNA deformability, and the

presence of a TA dinucleotide at the site of integration [10,11]. At

larger scales integration target site selection was found to be

relatively random [12,13], although (sometimes conflicting)

associations have been observed for CpG islands, gene density,

and actively transcribed loci [14,15]. PB integration is TTAA-

specific, although slight variations on this target sequence have

been observed [16]. PB was found to be biased towards

transcriptional units, CpG islands and transcription start sites

(TSSs) and actively transcribed loci, and in general marks of open

chromatin [14,17–19]. MMTV is the least well-characterized of
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the three. In mouse and human cell lines, no bias was detected

with respect to genes, TSSs and CpG islands, and MMTV was

suggested to be the retrovirus least biased in its target site selection

[20].

While the studies mentioned above have provided valuable

insights into retroviral and transposon target site selection for SB,

PB and MMTV in the mouse genome, they do have some

limitations with respect to gaining insight into de novo integration

target site selection. These limitations can be subdivided into three

categories. First, there are limitations regarding the individual

integration datasets. For example, some datasets were generated

using cells that were enriched with a selectable marker, e.g.

[15,18,19]. Also, considering only the datasets that were not under

selective pressure, the sample sizes were fairly small compared to

current standards, mostly in the range of several tens to several

hundreds of integrations, e.g. [14–16]. Note that having large

numbers of integrations is important for gaining sufficient

statistical power to detect even relatively weak biases. Second,

some limitations complicate the comparison between integration

datasets. For example, integration datasets have been compared

that differed substantially in the cell lines used, as well as the

degree of selection imposed on those cell lines, e.g. [15]. Third,

other limitations concern the features used to analyze the

integration datasets. For example, integration datasets have been

compared to features in non-matching cell types [15], while for

example Murine Leukemia Virus target site selection within the

human genome has been suggested [21] and shown [22] to have a

cell type dependent component. Interesting to note here is that for

a resurrected human endogenous retrovirus, no cell type specific

integration into the human genome could be detected [23]. Also,

many studies focused only on a limited number of features, e.g.

genomic features [17,20], or genomic features and DNase I

hypersensitivity [15]. Moreover, the features, such as ChIP-seq

profiles, were not necessarily preprocessed in similar ways, for

example in terms of sequence alignment, e.g. [18]. This

complicates the comparison of features across different systems.

To address these questions, we generated large datasets of SB

and PB integrations in mouse embryonic stem cells (mESC).

In order to directly compare the two transposons, they were

mobilized from the same construct containing inverted repeats

(IRs) for both PB and SB. This eliminates any other possible cause

than the IR (or the transposon-specific transposase) for the

observed differences between the two systems. In addition, we

generated a large dataset of MMTV integrations in normal

murine mammary gland epithelial (NMuMG) cells. All three

datasets were generated under minimal selective pressure, and are

henceforward referred to as unselected integration profiles. They

are considerably larger than previously published datasets of

unselected integrations, *120000, *130000, and *180000
integrations respectively.

We associated the three integration profiles with a large number

of genomic and epigenomic features. In particular, for SB and PB,

the recent explosive growth in publicly available ChIP-seq datasets

[24] enabled us to analyze a large number of epigenomic features

(*70), all in mESCs. To allow for a better comparison between

these datasets, they were preprocessed from the raw sequence

reads in exactly the same way.

Additionally, the impact of selective pressure on an unselected

integration profile, which is important in using IM for cancer

gene discovery, has never been addressed extensively. Previous

work can be classified as either knowledge-based or data-driven.

The knowledge-based approaches use modeling of previously

described integration biases to avoid CIS calls that can be

explained by these biases, such as SB TA sequence specificity

[25], or c-retroviral TSS specificity and lentiviral gene specificity

[26]. Alternatively, by assuming that a genic region harboring a

true positive CIS should contain significantly more integrations

than its flanking genes, three out of nine CISs from gene

therapeutic clinical trials were labeled false positive [27]. These

knowledge-based approaches are necessarily limited in their

modeling of integration bias, for example in the number of

features that are considered. Conversely, data-driven approaches

treat integration bias as a black box, and compare integration

datasets that were under substantial selective pressure to

integration datasets that lacked this pressure. Using this

approach, one study suggested a 47% false positive rate for a

MuLV tumor screen [28], and another observed 6 control CISs

from SB integrations present in mouse tail DNA, where 79 CISs

could be found in the corresponding SB tumor screen [29]. To

analyze the impact of selective pressure on integration bias

profiles, we take the data-driven approach and compare our

three unselected datasets with CIS integration profiles from three

previously published tumor screens [3,30–32].

Taken together, this allows us to present the most extensive

analysis of SB, PB and MMTV target site selection to date, the

results of which include previously undetected biases and

differences between selected and unselected integration profiles.

Another focal point of the analysis is the influence of scale. By

analyzing differences between small-scale (within *800bp from

integrations) and large-scale (*800bp or further from integra-

tions) associations of genomic and epigenomic features with the

proximity of integrations, we reveal a hierarchical organization in

integration bias. On a global scale, target sites of different systems

are selected in similar ways, whereas differences mainly exist in

fine-tuning on a local scale.

Results

The integration datasets used in this study are described in

Table 1. For each tumor screen, the numbers of singleton

integrations and CIS integrations is given. Here, a CIS is a

genomic region with more integrations across tumors than

expected by chance (see Material and Methods section and

Author Summary

Retroviruses and transposons are widely used in cancer
research and gene therapy. However, these systems show
integration biases that may strongly affect results. To
address this issue, we generated very large datasets
consisting of *120000 to *180000 unselected integra-
tions for the Sleeping Beauty and piggyBac transposons,
and the Mouse Mammary Tumor Virus (MMTV). We
analyzed *80 (epi)genomic features to generate bias
maps at local and genome-wide scales. MMTV showed a
remarkably uniform distribution of integrations across the
genome, and a striking similarity was observed between
piggyBac and the Murine Leukemia Virus. Moreover, we
find that target site selection is directed at multiple scales.
At larger scales, it is similar across systems, and directed by
a set of domain-oriented features, including chromatin
compaction, replication timing, and CpG islands. Notable
differences between systems are defined at smaller scales
by a diverse range of epigenetic features. As a practical
application of our findings, we determined that three
recent insertional mutagenesis screens - commonly used
for cancer gene discovery - contained 7%–33% putative
false positive integration hotspots.

Retroviral and Transposon Integration Bias
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[3,33]). An integration falling (not falling) within a CIS is referred

to as a CIS (singleton) integration.

The features for which integration bias was studied are

summarized in Table 2. Statistical procedures used for each

figure are listed in Table S1.

SB, PB, and MMTV exhibit unique sequence and gene
specificity

We started our analysis by studying the sequence specificity at

integration sites of the three systems. As expected, PB and SB

mostly, but not exclusively, integrate at TTAA and TA sites

respectively, accounting for 93% (PB) and 94% (SB) of the

integrations (Figure S1). The remaining integrations show

sequences that are relatively similar to these motifs and often

differ by only one nucleotide (Figure S1). MMTV has little

integration site sequence specificity. Focusing instead on integra-

tion-flanking sequences (50 bp on either side), de novo motif

discovery using the HOMER software [34] revealed no enrich-

ment of non-trivial motifs (i.e. not TTAA for PB, and not TA for

SB), except for two motifs in the case of MMTV (binding TFAP2A

and Tcfap2e respectively; Figure S2).

