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Simple Summary: A brief description of the methodologies to simulate ionizing radiation transport
in biologically relevant matter is presented. Emphasis is given to the physical, chemical, and biological
models of Geant4-DNA that enable mechanistic radiobiological modeling at the cellular and DNA
level, important to improve the efficacy of existing and novel radiotherapeutic modalities for the
treatment of cancer.

Abstract: The Geant4-DNA low energy extension of the Geant4 Monte Carlo (MC) toolkit is a
continuously evolving MC simulation code permitting mechanistic studies of cellular radiobiological
effects. Geant4-DNA considers the physical, chemical, and biological stages of the action of ionizing
radiation (in the form of x- and γ-ray photons, electrons and β±-rays, hadrons, α-particles, and a set
of heavier ions) in living cells towards a variety of applications ranging from predicting radiotherapy
outcomes to radiation protection both on earth and in space. In this work, we provide a brief, yet
concise, overview of the progress that has been achieved so far concerning the different physical,
physicochemical, chemical, and biological models implemented into Geant4-DNA, highlighting
the latest developments. Specifically, the “dnadamage1” and “molecularDNA” applications which
enable, for the first time within an open-source platform, quantitative predictions of early DNA
damage in terms of single-strand-breaks (SSBs), double-strand-breaks (DSBs), and more complex
clustered lesions for different DNA structures ranging from the nucleotide level to the entire genome.
These developments are critically presented and discussed along with key benchmarking results.
The Geant4-DNA toolkit, through its different set of models and functionalities, offers unique
capabilities for elucidating the problem of radiation quality or the relative biological effectiveness
(RBE) of different ionizing radiations which underlines nearly the whole spectrum of radiotherapeutic
modalities, from external high-energy hadron beams to internal low-energy gamma and beta emitters
that are used in brachytherapy sources and radiopharmaceuticals, respectively.

Keywords: Monte Carlo; Geant4-DNA; DNA damage; DNA repair; mechanistic modeling; track-
structure; radiobiological modelling; IRT; step by step
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1. Monte Carlo Radiation Track Simulations

The Monte Carlo (MC) technique is currently recognized as the gold standard in
clinical dosimetry of mega-voltage electron and photon beams and a number of MC-based
software packages have been developed and become commercially available for patient
treatment planning in radiotherapy applications (e.g., PEREGRINE, DPM, VMC++, MCV,
MMC, ORANGE) [1]). These dose calculation software programs are based on so-called
general-purpose MC radiation transport codes, such as, MCNP, EGS, GEANT, FLUKA, and
PENELOPE [2–6]. However, the standard versions of all these MC dosimetry codes have a
typical spatial resolution of the order of 0.1 mm that is many orders of magnitude higher
than the DNA diameter (nanometer-scale) which is considered the primary radiation target.
Consequently, predictions of radiotherapy outcomes in patient treatment planning are
presently limited to macroscopic radiation dose calculations in millimeter-size volumes [7].
With radiation biology increasingly focusing on effects at the (sub) cellular and DNA level,
the spatial resolution of MC dosimetry codes is important to reach the (sub) micro- and
nano-meter scale.

The spatial resolution of MC codes is dependent upon the energy cut-off limit of
electron transport. Commercial MC codes simulate electron tracks by using the condensed-
history technique which “groups” many interactions along artificial steps and is valid (or
recommended) above 1 keV. To reach the (sub) cellular and DNA level, it is necessary
to simulate electron transport down to much lower energies approaching the ionization
threshold of the medium (about 10 eV for tissue-like materials) by the so-called track-
structure approach whereby electron tracks are simulated interaction-by-interaction.

However, the transition from macroscopic (condensed-history) to microscopic (track-
structure) MC simulation requires much more detailed physics models than are commonly
available. This has led to the development of several specialized low-energy MC codes
(e.g., NOREC [8], PARTRAC [9], KURBUC [10], see Table 1). These codes require a large
amount of input data for simulating every radiation interaction of both the primary and
secondary particles, which makes them difficult to operate at clinical energies and/or
include information from complex irradiation geometries. As a general remark, although
track-structure codes eliminate the problem of step-size artifact by avoiding the procedure
of introducing artificial step lengths along the track that affect both the resolution and
the accuracy of the results, their physical data (i.e., their interaction cross sections) are
much more uncertain compared to those that are used in condensed-history codes. In
addition, all of the aforementioned track-structure codes are the propriety of the authors
and are not publicly distributed. It must be highlighted that the transition from macro-
scopic (condensed-history) to microscopic (track-structure) simulation, offers not only
improved spatial resolution but entirely new potentials. While macroscopic simulation of
radiation doses requires the knowledge of the dose-response curve (usually obtained from
independent experiments) to predict the biological (therapeutic) outcome, the microscopic
simulation may extend to the biological stage of radiation action (albeit at molecular level)
and, therefore, to predict some biological effects (and related RBE) a priori, without the
knowledge of dose-response curves.

Low-energy electron transport (sub-1 keV energies) is practically unimportant in clini-
cal dosimetry which mostly deals with macroscopic volumes at the tissue (mm) and organ
(cm) level. Nonetheless, such electrons are essential in studies of radiation quality and
RBE using nano- or micro-dosimetric methods. Mechanistic studies of cellular radiobio-
logical effects are also very much dependent upon the transport of low energy electrons
owing to their role in radiolysis which contributes to the indirect damage of DNA [11].
Furthermore, efforts towards biologically-optimized (e.g., RBE-based) patient treatment
planning in hadron therapy (as well as other modalities [7]) usually employ microdosime-
try concepts [12]. Macroscopic MC codes that are based solely on the condensed-history
technique are, in principle, inappropriate for such applications. Therefore, in recent years,
there have been efforts to implement track-structure capabilities into general-purpose
MC codes to enable energy deposition calculations at the (sub) cellular and DNA level
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and establish connection with radiolysis models. Notable examples are MCNP (version
MCNP6 [13]), Geant4 (including Geant4-DNA extension [14]), PENELOPE (modification
to PENELOPE/penEasy [15]), and PHITS [16]. Apart from MCNP6, which uses a simple
interpolation of high-energy atomic models down to the eV energy range, thus, neglect-
ing aggregation effects which influence the scattering cross sections of atoms when these
atoms form chemical bonds in molecules or in condensed media, the low-energy capabili-
ties of PENELOPE, GEANT4, and PHITS are based on elaborate physics models that are
specifically developed for liquid water [4,6,16].

Table 1. MC track-structure codes that are used in various radiation effects studies in biological
medium. Associated particles, energy ranges, and target media (e.g., whether vapor-v-or/and liquid-
l-phase cross sections are used) are indicated. The degree of sophistication of the models differs for
each code and it will not be further analyzed in this study.