The bias of an integrating element with respect to genes is of

particular interest in IM and gene therapy. In IM screens, more

integrations near genes are desired whereas in gene therapy

integrations proximal to genes pose a potential threat to the

patient, since such integrations may give rise to cancer. We,

therefore, compared the integration density of the three systems in

and around genes, by aligning all genes (Figure 1A). PB shows a

strong bias for TSSs. The PB bias profile with respect to genes is

remarkably similar to that of MuLV, see e.g. [35,36], as well as

Figure S3 which shows singleton MuLV profiles, based on a

previously published tumor screen [3,37]. While PB has a strong

bias for TSSs, SB is enriched uniformly along the body of genes.

MMTV shows the weakest bias, although it does slightly prefer

TSSs, and has a mild bias against gene bodies.

The significance of the observations made above was assessed

using the binomial test, and visualized at a 5% FDR threshold in

Figures 1B and 1C, for different gene and transcript related

regions. Refer to Table S2 for the raw p-values associated with

these statistical tests. It confirms the strong bias of PB for TSSs,

and indicates that PB prefers integrating with its transcription unit

oriented towards the TSS. When landing within genes, MMTV

prefers a sense orientation relative to the host gene, and SB and PB

an antisense orientation. In general, MMTV shows the least

biased profile, with weak but significant biases for TSSs, and

against genic regions. PB integrations are mainly enriched in the

59UTR, weakly enriched in exons and the 39UTR, and biased

against introns. This pattern is highly similar to that observed for

singleton MuLV integrations (Figure S4). Regarding orientation

biases within transcripts, MMTV shows sense orientation biases

for exons and introns, whereas the two transposons show only

antisense orientation biases, SB in introns, and PB in 39UTRs and

exons.

Integration profiles of SB and PB are shaped by
endogenous gene expression

Next, we analyzed the influence of expression status of

endogenous genes on integration bias. This revealed interesting

differences between the unselected integration profiles of the three

systems (Figure 2), significance of which was assessed by the

Cochran-Armitage trend test, unless mentioned otherwise. Across

genes and TSSs, PB is strongly influenced by the a priori gene

expression levels (pv10{7 for genic, TSS_upstream and

TSS_downstream). For SB this same positive trend is only

apparent for intragenic integrations (pv10{7), whereas around

TSSs, the numbers of integrations decrease with increasing gene

expression (p~1:2|10{6 and pv10{7 for TSS_upstream and

TSS_downstream respectively). Within weakly expressed genes,

there is a depletion of PB integrations (binomial test; pv10{7).

MMTV target site selection is largely independent from the

expression levels of endogenous genes (p~1:5|10{3, p~0:58
and p~0:97 for genic, TSS_upstream and TSS_upstream

respectively). Although it is evident that there are more MMTV

integrations in TSS regions than within genes (Figures 1 and 2),

this preference is clearly independent from gene expression.

Topological domain interfaces are hotspots of
integration

In addition to gene structure, the integration site selection of an

integrating element can also be influenced by other features such

as organization of the genome, state of chromatin compaction and

transcription factor binding events, as well as by epigenetic

modifications. Considering that an important barrier for integra-

tion of viral or transposon DNA into host DNA can be how tightly

the DNA is packed in chromatin, we looked at the influence of the

a priori chromatin organization on the unselected integra-

tion profiles. Hi-C [38] is a technique for studying chromatin

compaction and organization by determining interaction frequen-

cies between different genomic loci on a genome-wide scale.

Analysis of Hi-C data has suggested that the genome is organized

into chromatin modules, called topologically associated domains

(TADs), which are stable across different cell types [39]. TADs are

separated by less organized (showing fewer 3D interactions)

regions called TAD boundaries. It is conceivable that chromatin is

Table 1. Integration datasets used in this paper.

System Cell type Size Selected #CIS insertions
#Singleton
insertions Reference

MuLV B/T-cell tumors 20312 Yes 8707 11605 [3,37]

SB Mouse ES cells 131594 No NA NA This work

SB B/T-cell tumors 58266 Yes 1945 56321 [30]

PB Mouse ES cells 122667 No NA NA This work

PB Haematopoietic tumors 5590 Yes 306 5284 [32]

MMTV Mouse mammary cells 180469 No NA NA This work

MMTV Mouse mammary tumors 34753 Yes 2834 31919 [31]

doi:10.1371/journal.pgen.1004250.t001

Retroviral and Transposon Integration Bias
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relatively less compact in and near TAD boundaries as compared

to TADs. We asked if this 3D organization of the genome has any

influence on the integration bias of systems. In general, we found

that more integrations are close to the interface between TADs

and their boundaries (Figure 3), i.e. all systems have a preference

for inserting at the border of TADs, which are tightly organized,

but not necessarily in the less organized chromatin of boundary

regions. It is interesting to note that for MMTV, which is generally

Table 2. Genome and chromatin profiling data used in this paper.

Description Technique Cell type Reference

Gene expression mESC RNA-seq mESC This work

Gene expression NMuMG Microarray NMuMG [67]

Replication timing ChIP-chip mESC [65]

H3K9me2 ChIP-chip mESC [64]

LaminB1 DamID mESC [66]

Hi-C Hi-C mESC [39]

mC; hmC Bisulfite sequencing; hMeDIP mESC [61]

CpG island proximity; gene proximity NA NA [67]

Dnase I hypersensitivity ChIP-seq mESC [69]

H3K4me3; H4K20me3 ChIP-seq mESC [49]

H3K9me3 ChIP-seq mESC [70]

H3K27me3; H3K36me3; H2AZ ChIP-seq mESC [71]

Atrx ChIP-seq mESC [72]

BrgJ1 ChIP-seq mESC [73]

cMyc; E2f1; Esrrb; Klf4; nMyc; Oct4; Smad1; Sox2;
Stat3; Suz12; Tcfcp2|1; Zfx

ChIP-seq mESC [74]

H3K79me2; Nanog; Tcf3 ChIP-seq mESC [75]

Ezh2 ChIP-seq mESC [76]

SetDB1 ChIP-seq mESC [77]

Jarid2; Mtf2 ChIP-seq mESC [78]

Tbx3 ChIP-seq mESC [79]

Ctr9; Pol2-Ser2P; Pol2-Ser5P ChIP-seq mESC [80]

Luzp1 ChIP-seq mESC [81]

Chd7 ChIP-seq mESC [82]

Med1; Med12; Smc1; Smc3 ChIP-seq mESC [48]

H3K27ac; H3K4me1 ChIP-seq mESC [51]

Yy1 ChIP-seq mESC [83]

CTCF; p300 ChIP-seq mESC [84]

H3K9ac ChIP-seq mESC [85]

Taf3 ChIP-seq mESC [86]

Jaridb1 ChIP-seq mESC [87]

Smad2/3; Smad3 ChIP-seq mESC [88]

Kap1 ChIP-seq mESC [89]

H3K4me2 ChIP-seq mESC [90]

macroH2A1 ChIP-seq mESC [91]

p53; p53S18P ChIP-seq mESC [92]

Cbx7; Ring1b ChIP-seq mESC [93]

CoREST; Hdac1; Hdac2; Lsd1; Mi-2b ChIP-seq mESC [94]

Dpy30 ChIP-seq mESC [95]

Mbd3 ChIP-seq mESC [96]

Mcaf1 ChIP-seq mESC [97]

Pol2-Ser7P ChIP-seq mESC [98]

Tbp ChIP-seq mESC [99]

Ell ChIP-seq mESC [100]

doi:10.1371/journal.pgen.1004250.t002
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the least biased system, the bias for the TAD - TAD boundary

interface is stronger than that of SB (Cochran-Mantel-Haenszel

test in a window of 10 kb on either side of the interface; pv10{7).

Transposons show highly divergent behavior in
integrative (epi)genomic context

In the previous two sections, we demonstrated that there are

strong biases of the unselected integration profiles with respect to

genes, transcripts, gene expression, and genome organization.

However, these features themselves have strong spatial ties with

other features, such as histone marks and transcription factor

binding. Therefore, we asked the following two questions. First,

how do these features associate with integration proximity?

Second, do they provide extra information with respect to

integration bias, in addition to what gene proximity and gene

expression provide? The features we analyzed are listed in Table 2.

To maximize comparability between the features, the ChIP-seq

datasets were preprocessed from the raw sequencing reads in

exactly the same way. Since these features are not available in

NMuMG cells, which were used for generating the MMTV

integrations, we restricted all analyses based on these data to SB

and PB.

First, we analyzed the orientation biases with respect to these

features (Figures S5 and S6). This showed that the two transposons

preferably integrate with the transcription cassette cloned in them

oriented towards regions of high feature signal. Although for

individual marks this bias is not very substantial, it is highly

consistent across different marks, especially for SB. It is important

to note that an orientation bias of these systems relative to genes

cannot explain this bias for SB, and only partly for PB (Figures S5

and S6).

Using a limited number of mostly genomic features, it has been

observed before that associations of integration occurrence with

these features depend on the scale chosen for the analysis [15].

Therefore, we analyzed our genomic and epigenomic features

across different scales, by comparing feature scores at the site of

integration with feature scores at increasing distances (scales) from

the integration site. Features were then clustered based on their

association profiles across scales (Figure 4A). Resulting associations

can be positive, i.e. higher feature scores at integration sites

compared to their neighborhood, or negative, i.e. lower feature

scores at integration sites compared to their neighborhood.

A clustering of the association profiles results in four groups of

features generally associated with activation (Clusters 1, 2, 3 and

Figure 1. Biases with respect to genes and transcripts. A) Gene alignment plots showing the distribution of integrations across genes from
5 kb upstream to the transcription start site (TSS), transcription termination site (TTS), and 5 kb downstream. The red line depicts the integrations
with sense orientation relative to the gene, blue depicts antisense. B) Biases with respect to genes for the unselected integration datasets. We
distinguish between integrations within genes (genic), within 1 kb upstream of the TSS (TSS_upstream), within 1 kb downstream of the TSS
(TSS_downstream), and other integrations (other). On the left, the color scale blue-gray-red represents increasing numbers of integrations, relative to
expected. On the right, the color scale blue-gray-red represents the integration orientation bias relative to genes, from antisense to sense.
Associations that are not significant (binomial test; FDR-corrected pw0:05) are white. C) Biases with respect to transcripts, distinguishing between
integrations in 59UTRs, 39UTRs, exons and introns.
doi:10.1371/journal.pgen.1004250.g001
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5), and three groups associated with repression (Clusters 6, 7 and

8). The remaining Cluster 5 is more mixed (Figure 4C).

Another characterization of the resulting clusters is into groups

of features for which the behavior is either fairly similar (Clusters

2, 3, 6 and 8), or groups for which SB and PB behave very

differently (Clusters 1, 4, 5, and 7). Especially striking when

observing the differences is that PB is positively associated

(Clusters 1, 4 and 5) with far more features than SB (Cluster 7).

Since for both PB and SB, association with the many gene-related

features in Cluster 3 is mostly positive, this indicates that SB does

prefer gene-rich regions and active genes over heterochromatin,

but in these regions, compared to PB, generally avoids regulatory

units such as histone modifications and transcription factor bound

regions. Interestingly, the single cluster positively associating with

SB but negatively with PB (Cluster 7) contains mostly repressive

features. Combined, these observations suggest that PB is much

more biased to active chromatin than SB, whereas SB is also partly

biased towards more repressed chromatin.

Figure 2. Influence of gene expression on integration bias. For each of the systems SB, PB, and MMTV, the unselected integrations are divided
into genic integrations, integrations occurring within 1 kb upstream of the TSS (TSS_upstream), and integrations occurring within 1 kb downstream
of the TSS (TSS_downstream). Genes are divided into 5 groups, based on expression level. The sizes of these groups are indicated on the x-axis. For
each pair of gene expression level and system, the number of observed integrations is counted, and compared to the number of expected
integrations.
doi:10.1371/journal.pgen.1004250.g002

Figure 3. Unselected integration profiles with respect to TAD - TAD boundary interface. The x-axis represents genomic distance from the
interface. The y-axis represents the log2 ratio of observed number of integrations versus the expected number of integrations.
doi:10.1371/journal.pgen.1004250.g003
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The scale-based approach reveals that the sign of association

can change across different scales. For example, SB shows negative

association with some of the features in Cluster 3 on a small scale,

but a positive association on larger scales. This implies that SB has

a bias for larger scale domains containing these features such as

Ctr9, H3K79me2 and 5hmC, but within these domains integra-

tion sites will generally avoid overlap with these marks.

Conversely, association changing from positive to negative for

increasing scales is seen for example for PB and Stat3 in Cluster 5.

This indicates that PB prefers domains relatively devoid of these

features. However, given a PB integration in such a domain, it will

be mildly biased towards Stat3.

The above observations suggest a hierarchy in target site

selection, which is further illustrated by the fact that some features,

for both SB and PB, are consistently non-significant at smaller

scales (Figures 4A and 4B). For example, at smaller distances from

integrations, associations with features such as gene proximity and

expression, CpG island proximity, replication timing and

H3K9me2 are not significant for both SB and PB. They are

however consistently significant on larger scales. On the other

hand, most transcription factors and other histone marks show

strong associations already at small scales. Henceforward, features

that are significant only at larger scales will be referred to as

‘macrofeatures’, as opposed to ‘microfeatures’, which are signif-

icant already at smaller scales (refer to Table S3 for a list of

macrofeatures and microfeatures). For a selected set of macro-

features that were available for NMuMG cells, we performed a

similar analysis showing that these features also behave as

macrofeatures in MMTV, an unrelated system (Figure S7).

Integration site selection is directed at multiple levels
Biases of unselected integration profiles with respect to the

macrofeatures are similar across the systems and scales. This

suggests that on a large scale, integration bias is regulated in

similar ways for both systems, and that this large scale bias is

mainly determined by the macrofeatures. However, within a

distance of *800bp, macrofeatures provide no information with

regard to integration locus, contrary to the microfeatures. This

indicates that microfeatures may in fact be determinants of

integration bias at a higher resolution, which prompted us to ask

the following question: Are macrofeatures needed at all to explain

integration proximity, or are microfeatures sufficient for this

purpose?

To address this question, we needed to take into account that

the features in Figure 4 show a high degree of multicollinearity.

Multicollinearity implies that a strong association between a

certain feature A and integration proximity may potentially be

explained by the association of A with another feature B that also

strongly associates with integration proximity, i.e. integration

proximity may be conditionally independent from A, given B.

Then, rephrasing the question above, for each system we wanted

to identify a set of features such that integration proximity is

conditionally independent from all other features, given this set of

features.

BANJO [40] is designed to identify such conditional indepen-

dencies in the form of Bayesian networks [41], and thus allowed us

to determine for each feature its importance for integration

proximity. For this, we used two measures derived from the

Bayesian networks. The first measure (‘log10% bootstraps’; see

Material and Methods) represents the confidence that a feature is

truly relevant for integration proximity. The second measure

(‘log10 mean CMI’, or conditional mutual information; see

Material and Methods) represents the strength of association

between integration proximity and a feature.

Interestingly, the results show that seven macrofeatures are

consistently of great importance, i.e. of high-confidence and

strongly associating, in both systems (Figure 5). These features are

gene/TSS/TTS proximity, TSS expression (the expression of the

gene with the nearest TSS), replication timing, CpG island

proximity, and Hi-C alpha (a measure of chromatin compaction;

see Material and Methods section). This shows that in addition to

microfeatures for explaining local differences between systems

(Figure 4), macrofeatures are needed to explain integration bias in

each of these systems on large scales (Figure 5). Furthermore, it

indicates that on a large scale, biases of the two systems are similar,

and that differences between the systems are mainly found in the

microfeatures.