Code Particles Energy Range Target Materials Chemical Stage Reference

CPA100 e− Thermalization–256 keV Water (l), DNA Yes Terrisol and Beaudré
(1990) [17]

DELTA e− ≥10 eV–10 keV Water (v) Yes Zaider et al. (1983) [18]

EPOTRAN e− , e+ ≥7.4 eV–10 keV Water (l,v) No Champion et al. (2012)
[19]

ETRACK e− , p, α ≥10 eV–10 keV Water (v) Yes Ito (1987) [20]

ETS e− ≥10 eV–10 keV Water (l,v) Yes Hill and Smith (1994)
[21]

Geant4-DNA e− , p, H, α, ions

Thermalization–1MeV
e− ,

100 eV–100 MeV p, H,
1 keV–400 MeVα,

0.5MeV/u−106MeV/u
ions

Water (l), DNA, Gold Yes
Incerti et al. (2010, 2018),

Bernal et al. (2015)
[14,22–24]

IONLYS/IONLYS-IRT e− , p, ions 0.2 eV–150 keV e− , p,
0.1 MeV-300 MeV ions Water (l) Yes Cobut et al. (1998) [25]

KAPLAN e− ≥1–10 keV Water (l,v) Yes Kaplan (1990) [26]

KITrack e− , ions ≥10 eV–100 keV Water (l) No Wiklund et al. (2011)
[27]

KURBUC (KUR-
BUC/LEAHIST/LEPHIST/

CHEM-KURBUC)
e− , p, α, C

10 eV–10 MeV (10keV,
liq.) e− ,1 keV–300 MeV
p, 1keV/u-2MeV/u α,

1 keV/u–10 MeV/u
carbon

Water (l,v) Yes Nikjoo et al. (2016) [10]

LEEPS e− , e+ 0.1–100 keV All materials Yes Fernández-Varea et al.
(1996) [28]

LEPTS e− , e+, p
Thermalization–10 keV
e− , Thermalization–10

MeV p

Water (v), CH4, C2H4,
C4H8O, SF6, C4H4N2

No
Sanz et al. (2012),

Blanco et al. (2013)
[29,30]

Lion Track e− , p, ions
>50 eV e− ,

0.5 MeV/u–300 MeV/u
p, ions

Water (l) No Bäckström et al. (2013)
[31]

MC4 e− , ions ≥10 eV e− ,
≥0.3 MeV/u ions Water (l,v) No Emfietzoglou et al.

(2017) [32]

MOCA8B e− 10 eV–100 keV Water (v) Yes Paretzke (1970) [33]

NASIC e− Thermalization–1 MeV
e− Water (l) Yes Li et al. (2015) [34]

NOTRE DAME e− , ions ≥ 10 eV e− ,
≥0.3 MeV/u ions Water (l,v) Yes Pimblott et al. (1990)

[35]

OREC/NOREC e− 7.4 eV–1 MeV e− Water (l) No Semenenko et al. (2003)
[8]

PARTRAC e− , e+, p, H, α, ions
1 eV–10 MeV e− ,

1 keV–1 GeV p, H, α,
1 MeV/u–1 GeV/u ions

Water (l), DNA Yes Friedland et al. (2003)
[36]

PITS04 e− , ions ≥ 10 eV e− ,
≥ 0,3 MeV/u ions Water (l) No Wilson et al. (2004) [37]
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Table 1. Cont.

Code Particles Energy Range Target Materials Chemical Stage Reference

PITS99 e− , ions ≥ 10 eV e− ,
≥ 0,3 MeV/u ions Water (v) Yes Wilson and Nikjoo

(1999) [38]

PTra e− , p, α
1 eV–10 keV e− ,

1–10 MeV α,
300 keV-10 MeV p

Water (l,v), DNA No Grosswendt and Pszona
(2002) [39]

RITRACKS/RETRACKS e− , ions
0.1 eV–100 MeV e− ,

10−1MeV/u–104MeV/u
ions

Water (l,v) Yes Plante and Cucinotta
(2009) [40]

SHERBROOKE e− , ions ≥ 10 eV e− ,
≥ 0,3 MeV/u ions Water (l,v) Yes Cobut et al. (2004) [41]

STBRGEN e− , ions ≥ 10 eV e− ,
≥ 0,3 MeV/u ions Water (l,v) Yes Chatterjee and Holley

(1993) [42]

TILDA-V e− , p, H, ions
≥ 7,4 eV e− ,

10 keV/u–100 MeV/u
ions

Water (l,v), DNA No Champion et al. (2005)
[43]

TRAX e− , p, ions
1 eV–few MeV e− ,

10 eV–few hundred
MeV/u ions

Water (v) Yes Krämer and Kraft (1994)
[44]

RADAMOL
(TRIOL/STOCHECO) e− , ions ≥7.4 eV–2 MeV e− ,

≥0.3–200 MeV/u ions Water (l) Yes Bigildeev and Michalik
(1996) [45]

TRION e− , ions ≥10 eV e− ,
≥0.3 MeV/u ions Water (l,v) No Lappa et al. (1993) [46]

TRACEL/RADYIE/RADIFF e− , ions ≥10 eV e− ,
≥0.3 MeV/u ions Water (l,v) Yes Tomita et al. (1997) [47]

2. The Geant4-DNA Extension

Since 2007, Geant4 (release 9.1) is the only open access general-purpose radiation
transport MC code offering, through its Geant4-DNA low-energy extension, track-structure
capabilities in liquid water down to the eV energy range [22]. Liquid water has been
historically the medium of choice in track-structure codes because of its abundance in cells
(70–80% by weight) and also because of its role as a source of reactive free radicals [48].
Towards more realistic modelling of direct damage to DNA, several studies have pre-
sented interaction cross sections that are specific to DNA bases (or constituents) in the
gas phase [49–54] some of them being part of the Geant4-DNA ongoing developments.
Interaction cross sections that are specific to bulk DNA in the condensed-phase have also
been presented based on the dielectric approach [55–57].

Geant4-DNA offers the possibility to transport interaction-by-interaction electrons,
protons, hydrogen atoms, alphas, and some ions in liquid water medium. Due to the
importance of low- and moderate-energy electrons (from few eV to 1 MeV) in track-structure
simulations, as well as the large uncertainties that are associated with their transport in
biological media, users have the possibility to select among three recommended sets of
alternative physics models which correspond to different cross sections for elastic and
inelastic scattering. These physics models are the default Geant4-DNA models or Option
2 constructor (available since 2007 in Geant4 version 9.1) [24], the improved models that
were developed at the University of Ioannina [58] or Option 4 constructor (available since
2015 in Geant4 version 10.2), and the Option 6 constructor (available since 2017 in Geant4
version 10.4) [14,22–24]. The Geant4-DNA models have been tested and validated against
reference data (i.e., NIST, ICRU) and wherever available versus experimental data and other
MC simulation studies. Comparisons between the condensed history models of Geant4
and the track-structure models of Geant4-DNA have also been undertaken for particular
applications [14,23,59–63].