Integration bias is a potential cause of spurious common
integration sites

Insertional mutagenesis (IM) using retroviruses and transposons

is an important tool in the discovery of new putative cancer genes.

These elements mutate the genome by inserting into the host

DNA. Mutations providing cells with a proliferative and/or

survival advantage can cause tumors. Because the integration loci

can be retrieved using sequencing, these mutations can act as

cancer gene tags, allowing discovery of novel cancer genes, e.g.

[3,4,29,37,42–44]. However, integration biases can pose problems

because they can be difficult to distinguish from the accumulation

of integrations in cells that are under selective pressure to retain

these integrations. Therefore, we compared the unselected

integration profiles with CIS integration profiles [3,30–32].

Generally, the orientation biases of CIS integrations for genes

and transcripts are much stronger than those of the unselected

integrations (Figure S4). This indicates that in tumors, the

orientation bias is mainly the result of selective pressure. For all

systems and especially for PB and SB, there are significantly more

unselected integrations than CIS integrations in regions other than

genes and TSSs (Figure 6A; visualized at a 5% FDR threshold

based on the binomial test. Refer to Table S2 for the raw p-values).

Additionally, biases of unselected integrations for intergenic CIS

regions (w100 kb from genes) are relatively strong, compared to

the biases for genic CIS regions (+/2100 kb) (Figure 6C;

visualized at a 5% FDR threshold based on the binomial test.

Figure 4. Scale-based analysis of integration bias. A) Association of the unselected integration profiles with various genome-wide features
across different scales. Measure of association is a normalized t-score (see Material and Methods), computed on rank-normalized feature values,
visualized on a blue-gray-red scale from negative to positive t-scores. Associations that are not significant (FDR-corrected pw0:05) are white. A
positive (negative) t-score for a certain scale x and feature y means that for that particular feature, the mean values in a 200 bp window around the
integrations are on average higher (lower) than the mean values in a 200 bp window around the points at a distance of 100|2xbp upstream and
downstream from the integration (see Material and Methods). The dendrogram shows a hierarchical clustering of the profiles using the euclidean
distance measure and ward linkage. B) The rank-transformed smallest scale at which significance is achieved, with a scale going from white (small
scale) to black (large scale). A feature is called a ‘macrofeature’ if its smallest significant scale is larger than the mean rank-normalized smallest
significant scale across features, in both systems. C) Features associated with transcriptional repression and/or activation, based on published
literature.
doi:10.1371/journal.pgen.1004250.g004

Retroviral and Transposon Integration Bias

PLOS Genetics | www.plosgenetics.org 8 April 2014 | Volume 10 | Issue 4 | e1004250



Figure 5. Bootstrapped Markov blanket discovery. Bayesian network inference (BNI) is performed on 400 bootstraps of size 20000. The x-axis
represents the fraction of bootstraps that a feature occurs in the Markov blanket of integration proximity in a resulting Bayesian network, i.e. the
confidence we have in an edge. The y-axis represents the mean conditional mutual information (CMI) of integration proximity with a feature across all
Markov blankets in which this feature occurs, i.e. the strength of an edge. Note that features that do not occur in the Markov blanket of any
bootstrap, i.e. are never considered relevant for integration proximity by the BNI approach, are not shown in this figure.
doi:10.1371/journal.pgen.1004250.g005
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Refer to Table S2 for the raw p-values). Combined, these

observations show that in regions far from genes, unselected

integration profiles correlate relatively strongly with CIS profiles,

compared to regions close to genes. Therefore, to avoid calling

spurious CISs in IM screens, higher statistical stringency should be

required for CISs found far from genes.

Combined, these observations suggest that CISs found far away

from genes are more likely to be spurious, i.e. arise from the

integration bias of the system. Conversely, the observations suggest

that true CISs, i.e. CISs arising from selective pressure, are more

often found in the vicinity of genes than would be expected based

on an unselected integration profile.

To identify potentially spurious CISs, we tested for all CISs if

the corresponding CIS regions contained significantly more CIS

integrations than unselected integrations. This revealed a number

of potentially spurious CISs, 13%, 33% and 7.4% of all CISs for

SB, PB and MMTV respectively (Figure 6D, Tables S4, S5 and

S6). For MMTV, it could be confirmed that potentially spurious

CISs tended to be relatively far away from genes (One-sided

Mann-Whitney U test; p~1:0|10{2). For SB and PB, when

ranking CISs according to increasing p-value, the potentially

spurious CISs consisted mainly of lower ranking CISs (Mann-

Whitney U test; p~4:7|10{4 and pv10{7 for SB and PB

respectively).

Next, we asked whether integration bias has an influence on the

types of CISs that are found in screens. For this purpose, we

separated CISs into activating and repressing CISs, based on

orientation homogeneity and occurrence within or outside genes.

We observed more activating CISs for PB than for SB (Figure 6B).

Considering that the constructs used for the SB and PB tumor

screens are similar [32,45], this indicates that for use in IM

screens, PB is more efficient at finding oncogenes, whereas SB

would find more tumor suppressor genes.

Discussion

In this study, we have analyzed the integration biases of

unselected integrations of a retrovirus and two transposons. For

generating these sets of integrations, cells were grown in culture for

three to four weeks. This implies that a few of our integration loci

could potentially have been selected for. However, non-acute

retroviruses, such as MMTV, induce tumors only very slowly

(months to years) due to the absence of oncogenes in their genome

[46]. Similarly, our transposon constructs can be described as non-

acute in the sense that they do not carry oncogenes. Moreover,

they do not contain any gene-trap or enhancer-trap elements,

limiting the potential of disrupting endogenous gene expression.

Hence, three or four weeks of cell culturing is a very short time

frame compared to the latency to integration-induced tumor

formation, and the influence of selected integration loci will be

minimal at best. This is also supported by the observations that 1)

we find a large number of unique integration sites, whereas in the

case of substantial selection a relatively small number of (selected)

integrations would be expected, and 2) while both PB and SB were

mobilized from the same construct, we do obtain completely

different insertion profiles for each transposon.

The main differences between the three systems regarding

integration bias are summarized in Table 3. Generally, MMTV

was observed to be the system least biased in its integration profile.

Although many associations were found to be significant, they

were generally not very substantial. In this context, it is surprising

that only a small set of oncogenes has been tagged with this virus

in IM screens [31,47]. This could be due to activation of a limited

set of promoters by the MMTV enhancer. Alternatively, certain

unknown aspects of murine mammary tissue biology might allow

only a limited number of tumorigenic mechanisms. In any case,

our data rules out integration bias as a reason for the limited

potential of IM by MMTV.

Recent availability of data describing the three-dimensional

architecture of the genome [39] has allowed us to identify TAD -

TAD boundary interfaces as hotspots of integration. Of the three

systems, PB is most strongly affected, from a strong enrichment at

TAD interfaces to a strong depletion towards the inner regions of

TADs. While MMTV is largely indifferent regarding these inner

TAD regions, its bias for TAD - TAD boundary interfaces is

relatively strong. Although the TADs were defined in a different

cell type (Tables 1 and 2), they have been shown to be stable across

different cell types [39]. Altogether, our data show that integration

target site selection is strongly associated with the topological

organization of the genome.

The two transposons were found to have very different

integration profiles. Generally, it is unknown to what extent

certain sequences cloned into an IM construct affect the

integration bias of that construct, which complicates the interpre-

tation of differences observed between systems. However, the

construct that was used in this study contained both the SB and PB

IRs. Therefore, any difference between the two profiles can only

be explained by the IR or the transposon-specific transposase,

indicating that the IR and transposase are major defining elements

of integration bias.

Although the SB and PB profiles are very different, they were

shown to share a bias for activating macrofeatures and a bias

against repressive macrofeatures. Analysis of a subset of macro-

features for MMTV suggested that these may also operate as

macrofeatures in a wider range of systems. Differences between SB

and PB were mostly seen for the microfeatures. Together, these

observations support a model where integration sites are selected

at two levels (Figure 7). On larger scales, both systems target the

same type of domains, determined by the macrofeatures. In

particular, gene/TSS/TTS proximity, TSS expression, replication

timing, CpG island proximity, and Hi-C alpha were found

consistently indispensable for integration site selection in both

systems (Figure 5). Once these domains have been selected, fine

tuning of integration site selection is dependent on different

microfeatures for each system. These microfeatures appear to be

indispensable for integration site selection as well (Figure 4).

For the current study, the mESC model system was selected

because it is the most thoroughly studied model system, with the

Figure 6. Unselected integration profiles and CIS designation. A) The bias of unselected integrations relative to CIS integrations, on a scale
from blue (more CIS integrations) to red (more unselected integrations). B) log2 ratio of activating CISs and repressing CISs. A CIS is activating if it is
not within a gene, or within a gene and 90% homogeneous with regard to orientation relative to that gene. Otherwise it is repressive. C) Bias of
unselected integrations for CIS regions in a (i) genome-wide background, (ii) genic background (+/2100 kb), and (iii) intergenic background (whole
genome except genes +/2100 kb), as measured by the log2 ratio of observed (unselected integrations) and expected (matched controls). D) CIS
integration counts vs. unselected integration counts. CISs are annotated with the nearest TSS. Note that a single gene can be associated with multiple
CISs. Spurious CISs were determined by a one-sided binomial test to determine if the CIS contained more CIS integrations than unselected
integrations (pv0:01, FDR-corrected).
doi:10.1371/journal.pgen.1004250.g006
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broadest availability of (epi)genomic datasets. While limited cell

type specificities have been demonstrated for retroviral integration

profiles [22], earlier studies have used epigenomic features in non-

matching cell types to analyze retroviral integration profiles

[15,23], noting that differences due to experimental error are

generally greater than differences due to cell type [23]. We do not

expect our transposon integration profiles to be highly cell type

specific. This is supported by a supplementary analysis comparing

the SB and PB integration profiles to a selected set of epigenomic

features available for both mESC and mouse embryonic

fibroblasts (mEF) [48–52], which shows that the mEF associations

are highly similar to the mESC associations (Figure S8). This

strong similarity suggests that cell type specificities are relatively

weak. Nevertheless, it is interesting to note that the mEF

associations are consistently slightly weaker than the mESC

associations, indicating that cell type specificities, while weak, do

exist.

In large scale IM screens, identification of overwhelming

numbers of CISs is a serious impediment in distinguishing true

CISs from spurious ones. In such screens, a true CIS arises

through tumorigenic selection, whereas a spurious CIS is defined

by the a priori integration bias of the IM system that was used.

Our large datasets of unselected integrations can be used as a

valuable resource for prioritizing candidate cancer genes emerging

from IM screens. As a proof of principle, we showed that a

substantial number of CIS regions in three recent IM screens do

not contain more integrations than would be expected based on

the unselected integration profiles. Although the cell types between

PB and SB tumor screens and their corresponding unselected

profiles are different, this nevertheless indicates that these CISs can

potentially be explained by an a priori integration bias, and

therefore likely represent passenger mutations.

In conclusion, the large numbers of integrations for three of the

main systems used in IM, unselected integrations from cell lines

and selected integrations from tumor screens, as well as the wide

range of publicly available datasets, has enabled us to assess

integration bias at unprecedented resolution, and assess its relation

to CIS designation.

Materials and Methods

Data generation
All integration data generated in this study are made available

on http://mutapedia.nki.nl.

Table 3. Summary of main observations.

SB PB MMTV

Sequence TA TTAA Very weak bias

Genes Whole gene; bias against TSS TSS; whole gene TSS; weakly intergenic;
bias against gene body

Transcripts 39UTR; bias against 59UTR/exon Exon; 59/39UTR 59/39UTR

Orientation Antisense within genes (introns) Towards TSS Sense within genes;
upstream away from TSS

CIS targets Tumor suppressor genes Oncogenes Oncogenes

spurious CISs Lower ranking CISs Lower ranking CISs Farther away from genes

gene expression Intermediate bias Strong bias Weak bias

TAD interface Weak bias Strong bias Intermediate bias

Orientation w.r.t.
chromatin marks

Towards chromatin marks (weak but
consistent)

Towards chromatin marks (weak but
consistent)

NA

macrofeatures Relatively strong biases, consistent across
systems: TSS expression, replication timing,
Hi-C alpha, CpG island/TSS/TTS/gene proximity

Relatively strong biases, consistent across
systems: TSS expression, replication timing,
Hi-C alpha, CpG island/TSS/TTS/gene proximity

NA

microfeatures Relatively many associations are negative Strong positive associations with many features NA

doi:10.1371/journal.pgen.1004250.t003

Figure 7. Hierarchical model of integration target site selection. On a large scale, target site selection is directed by macrofeatures for all
three systems in similar ways. Differences between the systems are determined by microfeatures.
doi:10.1371/journal.pgen.1004250.g007
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PB and SB integration site data. mES cells EBRTcH3

expressing the tetracycline-controlled transactivator (tTA) from

the endogenous ROSA26 promoter [53] were cultured in 60%

BRL cell-conditioned medium in the presence of leukemia

inhibitory factor, MEK inhibitor PD0325901 and GSK-3

inhibitor CHIR99021 [54]. pPB-SB-CMV-GFP was constructed

by cloning GFP CDS in PB-MSCV [55] at Nru-I and BstXI sites.

4 hr before transfection, 6|106 EBRTcH3 cells were seeded on a

10 cm dish. The cells were transfected with 12:5mg of pPB-SB-

CMV-GFP and either 5mg of mPB transposase plasmid [56] or

12:5mg of SB100X transposase plasmid [57] using Lipofectamine

2000 (Invitrogen). Mock transfected and non-transfected controls

were included. After 48 hr, 60000–80000 cells were isolated and

further propagated (Figure S9). After three weeks of culturing post-

transfection the genomic DNA was isolated using Qiagen DNeasy

Blood & Tissue kit. 2mg of genomic DNA was digested with 20

units of Dpn-II (New England Biolabs) at 37 0C for overnight in a

100ml reaction. 1mg of purified digested DNA was ligated with

0:8mM of splinkerette adapter using 10 units of T4 DNA ligase

(Roche Applied Science) in a 50ml reaction. The splinkerette

adapter was prepared by annealing equimolar amounts (40mM
each) of Universal US (GTTCCCATGGTACTACTCATATAA-

TACGACTCACTATAGG) and Sau-3A-1 LS (GATCCCTA-

TAGTGAGTCGTATTATAATTTTTTTTTCAAAAAAA) oli-

gos. The ligation reactions were amplified in two (SB) or three (PB)

rounds of PCR to generate libraries for high throughput

sequencing (for details see Table S7).

Sequencing was done on an Illumina HiSeq 2000 instrument to

obtain single 100 bp reads. The reads contained ends of IRs and the

neighboring genomic DNA. The genomic DNA sequences were

extracted from sequencing reads, and aligned against mouse

genome assembly mm9 using Bowtie 2 [58] to determine the sites

and orientation of integrations, using parameter ‘very-sensitive-

local’. Only those positions which were represented by five or more

reads in the data, were retained and used for subsequent analyses.