3. Physical Interactions in Geant4-DNA: Energy-Loss Models

Energy-loss models in track-structure simulations determine the spatial distribution
of ionizations and excitations, thus, the energy deposition processes taking place within
the target volumes. Measured ionization and excitation cross section data for liquid water
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do not exist (contrary to the case of vapor water). Therefore, theoretical models play an
important role in the development of energy-loss models for liquid water and a variety
of approaches have been adopted, ranging from some well-established atomic/molecular
models [64] to more complicated solid-state models [65,66]. However, the existence of
spectroscopic data for several materials (including liquid water) concerning their absorption
spectrum or their optical dielectric constants provides an indirect means to calculate
inelastic scattering cross sections from first principles using the dielectric theory. Different
analytic parameterizations of the dielectric response function [67,68] are currently being
used in track-structure codes, such as the NOREC, PARTRAC, KURBUC, and GEANT4-
DNA codes. In the framework of the plain wave Born approximation (PWBA), the dielectric
response function completely determines inelastic scattering through the proportionality:

d2σBorn

dE dq
∝ Im

[
− 1
ε(E, q)

]
(1)

where E is the energy transfer, q is the momentum transfer (or scattering angle), σ is the cross
section, and Im[−1/ε] = Im[ε]/|ε|2 is the energy-loss function (ELF). Due to its analytic
properties, a Drude-like model of ε(E,q) is being used in all the above track-structure codes
(NOREC, PARTRAC, KURBUC, GEANT4-DNA), which mostly differ on the values of
the Drude coefficients and the details of the parameterization of experimental data. The
advantage of a Drude representation of ε(E,q) against using more sophisticated models
(e.g., Mermin) has been discussed elsewhere [66].

In Geant4-DNA Option 2 constructor, the experimental data for the imaginary part of
the dielectric response function of liquid water [69] are partitioned to the outer ionization
shells and excitation levels using the following parameterization [58]:

Im[ε(E, q = 0)] =
ioniz.

∑
n

[Dn(E; En)Θ(E− Bn)] +
excit.

∑
k

[D∗k (E; Ek)Θ(E− Bk)] (2)

where the index n runs over the ionization shells and the index k runs over the discrete
excitation levels, Dn(E;En) and Dk*(E;Ek) are the ordinary and derivative Drude functions
with coefficients that were determined by a fit to the experimental data at the optical limit
(q = 0) under the constraint of the sum-rules, and Bn,k are threshold energies (e.g., binding
energies). In Geant4-DNA Option 4 constructor [58], Equation (2) is replaced by

Im[ε(E, q = 0)] =
ioniz.

∑
n
{[D(E; En)− D(E; Bn) exp(Bn − E) + Fn(E)]Θ(E− Bn)}

+
excit.
∑
k

{
[D∗k (E; Ek) + Fk(E)]Θ(E− Bk)

} (3)

where Fn,k(E) are analytic functions that are calculated by the new algorithm that is im-
plemented in Option 4 that improve the consistency of the model ELF and facilitate the
analytic calculation of the real part, Re[ε], via the Kramers-Kronig relation [58]. Despite
using the same experimental optical data set with Option 2 as input, as well as the same
ionization shells and excitation levels, substantially different ionization and excitation
cross sections are obtained in Option 4 at low energies due to the implementation of the
Emfietzoglou-Kyriakou partitioning algorithm [58]. This resulted in higher ion-pair ener-
gies (the so-called “W-values”), smaller penetration distances, and less diffused dose-point-
kernels [58,70] while also influencing the calculated yields of direct DNA damage [71,72].
In addition, Option 4 includes some methodological changes for a more consistent imple-
mentation of the Coulomb and Mott corrections which quantitatively account for most of
the exchange-correlation effect that is encountered in electron-electron interactions [73,74].
These corrections are applied to address more accurately the low energy electron inelastic
cross sections which have a strong influence on modeling radiobiological effect sat the
sub-cellular level.
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An alternative to Option 2 and Option 4 constructors is the Option 6 constructor which
corresponds to a re-engineering of the CPA100 track-structure code [75]. The original
CPA100 code, which was a well-established code in microdosimetry, was developed and
maintained by Michael Terrissol and co-workers [17] to simulate the step-by-step transport
of electrons and photons in liquid water and different biomolecular targets, such as DNA
bases and sugar-phosphate groups [76] in homogeneous as well as heterogeneous materials.
CPA100 code can generate all the electronic and photonic cascades (Auger electrons, X-rays,
and atomic reorganization). It can also simulate physicochemical and chemical stages
during the early passage of particles in matter up to one microsecond to evaluate early
DNA damage. In the last version of CPA100 code, the energy differential and the total cross
sections of the five molecular orbitals are calculated using the BEB (Binary Encounter Bethe)
model [64]. The BEB model is an exchange–corrected atomic model which requires only
the knowledge of three physical parameters for each orbital: the binding energy, the mean
kinetic energy, and the orbital occupation number. The first advantage of this model is that
the cross sections are calculated analytically. The second advantage of the analytical form of
the differential cross section is that the energy loss can be obtained by directly sampling the
differential cross section expression without using interpolation in very large cross section
tables. This is done via a composition sampling method that was originally developed in
the last version of CPA100 [77]. The excitation cross sections for the five discrete levels
are calculated in the first Born approximation using the optical data model of the complex
dielectric response function coming from the work of Dingfelder et al. [78]. This model is
also based on a Drude representation of ε(E,q) using the same optical dataset, electronic
excitation levels, and dispersion relations that are similar to the other available electronic
models in the Geant4-DNA constructors (Option 2 and Option 4). However, the resulting
excitation cross sections are not the same due to a different set of Drude coefficients. Finally,
in the Option 6 set of physics models, angular deflection in inelastic scattering for both
excitation and ionization is considered based on the kinematics of binary collisions.

4. The Physico-Chemical and Chemical Stages of Water Radiolysis

After ionization or excitation in an energy deposition process, water molecules can
dissociate or decay into new reactant species (e−aq, H2, H•, •OH, H3O+, . . . ). These new
molecular species can diffuse and interact amongst themselves, producing other molecules.
Consequently, after the physical interactions, the number of molecules of a given species
evolves in time. During this process, free radicals are created and may react with biological
molecules such as DNA, RNA, proteins, etc., and finally, induce early damage. In Geant4-
DNA, since version 10.1, the physico-chemical and chemical stages of water radiolysis
were introduced [79] that allow simulations of the production, chemical reactions, and
transport of reactive species along the passage of radiation up to 1 µs. These two stages,
which technically belong to the chemistry module of Geant4-DNA, are described below in
more detail.

4.1. The Physico-Chemical Stage

In Geant4-DNA, the physico-chemical stage includes the thermalization process of
secondary electrons and electronic events that are occurring in ionized and excited water
molecules up to 1 picosecond (ps). The primary or secondary electrons that are produced
during the physical stage continue to lose their energy through the dissociative attachment
and vibrational excitation processes, get thermalized within 110 femtoseconds (fs), and
then become solvated within about 250 fs [11,80,81]. The electronic holes of ionized water
molecules quickly join proton transfer processes that are occurring between them or a
nearby water molecule to create H3O+ and •OH molecules or participate with solvated
electrons in the recombination process which reforms water molecules. The excited water
molecules go through dissociation channels which depend on their excited level. The
hot dissociation fragments of water molecules and electrons are assumed to become all
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thermalized within 1 ps. Table 2 presents the decay channels that are implemented in the
default physico-chemical stage of Geant4-DNA [80].