MMTV integration site data. Mm5MT (MMTV producing

cells) and NM-Pbabe/2 (NMuMG cells harboring PuroR trans-

gene) were cultured in DMEM/F-12+GlutaMAX-I medium

supplemented with serum (10%) and Insulin (10 mg=ml). For

infection 0.5 million Mm5MT cells were plated in a T25 flask in

the presence of 1:0mM Hydrocortisone. Next day the cells were

treated with 25mg=ml of Mitomycin C in serum-free medium for

two hours. Then 0.5 million NMuMG cells were cultured on top

of the Mitomycin C treated Mm5MT cells in the presence of

1:0mM Hydrocortisone. Three days later the mixed cell culture

was treated with 4:0mg=ml of Puromycin to remove Mm5MT

cells. The remaining cells (NMuMG) were grown till passage 8

before the isolation of genomic DNA for integration site mapping

(Figure S9). By using a primer pair, which was specific to MMTV

in Mm5MT and did not amplify endogenous MMTV sequences

in NMuMG cells, it was confirmed that NMuMG cells got

infected. The integration sites were measured by two methods:

either shearing the DNA with sonication and blunt end ligation of

adapters as described previously [31] or cutting the DNA with

Nla-III and ligation of adapters with sticky ends. 2mg of genomic

DNA was digested with 20 units of Nla-III (New England Biolabs)

at 370 C for overnight in a 100ml reaction. 1:0mg of purified

digested DNA was ligated with 0:8mM of splinkerette adapter

using 10 units of T4 DNA ligase (Roche Applied Science) in a 50ml
reaction. The splinkerette adapter was prepared by annealing

equimolar amounts (40mM each) of Universal LS (CCTATAGT-

GAGTCGTATTATAATTTTTTTTTCAAAAAAA) and Nla-

III US (GTTCCCATGGTACTACTCATATAATACGACT-

CACTATAGGCATG) oligos. The ligated DNA was cut with

Dra-I (New England Biolabs). The ligation reactions were

amplified in two rounds of PCR to generate high throughput

sequencing libraries (for details see Table S7). Sequencing was

done on an Illumina HiSeq 2000 instrument to obtain single

100 bp reads. The reads contained ends of MMTV LTR and the

neighboring genomic DNA. The genomic DNA sequences were

extracted from sequencing reads, and aligned against mouse

genome assembly mm9 using Bowtie [59] to determine the sites

and orientation of integrations.

Data preprocessing
Matched random controls. Given an integration dataset

(either one of SB, PB, or MMTV), each integration in that

dataset was matched to 10 random controls. These random

controls were subject to a number of criteria. First, specifically for

SB and PB, matched controls were restricted to loci containing

the system-specific integration motif (TA and TTAA respective-

ly). Second, the distance of the matched control to the nearest

restriction site upstream of the integration was required to be the

same as that of the integration itself. Third, matched controls

were not allowed to fall within ‘unmappable’ regions. Here,

unmappable regions were defined in a dataset-dependent

manner. Given an integration dataset (either one of SB, PB, or

MMTV), the sequence read length n was determined. Then, the

mouse genome (mm9) was cut up into all possible sequences of

length n. These artificial reads were mapped to the mm9 genome

using the same tool and parameter settings as used to generate

the integration datasets (see above). Unmappable regions were

then defined as regions that did not have any reads mapped to

them using this approach, and controls were excluded from these

regions.

ChIP-seq. To maximize the comparability of the ChIP-seq

datasets, they were processed from the sequence read archives as

obtained from GEO [60], where possible, in exactly the same way.

Sequence read archives were converted to FASTA format and

then aligned against mouse genome assembly mm9 using Bowtie

0.12.7 [59], allowing at most 2 mismatches in end-to-end

alignment (the following settings were used: -M 1 best tryhard -v

2 chunkmbs 1024). Duplicate reads were removed, and a 25 bp

coverage was computed by counting the number of reads in 25 bp

consecutive bins. These coverage profiles were normalized to a

sequencing depth of 109, smoothed (running mean with window

n = 6), and sampled (to 100 bp spacing). Then, all available input

DNA datasets (9 in total) were collected and clustered based on the

coverage profile. A cluster of 6 input DNA datasets with a

correlation of at least 0.97 was selected to be pooled and used as

control for all non-histone mark features. This was done because 1)

not for all datasets controls were available, 2) not for all datasets

controls of the same type (input DNA, GFP, mock IP, etc.) were

available. The 6 selected input DNA datasets were used as a

control dataset. First, after normalizing to total read count, they

were averaged to obtain a pooled control coverage profile, and

then used to normalize all non-histone mark features by

computing log2(signal/control). For the histone marks, a similar

approach was taken, using all available pan-H3 datasets (2 in

total).

Bisulfite sequencing. Bisulfite sequencing reads [61] were

processed using Methylcoder [62], with ‘‘mismatches = 0’’, and

Bowtie to align the reads, with ‘‘-M 1 best tryhard -v 2 chunkmbs

1024’’. A coverage profile was computed by selecting only

methylation context ‘CG’ for CpG methylation, and counting in

25 bp consecutive bins the numbers of unconverted Cs c,

converted Cs t, and methylable basepairs n, and calculating
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c

n(czt)
. The resulting profile was smoothed and sampled as

explained above.

RNA-seq. The RNA-seq reads were processed using Cufflinks

[63] to compute the log2(FPKM+1) for each gene, where FPKM

refers to the number of fragments per kilobase of exon per million

fragments mapped.

Preprocessing of microarray datasets. The H3K9me2,

late replication timing data, and LaminB1 data were downloaded

from GEO and processed as in the corresponding publications

[64–66].

Data analysis
Gene alignments (Figure 1A). Gene locations were re-

trieved from the Ensembl database (release 66). Partially

overlapping genes were removed (40%). In case of complete

overlap, the larger gene was retained. The remaining genes

(n~22822) were aligned with respect to transcription start sites

and transcription termination sites. For each integration dataset,

integrations and controls (see above) were counted in equal-sized

bins outside genes, and gene length dependent bins within genes.

Then, for each bin a ratio was computed of integration counts

versus control counts. This ratio was normalized by multiplication

with the ratio of control dataset size and integration dataset size.

Then the base 2 logarithm was taken.

Bias with respect to genes and transcripts

(Figure 1B). For genes (Ensembl release 66), integrations and

controls (see above) were counted within genic regions, TSS

upstream regions (defined as the union of those regions within 1 kb

upstream of a TSS), TSS downstream regions (defined as the

union of those regions within 1 kb downstream of a TSS), and

everything else. Note that these classes can overlap. Then, the

ratio was computed of integration counts versus control counts.

This ratio was normalized by multiplication with the ratio of

control dataset size and integration dataset size. Then the base 2

logarithm was taken. A similar approach was taken for the

transcript-related classes 59UTR, 39UTR, exon, and intron.

Bias with respect to gene expression (Figure 2). Genes

were divided into five quantiles, based on their expression level.

For SB and PB, Group 1 consisted of all genes with an FPKM of

zero in the RNA-Seq dataset. The remaining genes were divided

across four equal quantiles. The NMuMG microarray expression

dataset for MMTV was divided according to the same expression

quantiles. Subsequently, the same approach as above was taken for

determining the numbers of integrations within each of these

subsets of genes.

Topologically associated domains (Figure 3). Domain

definitions were adopted from [39]. Interfaces between TADs and

TAD boundaries were aligned, and integrations and controls (see

above) were counted until halfway into the TAD as well as halfway

into the TAD boundary region. Then, a log2 ratio between the

two was calculated.

Association of integration occurrence with genome-wide

features (Figure 4). For each feature and integration, a feature

score was computed at exponentially increasing distances (scales)

from that integration. For all deep sequencing based features, this

was done by taking the mean normalized read count within a

200 bp window, from the genome-wide binned read count profiles

computed as outlined above. For CpG islands, genes, and TSSs,

this score was calculated by taking the negative log2 transformed

distance (+1) to the nearest CpG island, gene, or TSS. For the

microarray features, this score represented the value of the nearest

probe. The Hi-C score was computed as follows. Normalized Hi-C

contact frequency matrices (20 kb bins) were downloaded from

(http://chromosome.sdsc.edu/mouse/hi-c/mESC.norm.tar.gz).

For each locus, defined by an integration and a scale, average

contact frequencies as a function of distance from that locus, were

calculated within a window of 400 kb. The Hi-C a was computed

as the slope of a linear regression fit to the log10 transformed

distances and log10 transformed contact frequencies. Once the

feature scores for all triples (feature, scale, and integration) were

calculated, feature scores were rank-normalized on a per-feature

basis, and a t-score, t
integration
i,j , was computed for each scale i and

feature j as follows:

t
integration
i,j ~

�xx0,j{�xxi,j

s0,i,j|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
z

1

2n

r ð1Þ

where

s0,i,j~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n{1)s2

0,jz(2n{1)s2
i,j

3n{2

s
ð2Þ

Here, �xx0,j represents the mean of all scores of feature j at the

sites of integration, �xxi,j the mean of all scores of feature j at scale i,

and s2
0,j and s2

i,j their respective variances. n represents the number

of integrations.

The same was done for the 10 sets of control loci, since we have

10 matched controls for each integration. This resulted in 1 set of

integration t-scores, t
integration
i,j , and 10 sets of control t-scores,

tcontrolk
i,j . Then, the difference between the set of integration t-scores

and the mean of the control t-scores was computed (and plotted in

Figure 4):

tDi,j~t
integration
i,j {

P10
k~1 t

controlk
i,j

10
ð3Þ

To compute p-values for the tDi,j , we can take advantage of the

fact that for large degrees of freedom, the t-distribution converges

to the standard normal distribution. Thus, the calculated t-scores

can be interpreted as normally distributed with mean 0 and

standard deviation 1, i.e. as 1 set of integration z-scores, z
integration
i,j ,

and 10 sets of control z-scores, zcontrolk
i,j :

zDi,j~z
integration
i,j {

P10
k~1 z

controlk
i,j

10
ð4Þ

Now, note that if:

x*N(mx,s2
x)
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y*N(my,s2
y)

z~xzy

Then

z*N(mxzmy,s2
xzs2

y)

Note furthermore, that if a is some constant and

x*N(mx,s2
x)

z~a|x

Then

z*N(mx,a2|s2
x)

Therefore

zDi,j*N(0,
ffiffiffiffiffiffiffiffiffiffiffiffi
11=10

p
) ð5Þ

The p-values for this distribution are readily computed.

Conditional independencies (Figure 5). For each integra-

tion, the feature values were normalized by division with the

average of the 10 corresponding control feature values (or

subtraction in case of log-transformed feature values). Then, all

data was discretized into three quantiles. To identify conditional

independencies in the discretized data we took the approach of

Bayesian networks [41]. Bayesian networks specify for each feature

a set of other features, the Markov blanket. A Markov blanket of a

feature represents a minimal set of features sufficient to

characterize the distribution of that feature. More formally, given

its Markov blanket, a feature is conditionally independent from all

other features. In addition to modeling conditional independen-

cies, Bayesian networks can capture nonlinear effects, such as the

changes of sign of association across scales in Figure 4. For

inferring Bayesian networks, we used BANJO [40]. Since BANJO

relies on stochastic optimization (simulated annealing), we inferred

Bayesian networks for 400 bootstraps of size 20000. For each

bootstrap, the Markov blanket of the integration proximity node

was determined, and the importance of a feature was represented

in two dimensions: First, the fraction of bootstraps a feature

occurred in a resulting Markov blanket. This conveys the degree of

confidence we have that this feature is truly relevant. Second, the

conditional mutual information between integration proximity and

a feature from its Markov blanket, given the other features in its

Markov blanket, averaged across all inferred Markov blankets.

This coveys the strength of association between integration

proximity and this feature, where this strength could not be

explained by any of the other features that were inferred to be

relevant.

Unselected vs. CIS integrations (Figure 6A). For each of

the three systems, CISs were called on the tumor screens, using the

approach outlined in [33], with a 30 kb kernel width and a 5%

Bonferroni-corrected p-value threshold. CIS regions were defined

as those regions where the Gaussian smoothing kernel exceeded

the significance threshold, extended on either side with 30 kb

(kernel width used for calling the CISs). CIS integrations were

defined as those integrations from the tumor screen that fell within

a CIS region, and log2 ratios of unselected integrations and CIS

integrations were calculated as described above, replacing control

loci with CIS integrations.

Activating/repressing CISs (Figure 6B). CISs were called

as outlined above. A CIS was defined to be an activating CIS if its

peak location was either not within a gene, or within a gene and

orientation-wise homogeneous, requiring 90% of integrations

falling within a CIS to be of the same orientation.

CIS region bias of unselected integrations

(Figure 6C). For the union of genic regions (+/2100 kb) it

was counted how many unselected integrations were found within

CIS regions, how many outside CIS regions, and the correspond-

ing numbers of expected unselected integrations in those regions;

p-values were calculated based on a binomial test. This procedure

outlined for genic regions was repeated for the whole genome, and

for intergenic regions.

Potentially spurious CISs (Figure 6D). For all CISs, it was

determined how many CIS integrations and unselected integra-

tions fell within the corresponding CIS region. CIS regions were

defined as above. To determine whether a CIS contained

significantly more CIS integrations than unselected integrations,

a one-sided binomial test was performed, testing the significance of

ns successes in (nsznu) trials, and corrected for multiple testing

(FDR). Here, ns is the number of tumor screen integrations within

a CIS region, and nu is the number of unselected integrations

within a CIS region. Low (high) p-values correspond to true

(spurious) CISs. The probability of success for each binomial test

was defined as
s

szu
, where s is the tumor screen dataset size, and u

is the unselected integration dataset size.

CISs were annotated with the name of the gene of nearest TSS,

where the TSSs were restricted to Ensembl IDs that had

corresponding UCSC, EntrezGene, MGI, and UniGene IDs. To

determine whether the non-significant CISs tended to be farther

away from genes, the genome-wide TSS density was estimated

using a Gaussian smoothing kernel (standard deviation 1 Mb), and

sampled at 1 kb intervals. Integrations were then mapped to the

nearest sampled density estimation point, and a Mann-Whitney U

test was performed on selected integrations within CIS regions

versus unselected integrations within CIS regions.

Supporting Information

Figure S1 Distribution of non-canonical recognition sequences

for PB and SB. The non-canonical recognition sequences are

generally relatively similar to the primary motifs and often differ

by only one nucleotide, such as CTAA, TTAG, TAAA for PB and

TG, CA, and AA for SB.

(EPS)

Figure S2 Sequence logos for all integration datasets, and de

novo motif search near integration sites. For a dataset, all

integrations were aligned with respect to locus and orientation,

and sequence logos were derived for the set of sequences spanning

a distance from 15 bp upstream of integrations to 15 bp down-

stream of integrations. As expected, PB and SB strongly prefer

TTAA and TA respectively. This preference is however not
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exclusive since these motifs account for 93% (PB; TTAA) and 94%

(SB; TA) of the total number of integrations. For SB, in addition to

the recognition sequence TA centered around the integrations, a

preference for A and T exactly 4 bp upstream and 4 bp

downstream can be observed. MMTV is the least sequence

specific of the three systems. Also, below each sequence logo are

shown the top 10 motifs found within 50 bp upstream and

downstream of the integration, as determined using the HOMER

software for motif discovery [34] are shown.