Table 2. Default decay channels and corresponding branching ratios of a water molecule until 1 ps as
currently available in Geant4-DNA (the symbol * is used to represent excited water molecule).

Electronic State Decay Channel Fraction

All ionization states H2O+ + H2O →H3O+ + •OH
(through proton transfer)

100%

Excitation state A1B1:
(1b1) → (4a1/3s)

H2O∗ → •OH + H•

H2O∗ → H2O + ∆E
65%
35%

Excitation state B1A1:
(3a1) → (4a1/3s)

H2O∗ → HO++ •OH + e−aq
H2O∗ → •OH + •OH + H2

H2O∗ → H2O + ∆E

55%
15%
30%

Excitation state:
Rydberg, diffusion bands

H2O∗ → HO++ •OH + e−aq
H2O∗ → H2O + ∆E

50%
50%

Electron attachment H2O− → OH− + •OH + H2 100

Electron-hole recombination

H2O∗ → •OH + H• 55%

H2O∗ → H2 + 2•OH 15%

H2O∗ → H2O + ∆E 30%

4.2. The Chemical Stage
4.2.1. Step by Step Method

From 1 picosecond (ps) up to 1 microsecond (µs) during the so-called chemical stage,
the chemical species can diffuse through the medium and interact with each other. The
diffusion process corresponds to the Brownian motion which is described by the solution
of the Smoluchowski equation. This well-known solution of the Smoluchowski equation
can be given by:

p(r, ∆t|r0) =
4π(r− r0)

2

(4πD∆t)3/2 e{
−(r−r0)

2

4D∆t }, (4)

where r0 is the initial position and r is the possible next position of free species for the
probability p(r, ∆t|r0) in a time interval ∆t. This probability depends on the diffusion
coefficient D in water for each species type. Equation (4) means that the determination of
the species positions in Brownian motion is randomly based on a 3D-Gaussian distribution
and can be applied only in a space and a time interval ∆t where species are free. Figure 1
shows the distributions of displacements that were obtained by a sampling method in
Geant4-DNA at 1 µs, compared with the distribution that was calculated by Equation (4).
The Geant4-DNA sampling method uses a generator of random numbers (Rx, Ry, Rz)
which are normally distributed with zero mean and unit variance to compute the position
of the molecule at time t + ∆t as:

x(t + ∆t) = x(t) + Rx
√

2D ∗ ∆t (5a)

y(t + ∆t) = y(t) + Ry
√

2D ∗ ∆t (5b)

z(t + ∆t) = z(t) + Rz
√

2D ∗ ∆t (5c)
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Figure 1. Diffusion range of chemical species (left plot: solvated electron; right plot: H3O+) set in
Brownian motion in liquid water within 1 µs simulated with Geant4-DNA (crosses) compared to the
theoretical Smoluchowski solution (line).

In the diffusion model that was described earlier, only the molecules of interest are
explicitly simulated and the solvent (water) is considered as a continuum. Under these
conditions, free species diffuse until two reactants encounter each other. Let’s consider
two reactants A and B in encounter, they will first form a complex (A:B) that might either
re-dissociate into A and B or react and create new products P. The chemical equation is:

A + B
kC , kD←−−→ (A : B)

kR→ P (6)

where kC is the reaction rate constant of the (A:B) complex formation, kD is the dissociation
rate constant of the (A:B) complex, and kR the activation reaction rate constant. If the
reaction is very effective, the reactants will form the new products as soon as the molecules
encounter each other. This is described by a very high activation reaction rate constant
kR�kC,kD (in other words, kR→∞). This allows us to define the reaction rate k as:

k =
kC

1− kD
kR

≈ kC (7)

These reactions are named diffusion-controlled reactions and are considered to be very
effective and occurring immediately when molecules encounter each other. The chosen
criterion is usually the separation distance between the reactants; when two reactants are
under a certain threshold, the reaction occurs. This threshold is calculated from the reaction
rates by the Smoluchowski theory in case of particles without charge:

k = 4πNAD (8)

and by the Smoluchowski–Debye theory for electro-static interactions:

k = 4πNADσe f f (9)

where σe f f =
Rc

exp( Rc
σ )−1

, Rc is the Onsager distance, σ is the reaction radius, D = DA + DB

with DA and DB are the diffusion coefficients of reactants A and B in water, and NA is the
Avogadro number. Table 3 provides the implemented chemical reactions and corresponding
reaction rates of Geant4-DNA (from Geant4 version 10.7).



Cancers 2022, 14, 35 9 of 26

Table 3. Implemented chemical reactions and reaction rate constants k [82,83] as defined in the two
chemistry constructors “G4EmDNAChemistry” and “G4EmDNAChemistry_option1” that apply at
ambient temperature (25 ◦C) of Geant4-DNA version 10.7.

Reaction

Reaction Rate Constant k
(
1010M−1s−1)

G4EmDNAChemistry G4EmDNAChemistry_
Option1

e−aq + e−aq + 2H2O→ H2 + 2OH− 0.5 0.636

e−aq + H• + H2O→ H2 + OH− 2.65 2.5

e−aq + •OH→ OH− 2.95 2.95

e−aq + H3O+ → H• + H2O 2.11 2.11

e−aq + H2O2 → OH− + •OH 1.41 1.10
•OH + •OH→ H2O2 0.44 0.550
•OH + H• → H2O 1.44 1.55

H• + H• → H2 1.2 0.503

H3O+ + OH− → 2H2O 14.3 11.3

To avoid losing potential reactions, time intervals of the species in diffusion are
usually defined by discretized small steps (or time step) [84]. However, to maintain the
computational efficiency of the model, the time steps should not be too small [80]. Therefore,
to optimize the computation time, improved time step models are necessary.

In Geant4-DNA, since version 10.1, the Step by Step (SBS) approach which uses the
dynamic time step model, has been implemented. A detailed description of this method can
be found elsewhere [79,84]. This method briefly proposes a time step model which allows
the definition of virtual time steps during which the reaction cannot occur with at least
95% (default value) of confidence. One can visualize that as creating a protection domain
surrounding the particle, ensuring that this particle will not react with any other particle
with 95% confidence up to its border. Therefore, within this protection domain, the particle
is considered approximately independent (or “free”) and can take longer diffusion time
steps. Equation (4) is used to determine the dynamic time step. This process is repeated
many times until a chemical reaction takes place. Thus, we may have one- or many-time
steps before the reaction occurs. To avoid the scenario of too many small time steps, the
Minimum Time Steps and the Brownian bridge approaches have been added to limit the
number of time steps to an encounter. While Minimum Time Steps constrain the minimum
time-step that is allowed for each reactant pair, the Brownian bridge technique computes
the probability of encounter during their Minimum Time Steps and thus compensates for
the “missed” reactions. The use of these Minimum Time Steps in Geant4-DNA can be
decided by users.