(EPS)

Figure S3 Gene alignment plots for all systems. For all systems,

the blue and red lines refer to unselected integrations. The black

lines refer to singleton integrations for all profiles, the black dotted

lines to CIS integrations. Note that no unselected MuLV data was

available. Therefore, the set of singleton MuLV integrations was

used as a proxy for an unselected integration profile.

(EPS)

Figure S4 Distribution of integrations across genes and

transcripts. Distribution of A) unselected integrations, and B)

CIS integrations across genes and transcripts. For genes, we

distinguish between integrations within genes (genic), within 2 kb

upstream of the TSS (TSS_upstream), within 2 kb downstream of

the TSS (TSS_downstream), and other integrations (other). For

transcripts, we distinguish between integrations in 59UTR,

39UTR, exons and introns. The color scale blue-gray-red

represents increasing numbers of integrations, relative to expected

(left), or the integration orientation bias relative to genes, from

antisense to sense (right). Associations that are not significant

(binomial test; FDR-corrected pw0:05) are white. Note that

orientation bias of unselected integrations is present but relatively

weak, compared to the CIS integrations (numeric differences in

color scale annotation).

(EPS)

Figure S5 Orientation bias of integrations with respect to

various genome-wide features. Orientation bias with respect to

various (epi)genomic features for A) all integrations, B) integrations

in sense orientation relative to the nearest TSS, and C)

integrations in antisense orientation relative to the nearest TSS.

Measure of association is a normalized t-score (see Material and

Methods), computed on rank-normalized feature values, visualized

on a blue-gray-red scale from negative to positive t-scores. A

positive (negative) t-score for a certain feature y means that for that

particular feature the mean values in a 200 bp window upstream

of the integrations are on average higher (lower) than the mean

values in a 200 bp window downstream of the integrations.

(EPS)

Figure S6 Overall orientation bias of integrations with respect to

(epi)genomic features. For each heatmap and system in the previous

figure, the fraction of positive feature t-scores is calculated, and 0.5 is

subtracted. The resulting score represents the overall orientation

bias of the system with respect to the features, positive (negative)

values implying inserting generally oriented away (toward) regions

of high signal. Reported p-values are based on two-sided binomial

tests and FDR-corrected. This shows that the general preference for

inserting oriented towards regions of high signal can not be

explained by an orientation bias of the integrations relative to genes

in the case of SB, and only partly in the case of PB.

(EPS)

Figure S7 MMTV macrofeatures. Association of the unselected

MMTV integrations with a limited set of macrofeatures across

different scales, showing that this set of features also behave as

macrofeatures not only in SB and PB, but also in MMTV, an

unrelated species. Measure of association is the t-score, computed

on rank-normalized feature values, visualized on a blue-gray-red

scale from negative to positive t-scores. Associations that are

not significant (FDR-corrected pw0:05) are white. t-scores

are transformed with a hyperbolic arcsine function for better

visualization. A positive (negative) t-score for a certain scale x and

feature y means that for that particular feature the mean values in a

200 bp window around the integrations are on average higher

(lower) than the mean values in a 200 bp window around the points

at a distance of x upstream and downstream from the integration.

(EPS)

Figure S8 Comparing SB and PB integration profiles to epigenetic

features in mEFs and mESCs. mEF data was obtained from [48–52].

For both the mEF and mESC features, t-scores were computed for

feature scores at integration loci vs. feature scores at control loci, and

plotted in the x-y plane. Feature scores at integration and control loci

were computed as described in the Material and Methods section.

This shows that associations are generally highly similar for mEFs and

mESCs, i.e. there is a strong correlation of t-scores in the x-y plane,

suggesting that cell type specificities are weak at best. It is noteworthy

that although this correlation is strong, associations for mEFs are

generally somewhat weaker than the associations for mESCs,

indicating that weak cell type specificities do exist.

(EPS)

Figure S9 Experimental design. Generation of unselected inte-

gration datasets for transposons and MMTV. A) A construct with

IRs for both SB and PB and the coding sequence for eGFP driven by

CMV promoter was co-transfected in mouse ES cells with either SB

or PB transposase. After 48 hr of transfection, *60{80|103 cells

were sub-cultured for 18 days (20 days in total after transfection)

before the isolation of DNA for integration site analysis using

splinkerette PCR. B) Mitomycin C treated Mm5MT cells (which

produce MMTV virus) were co-cultured with Puromycin resistant

NMuMG cells for 72 hr. After that, cells were passaged and treated

with Puromycin to remove mitotically inactive Mm5MT cells. The

infected NMuMG cells were further propagated for three weeks and

DNA was isolated for integration site mapping.

(EPS)

Table S1 List of statistical procedures used in the main text.

(XLS)

Table S2 FDR-corrected p-values associated with statistical tests

performed for Figures 1B, 1C, 6A, 6C.

(XLS)

Table S3 Macrofeatures and microfeatures.

(XLS)

Table S4 SB true and spurious CISs. Column name ‘nU’

refers to the number of unselected integrations within the CIS

region on chromosome ‘chr’, starting at ‘start’ and ending at

‘end’. ‘nC’ refers to the corresponding number of CIS

integrations. The p-values in ‘pvalue’ were calculated by a

one-sided binomial test of ‘nC’ successes in ‘nC’+‘nU’ trials, and

corrected for multiple testing (FDR). Low (high) p-values

correspond to true (spurious) CISs. The probability of success

for each binomial test was defined as
s

szu
, where s is the tumor

screen dataset size, and u is the unselected integration dataset

size. Each CIS region is mapped to its nearest TSS (columns

‘symbol’ and ‘ensemblID’).

(XLS)

Table S5 PB true and spurious CISs. Column name ‘nU’ refers

to the number of unselected integrations within the CIS region on
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chromosome ‘chr’, starting at ‘start’ and ending at ‘end’. ‘nC’

refers to the corresponding number of CIS integrations. The p-

values in ‘pvalue’ were calculated by a one-sided binomial test of

‘nC’ successes in ‘nC’+‘nU’ trials, and corrected for multiple

testing (FDR). Low (high) p-values correspond to true (spurious)

CISs. The probability of success for each binomial test was defined

as
s

szu
, where s is the tumor screen dataset size, and u is the

unselected integration dataset size. Each CIS region is mapped to

its nearest TSS (columns ‘symbol’ and ‘ensemblID’).

(XLS)

Table S6 MMTV true and spurious CISs. Column name ‘nU’

refers to the number of unselected integrations within the CIS

region on chromosome ‘chr’, starting at ‘start’ and ending at ‘end’.

‘nC’ refers to the corresponding number of CIS integrations. The

p-values in ‘pvalue’ were calculated by a one-sided binomial test of

‘nC’ successes in ‘nC’+‘nU’ trials, and corrected for multiple

testing (FDR). Low (high) p-values correspond to true (spurious)

CISs. The probability of success for each binomial test was defined

as
s

szu
, where s is the tumor screen dataset size, and u is the

unselected integration dataset size. Each CIS region is mapped to

its nearest TSS (columns ‘symbol’ and ‘ensemblID’).

(XLS)

Table S7 Amplification of samples for mapping integrations by

high throughput Illumina sequencing. For PCR-1 Thermo-Start

Taq DNA polymerase (ThermoScientific, cat # AB0908F) was

used whereas for all other PCR reactions Phusion High-Fidelity

DNA Polymerase (ThermoScientific, cat # F-534L) was used.

(N)10 represents the index sequences used to tag individual

samples for high throughput Illumina sequencing.

(DOC)
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