Figure 2 shows the time-dependent radiolytic yields G-values using the Minimum
Time Step at 1 ps given by the two chemistry constructors “G4EmDNAChemistry” and
“G4EmDNAChemistry_option1” of Geant4-DNA. While the “G4EmDNAChemistry” con-
structor, that is based on the PARTRAC MCTS code [36] was available in Geant4 since
version 10.1, the “G4EmDNAChemistry_option1” including diffusion coefficients and
chemical reaction rates from the RE-/RITRACKS MCTS code [40] was integrated since
version 10.5. Both chemistry constructors currently use the SBS approach. The radiolytic
yield G-value is defined as the number of molecules at a given time for each 100 eV of
deposited energy. In this simulation, Geant4 version 10.7 is used with 80 keV incident
electrons irradiated from the center of a very large water volume (see Geant4-DNA ex-
ample “chem5”) and the minimum and maximum energy depositions set at 1 keV et 2
keV, respectively [11]. A general agreement of these results with experimental data can be
observed. It should be noted that the last two parameters are used for energy threshold
selection to restrict such energy deposition in a small segment of the entire physical track.
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While the minimum energy deposition limits the energy loss of the primary particle, the
event having total energy deposition larger than the maximum energy deposition will be
aborted and is fully ignored in the simulation.
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× LaVerne, 2000 [85]; H2: ∆ Draganic and Draganic, 1975 [98], � LaVerne and Pimblott, 1991 [99];
H•: ∆ Draganic and Draganic, 1972 [100].

4.2.2. Independent Reaction Time

Although the dynamic time step model is used to optimize the choice of the time step,
the calculation time remains the main drawback of the SBS approach when the simulations
deal with a large number of species [101,102]. To avoid this drawback, a more efficient
method called Independent Reaction Time (IRT) has been implemented in Geant4-DNA in
the version 10.7 of Geant4. By simplifying the multiple particle problem to the two-particle
problem in an approximation, the IRT method proposes that possible reactant pairs are
scheduled independently and organized in a reaction queue sorted by their time to reaction
(or “reaction time”). The reactions having the shortest reaction time are then processed
successively until no more reaction is in the reaction queue, or the reaction times are longer
than the end time of the simulation.

The reaction times are sampled according to the reaction probability, which is cal-
culated by the solution of the Smoluchowski equation (4) with boundary conditions (for
totally or partially diffusion-controlled reactions) transformed to radial Green’s function in
a spherical coordinate system. The details of the IRT are found elsewhere in [100,103–105].
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This approach allows the performance of water radiolysis simulation with reasonable
computational time. Such time depends strongly on the linear energy transfer (LET) of the
irradiation source as shown in Figure 3. The IRT model can reduce the simulation time up
to 1000 times compared to the SBS method for low-LET simulations as, for instance 1 MeV
electrons. Since the search algorithm of the IRT method is less efficient at the high density
of chemical species, the ratio of the calculation efficiency between SBS and IRT decreases as
a function of LET. Nevertheless, the simulation time for the chemical stage is remarkably
reduced using the IRT model.
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5. Towards the Modelling of Early DNA Damage
5.1. History

It is recognized that DNA is the privileged target to be taken into account to under-
stand and predict the consequences of irradiation at the cellular level [107]. DNA damages
are categorized as single-strand breaks (SSB), DSBs, base damage, and complex damage
when a combination of those is produced. Among the different types of DNA damage,
double strand breaks (DSBs) are considered the most deleterious and can be correlated
with clonogenic cell kill [108]. The more complex the initial damage to DNA, the higher
the probability of being mis-repaired and thus consequences on cell fate can be expected.
Therefore, modelling of early damage to DNA represents a powerful tool to predict irra-
diation risk [109]. This is only possible if a detailed understanding of the mechanisms of
ionizing radiation action on living organisms is implemented in the code.

To this end, MC track-structure codes have been developed to describe molecular inter-
actions leading to direct and indirect effects which are at the origin of early DNA damage.
The pioneering works have evolved from the consideration of direct effects alone [110,111]
to the inclusion of indirect damage [112–114]. A key point in these simulations is the
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geometrical description of the target molecule, i.e., the DNA structure. Indeed, a good
precision in the volume of its constituents and their relative position has a direct impact
on the number and complexity of damage that is computed from both the physical and
chemical stage. This structure has to be defined as precise as possible at the nanometric
scale (nucleotide scale) as well as at higher scale (micrometric) where the DNA structure
is also meaningful (chromatin fiber, domains, chromatin compaction depending on the
cell cycle, etc). Historically, the DNA geometrical models that were implemented range
from simplified representations that were based on cylinders [115] to highly complex de-
scriptions of the whole genome [9,116,117], reaching, in some cases, an atomistic definition
of the DNA components [118,119]. In general, inelastic collisions are assumed to cause
strand breaks depending on the amount of energy that is deposited in the sensitive sites,
including sugar phosphate backbone and DNA hydration shell. This amount of energy
is, to a certain extent, a modifiable parameter that is specific to each code. The physico-
chemical and chemical stages are also crucial since it should be noted that around 70%
of the damage from low LET particles is due to indirect effects. It is, therefore, generally
considered that only a certain fraction of the simulated hydroxyl radical interactions with
the deoxyribose moiety cause DNA strand breakage. Moreover, it is generally accepted to
limit the duration of the simulation of the chemical step which makes it possible to account
for the scavenging effect of the cellular environment. From this perspective, the results
of several MC track-structure codes that were developed for modelling cellular radiation
response have been historically (and successfully) compared to experimental data mainly
in terms of DSB yields or chromatin fragments [35,39,114].

5.2. “FullSim” Complete Simulation Chain for DSBs Calculations

In 2017, Geant4-DNA was used for the first time for simulating the combination
of physical, physico-chemical, and chemical stages for the assessment of early radiation
damage in terms of DSB yield and complexity at the scale of an entire human genome
(fibroblast cell) [116]. One of the key elements of the simulation is the sampling of energy
deposition and radical reactions leading to damage in a DNA geometry which must,
therefore, be as realistic as possible. The DNA models that are used within this simulation
chain are built with the DnaFabric software [120]. This independent software was designed
to facilitate the generation of DNA geometries at different scales ranging from the nucleotide
pair to the entire genome of any cell type [121] and respecting the different compaction
levels. Once the geometrical model is generated, a text file is written that can be read by
the DetectorConstruction class of the Geant4-DNA simulation chain.

With DnaFabric, B-DNA, which is the most common form of DNA, is modelled by
representing each nucleotide constituent (2-deoxyribose, phosphate, and DNA bases) of
the genome with spherical shapes and twisted to generate nucleosomes that are linked
together to create the chromatin fiber as shown in Figure 4. The continuity of the fiber
within each chromosome is ensured by using voxels describing the 30 nm chromatin fiber
taking different directions that can be connected to fill the space. From the biological point
of view, different DNA densities and distributions are observed at the cellular (microscopic)
level depending on the cell type and the cell cycle. Furthermore, chromatin compaction
(nanometric level) has a role in the protection of DNA from damage induction and it was
shown that DSB production occurs more frequently in decondensed chromatin [122,123].
The condensed form of the chromatin fiber is the heterochromatin whereas the decondensed
form is called euchromatin.
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Figure 4. Construction with DNAFabric software of: (a) a nucleosome made of B-DNA twisted
around a histone, (b) a voxel representing a straight voxel of heterochromatin, and (c) a fibroblast cell
nucleus with different levels of details, taken from [116].

Heterochromatin fiber voxel models were first developed in DNAFabric [116] and
then complemented by euchromatin models [124]. The combination of the two types
of compaction allowed for the accounting of the distribution of heterochromatin and
euchromatin regions that were measured experimentally to study its influence on the
DSB yield that was simulated for proton irradiations. Results have shown the DSB yield
increasing when geometrical models that are closer to the observation are taken into
account [124] thus verifying the protective role of heterochromatin which is reproducible
in the calculation chain.

Another key element in the simulation chain is the definition of parameters, as shown
Table 4, that allow the translation of the simulated information (position of energy deposits
and reaction of radicals in the DNA geometry) into strand breaks that are then converted
into DSB data. The set of parameters that are used by default to compute the number
of DSBs includes: (i) a threshold for energy that is deposited in the backbone (including
hydration shell) Elower = Ehigher = 17.5 eV to induce a direct strand break, (ii) an effective rate
POH = 40% in SSB production from the reaction of a hydroxyl radical with deoxyribose to
produce an indirect strand break, (iii) a duration of the chemical step fixed to Tchem = 2.5 ns
(use of chemistry module of Gean4.10.1) to prevent radicals far from the DNA structure
from being at the origin of indirect effects, and (iv) a DSB is scored when at least two SSBs
that are located on opposite strands are separated by less than 10 bp.
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Table 4. Main parameters of FullSim and MolecularDNA simulation chains for predicting early DNA
damage.

Parameters FullSim MolecularDNA

Physical parameters

Rdir (Å) VDWR + hydration shells * 3.5

Elower(eV) 17.5 5.0

Ehigher(eV) 17.5 37.5

Chemical parameters

POH 0.4 0.405

Tchem (ns) 2.5 5.0

dkill (nm) N/A 9.0
Rdir: Accumulation radius of energy deposition from nucleotide centre. Elower: Minimum energy of direct strand
break probability model. Ehigher: Maximum energy of direct strand break probability model. POH: Probability of
indirect strand break. Tchem: Time limit of chemical diffusion. dkill: Production range limit of chemical radiolysis
species from nucleotide centre. (VDWR): Summing up of atomic volume with each atomic van der Waals Radius
(1.2, 1.7, 1.5, 1.4, 1.9 Å for H, C, N, O, P respectively). (*) Additionally, 24 water molecules considered as hydration
shell.

The comparisons between the simulated results and the experimental data have been
carried out for both high and low LET particles.

DSB yields were first calculated in a fibroblast cell nucleus that was filled with only
heterochromatin and compared to the literature for proton irradiations [116]. The good
agreement that was found (Figure 5) after fixing the parameters that are presented above,
showed that the whole simulation chain was able to reproduce the trend over LET of
experimental data, taking into account the measurement uncertainties correctly. A good
agreement was also found in a second publication comparing the simulated DSB yield
that was produced by X-rays of different spectra (40 kVp, 220 kVp and 4 MV) with the
experimental measurements of γ-H2AX for HUVECs cells that were irradiated in the
simulated facilities as shown Table 5 [125]. The simulation setup included the nucleus
geometry combining heterochromatin and heterochromatin regions that were distributed
randomly but respecting the global rates that were observed experimentally. Furthermore,
simulations have shown that the differences between different beam qualities were due to
the proportion of secondary electrons of energy below 10 keV, highlighting the crucial role
of these particles. Since the simulation chain does not take repair processes into account, it
is essential to compare simulations and experiments at the maximum gamma-H2AX signal,
as suggested in [125], to minimize the underestimation of early DNA damage. Nevertheless,
considering the rather slow repair of DSBs, a better match is expected in the case of low
LET irradiations because the correspondence 1:1 DSB/foci is more reliable. Indeed, for
high LET irradiations, the measured foci may be sites containing clustered DSBs.
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Table 5. Comparison of the simulated results and the experimental for a dose of 1 Gy for different
X-ray beams: mean number of γ-H2AX foci per endothelial cell nucleus in Gap0/Gap1 (30 min
post-irradiation) and mean number of simulated DSB per nucleus, reproduced from [125].

Simulated DSBs and
Experimental Foci at 1 Gy 40 kVp X-rays 220 kVp X-rays 4 MV X-rays

Sim. mean number of DSBs
per nucleus 21.0 ± 0.3 21.0 ± 0.3 16.8 ± 0.3

Exp. mean number of
γ-H2AX foci per nucleus 18.59 ± 0.43 18.64 ± 2.33 16.46 ± 1.63

5.3. Review of “MolecularDNA”Application

An application named “molecularDNA” was developed for the mechanistic modeling
of radiation track-structure effects and to test their ability to model the induction of cellular
damage following irradiation, including, for the first time, the IRT approach. This applica-
tion linked the physical, chemical (IRT), and geometrical interfaces of Geant4 to investigate
early DNA damage that was induced by radiation and the subsequent biological response.
The development and main principles of the application are described in [126], followed
by a series of publications [71,106,117,127,128] and is designed for general purpose investi-
gation of how DNA is damaged in a variety of biological geometry models. It contains a
library of geometrical models of sub-cellular component units such as simple DNA fibres,
chromatin fibres, and fractal geometries that can combine smaller segments to build a
longer chain. The molecularDNA application uses the damage classification system that
was proposed by Nikjoo [129], which allows the calculation of the number of initial DNA
damage events for a given simulation. The classification system considers the source of
the damage (direct and indirect damage induction) and the complexity of the damage,
including simple SSBs, DSBs, and complex clustered damage. By using the scored initial
DNA damage and the classified damage detail as inputs, the application allows calculation
of the protein yield that is involved from the four major repair processes in normal human
fiblobrasts.
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The application was validated through a comparative investigation of Geant4-DNA
physics, chemistry, and DNA damage models against some well-established MC simulation
platforms for radiobiological applications [117], namely KURBUC and PARTRAC. For the
assessment, a 3 µm radius liquid water sphere was filled with 200,000 randomly-distributed,
non-overlapping, individual DNA geometries. Each DNA geometry was a 216 base-pair
(bp) straight DNA segment in a rectangular placement volume. Primary electrons (energy
range of 300 eV to 4.5 keV) were generated randomly with a random direction in a smaller
500 nm radius sphere in the centre of the test region. In a follow-up study, the application
was extended to allow the simulation of initial DNA damage in an Escherichia coli (E.
coli) cell using a combination of straight and turned DNA segments [71] that were joined
together to mimic a fractal pattern. Applying a mask to this otherwise rectangular pattern
allowed simulation of the E. coli ellipsoidal geometry as shown in the left panel of Figure 6
(a long semi-major axis of 950 µm and two short semi-major axes of 400 µm) containing
4.63 Mbp. The simulated results are validated against experimental data for plasmid that
was irradiated by both electrons (10 keV) and protons (90–249 MeV), as well as against
past simulations. Through the above two studies, the damage models and parameters
were tuned to be consistent with experimental data and the simulated result of KURBUC.
For direct damage, both a threshold model (where breaks occur when energy depositions
are Elower = Ehigher = 17.5 eV or higher, proposed by KURBUC [129]) and proportional
damage model (where breaks occur with a linearly increasing likelihood from Elower = 5 to
Ehigher = 37.5 eV, proposed by PARTRAC [36]) were tested for different energy deposition
ranges. The probability of indirect damage (POH) was also tested within the ranges for
which it had been experimentally measured (0.4–0.8) [130,131]. As a result of this tuning,
the Geant4-DNA simulations that were reproduced the results of KURBUC with similar
parameters used in KURBUC as shown in right panel of Figure 6.

Cancers 2022, 14, x FOR PEER REVIEW 17 of 27 
 

 

the results of KURBUC with similar parameters used in KURBUC as shown in right panel 
of Figure 6. 

 
Figure 6. Left: E. coli geometry that was generated by the molecularDNA application. Right: the DSB 
yields as a function of LET from proton irradiation assessed by Geant4-DNA, compared to the re-
sults of PARTRAC (F03) and KURBUC (N01), and experimental data (F99, B00). Taken from Lampe 
et al. [71]. 

The geometrical model was further improved in the study of Sakata et al. (2019) [131] 
to build a human cell nucleus that was composed of fractally distributed chromatin fibres 
as shown in Figure 7. In this newly developed cell nucleus model, the DNA fibre is folded 
by histones (which were defined as spheres, each with a 25 Å radius) compactly forming 
chromatin fibre. In the study by Sakata et al. [131], the damage parameters were re-ad-
justed within a reasonable range to achieve agreement with experimental data for proton 
irradiation that was induced SSB and DSB yields in a human cell. 

 
Figure 7. The structure of cell nucleus and its sub-biological components for the molecularDNA 
application [127]. 

In reality, a cell nucleus is confined to a cytoplasm and irradiation events involve the 
surrounding experimental equipment. Thus, in the follow-up study by Sakata et al. [127], 
the geometrical model was upgraded with an ellipsoidal water absorber to mimic the cy-
toplasm and a rectangular absorber to imitate the window of a cell culture flask (shown 
in the left-top panel of Figure 8). Additionally, the model parameters were slightly ad-
justed, and a prediction model that was given by Belov et al. [132] that calculates kinetics 

Figure 6. Left: E. coli geometry that was generated by the molecularDNA application. Right: the
DSB yields as a function of LET from proton irradiation assessed by Geant4-DNA, compared to the
results of PARTRAC (F03) and KURBUC (N01), and experimental data (F99, B00). Taken from Lampe
et al. [71].

The geometrical model was further improved in the study of Sakata et al. (2019) [127]
to build a human cell nucleus that was composed of fractally distributed chromatin fibres
as shown in Figure 7. In this newly developed cell nucleus model, the DNA fibre is
folded by histones (which were defined as spheres, each with a 25 Å radius) compactly
forming chromatin fibre. In the study by Sakata et al. [127], the damage parameters were
re-adjusted within a reasonable range to achieve agreement with experimental data for
proton irradiation that was induced SSB and DSB yields in a human cell.
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Figure 7. The structure of cell nucleus and its sub-biological components for the molecularDNA
application [128].

In reality, a cell nucleus is confined to a cytoplasm and irradiation events involve the
surrounding experimental equipment. Thus, in the follow-up study by Sakata et al. [128],
the geometrical model was upgraded with an ellipsoidal water absorber to mimic the
cytoplasm and a rectangular absorber to imitate the window of a cell culture flask (shown
in the left-top panel of Figure 8). Additionally, the model parameters were slightly adjusted,
and a prediction model that was given by Belov et al. [132] that calculates kinetics of
proteins that are involved in four major repair pathways for normal human fiblobrasts was
integrated into the application. The fully integrated application was validated with both the
experimental DSB yields (as Geant4-DNA 2020 in Figure 8, from [128]) and accumulated
γ-H2AX yields. Finally, the influence of the updated geometrical model and the optimal
parameters that were proposed with the recent improvements in physical and chemical
stages [11,133] were evaluated (see Table 4) and validated in [106] for both gamma- and
proton-irradiations (‘this work’ in the left and right panels of Figure 8).
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The “molecularDNA” application provides a fully integrated simulation chain consist-
ing of the physical, chemical (IRT), and biological stages of irradiation at the sub-cellular
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scale. This application has been fully validated through a series of Geant4-DNA investi-
gations and the simulation results of DSB yields for a human fibroblast cell are in good
agreement with experimental data. The “molecularDNA” application will soon be re-
leased in Geant4 and can be used for understanding the mechanisms leading to cellular
radiobiological effects.

6. Geant4-DNA Extended Examples

As discussed in the previous sections, Geant4-DNA provides functionalities for the
simulation of the interactions of ionizing radiation in liquid water as well as the model-
ing of pre-chemical and chemical stages of water radiolysis that can be combined with
simplified models of biological cellular and sub-cellular targets for damage and repair
prediction. However, like Geant4, Geant4-DNA provides a set of computing libraries, and
their use requires a minimum knowledge of C++ coding. Therefore, to help users under-
stand the functionalities and develop new applications, the Geant4-DNA collaboration
has developed a set of examples that are located in the “extended/medical/dna” category
of the Geant4 examples that present the usage of processes and models covering from
physical interactions to the chemical stage including simplified biological geometric mod-
els. A recent publication that was dedicated to track-structure simulations in liquid water
medium describes these examples and their main objectives [23]. Interested readers are
encouraged to consult the associated references for a detailed description of each particular
application. Beyond their pedagogical role, these examples also allow the verification and
validation of Geant4-DNA simulations against literature data or international recommen-
dations as well as regular Geant4 regression tests being performed to test each new Geant4
release [23,134,135]. These examples are maintained and updated along with the Geant4
bi-annual releases. They are briefly described in the following subsections and categorized
according to the stage of radiation action they serve.

6.1. Physics Examples

These Geant4-DNA examples are directly related to the main transport and energy
deposition magnitudes. In each of these examples, the irradiated geometry and physics list
can be modified. In many cases, condensed-history physics models can also be enabled.

• The “clustering” example calculates the energy deposition with a dedicated clustering
algorithm to assess DNA strand breaks in a simple liquid water geometry [14];

• “dnaphysics” is a general example that enables track-structure simulation of charged
particles in a liquid water geometry and allows for the automatic combination between
Geant4-DNA physics models and condensed-history models at higher energies (i.e.,
above 1 MeV) and can be used for benchmarking simulations that are related to
track-structure characteristics [23];

• “icsd”, that stands for ionization cluster size distribution, calculates the number of
ionizations for each simulated track in a cylinder mimicking a piece of chromatin
and uses DNA-like material’s cross sections that were obtained experimentally or by
simulations [50];

• “mfp” stands for mean free path and allows the calculation of the aforementioned
distance and related distance quantities for a charged particle in a sphere geometry of
liquid water [23];

• “microdosimetry” simulates lineal and specific energy distributions and related quanti-
ties in liquid water spheres that are randomly placed along the particle track [59];

• “microprox” is another microdosimetric example that calculates proximity functions
from energy depositions scored in liquid water spherical shells from randomly selected
hits [60];

• “range” example performs a simulation of penetration distances in liquid water [70];
• “slowing” enables simulation of the slowing down spectra of electrons in a cube of

liquid water [136];
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• “splitting” uses variance reduction techniques to improve the efficiency of the calcu-
lation of ionization cluster size distributions. This is done in a nm sized cylinder as
in the case of the icsd example and aims to separate secondaries that are generated
within the cylinder to avoid the overlapping of tracks [137];

• “spower” allows for stopping power simulations of particles in liquid water with the
use of specific physics modules that enable the use of a stationary mode for appropriate
computation [23];

• “svalue” calculates the dose to a target volume per unit of cumulated activity in
a source volume, called S-value [138,139]. The source and target volumes can be
different cell compartments or an entire cell of a simple spherical geometry which can
be modified to account for more complex cell geometries, as has been done in many
studies i.e. [140,141];

• “wvalue” serves to simulate the mean energy that is expended to form an ion pair
known as W-value. It also provides information on the total number of ionizations in
a liquid water volume and its penetration details. It is a useful benchmark simulation
for the inelastic models given that elastic interactions are indifferent in this simulation
scheme [23,58].

6.2. Chemical Examples

The”chemX” examples provide the guide for the chemical module from the activation
of the chemical stage to the calculation of radiochemical yields (“G-value”) as a funtion of
time. In each example, irradiated geometry is a large water volume and as in the case of
physics examples, the physics list can be modified.

• “chem1” aims to show how to activate or deactivate physicochemical and chemical
stage after physical stage. Chemical reactions are printed and the step-by-step model
is used by default.

• “chem2” provides a user-class “TimeStepAction” which allows users to change Mini-
mum Time Steps. These parameters constrain the minimum time-step that is allowed
for each reactant pair using the step-by-step model. The user-class also shows how to
print reaction information such as reactants and products as well as their positions.

• “chem3” illustrates how to implement user actions in the chemistry module using the
step-by-step model. Users can also visualize the trajectories of the chemical species in
time and space using the graphical user interface.

• “chem4” provides scorer classes to compute radiochemical yields (“G”) versus time
using the step-by-step model, including a dedicated ROOT graphical interface. The
G-value is useful for benchmark simulations in comparing with other MC codes and
experimental data [80].

• “chem5” computes radiochemical yields (“G”) versus time using alternative physics
and chemical reaction lists using the step-by-step model [142].

• “chem6” computes radiochemical yields (“G”) versus time and LET using the IRT
model with full macro control [11,104].

6.3. The dnadamage1 Example

Following the “FullSim” simulation chain that is presented above [116], the recent
Geant4-DNA example dnadamage1 method has been released since Geant4.10.6. In this
example, we placed a cubic volume of 40 × 40 × 40 nm3 at the center of a 2 × 2 × 2 µm3

box made of liquid water (1 g/cm3). Inside the 40 × 40 × 40 nm3 cubic volume, 3640
nucleotide pairs were built to form a piece of 40 nm heterochromatin straight fiber. This
geometrical DNA model was generated with the DNAFabric software. More information
about the generation of this geometrical model can be found elsewhere [120]. The total
number of strand breaks is computed from the combination of direct and indirect damages.
Concerning the physical stage leading to direct damage, the default G4EmDNAPhysics is
used. Direct damages are scored if the cumulative deposited energy from ionizations and
excitations in the individual volumes of a nucleotide backbone (i.e., the volumes that are
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representing a group of the phosphate, the 2-deoxyribose, and the hydration shell) is greater
than 17.5 eV. For the chemical stage, the G4EmDNAChemistry_option2 constructor is then
used to simulate the species diffusion and their reactions with each other or with DNA
elements (phosphate, the 2-deoxyribose, and base pairs) using the current SBS model [79].
A reaction between OH•radicals and static DNA elements is counted as primary damage.
When one reaction happens, the radical is killed and the damaged DNA element is no
longer available for further reaction. It has to be noted that simulated damage is primary
damage that is transformed into a SSB with a probability of 42% [116]. More details about
the C++ classes and their structure can be found through the README file of the example.
To improve the computation time of the example, the IRT method is currently implemented
in this example as an option [105].

7. Conclusions

MC track-structure codes are capable of providing both the spatial pattern of the
energy deposition within a medium as well as the details of the molecular modifications
that are taking place after irradiation. As of this moment, this has not been achieved
experimentally. The value of such MC codes in elucidating the mechanisms of cellular
damage from ionizing radiation is beyond doubt. The spatial distribution of the interaction
events dictates the proximity of DNA strand breaks and, at the same time, the alterations
that are taking place in the target molecule(s) determine the chemical modifications. It
must always be stressed that all the results that are obtained with the MC technique are as
accurate as the input information (e.g., the interaction cross sections for the physical stage
of radiation action).

The Geant4-DNA low energy extension that was developed for biomedical appli-
cations is constantly evolving in terms of the development of physics models towards
the accomplishment of a realistic cellular environment subject to irradiation conditions.
Currently, it offers different sets of physics models, chemistry modules, and cell geometries.
The combination of the above has allowed the realization of mechanistic studies of cellular
DNA damage and repair. Extension of the Geant4-DNA Option 4 track-structure model for
electrons up to 10 MeV is underway as well as two alternative models for protons up to
300 MeV. Furthermore, material that is specific cross sections for biopolymers [51] and for
gold [143,144] that are used in nanodosimetry have already been developed and tested and
they are soon going to be made available to the scientific community through Geant4-DNA.
Especially, the cross sections for gold can contribute significantly to the gold nanoparticle-
aided radiotherapy research [145,146]. The modeling of the chemical stage is currently
being improved [133] and extended to longer times and macroscopic volumes [147]. This
is a requirement for easier comparison with radiolysis experiments, which also paves the
way to the simulation of radiolysis in FLASH radiotherapy conditions, currently a very
active research topic. A library of multi-scale geometries from molecules to assemblies
of cells that are compatible with Geant4-DNA physical and chemical interfaces, will also
be made available to users in the near future, and efforts to improve the computational
performance of Geant4-DNA will continue. All these developments will permit a wider
range of radiotherapeutic applications of the code under different irradiation scenarios, to
be studied in an in silico, bottom-up approach.

The activity on DNA damage and response is intense within the Geant4-DNA frame-
work and important studies have been published that involve mechanistic studies of
DNA damage taking into account details of chemistry [11,71,104,128,133]. Such work will
continue towards the goal to connect the irradiation of a cell environment to the DNA
response to damage and repair. The ultimate goal is to offer the scientific community all
the state-of-the-art tools to study the radiation effects in DNA and cells and to illuminate
differences in RBE for low and high LET beams which is a matter of importance, not only
for radiotherapy purposes, but also for space radiation risk studies and radiation protection
low dose issues. It is envisioned that Geant4-DNA will offer a complete open-source
platform available in Geant4 that is able to simulate physical, physicochemical, chemical,
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and biological processes that are occurring after irradiation of human cells. Further work
along these lines is ongoing and will be published in future publications.
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