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Simple Summary: The predatory lacewing, Chrysopa pallens, a generalist predator in the field, plays
an important role in sustainable, integrated pest management strategies by allowing a reduction in
the use of chemical pesticides. However, the effect of mass rearing food, i.e., eggs of the rice moth
Corcyra cephalonica, on the establishment of C. pallens in a banker plant system in the field is unknown.
Based on the age-stage, two-sex life table, and predation rate data of C. pallens ever cultured on
the C. cephalonica eggs or the aphid Megoura japonica preying on Aphis craccivora under fluctuating
temperature conditions in a greenhouse, we found that C. pallens could complete their development
fed on A. craccivora regardless of the food used during culture. This suggests that rice moth eggs
could be provided for the mass rearing of predatory lacewings without affecting their population
development and biological performance in practical applications compared with lacewings cultured
on aphids. This information can serve as a basis for the application of a banker plant system with the
mass reared C. pallens in the field.

Abstract: Banker plant systems can be used to sustain a reproducing population of biological control
agents (BCAs) within a crop, thus providing long-term pest suppression. The founder population of
natural enemies in banker plant systems is usually mass-reared on factitious hosts. Thus, a better
understanding of the population fitness and pest control performance of mass-reared BCAs in the
field is crucial when developing integrated pest management (IPM) strategies. In this study, we
determined the fitness of the generalist predator, Chrysopa pallens (Hemiptera: Chrysopidae) ever
cultured on different food sources (i.e., mass rearing food, Corcyra cephalonica eggs, and aphid food,
Megoura japonica) preying on Aphis craccivora in a banker plant system in a greenhouse based on
Chi’s age-stage, two-sex life table analysis method. The life tables and predation rate parameters of
C. pallens were not significantly different between both treatments under fluctuating temperature
conditions. Corcyra cephalonica eggs did not significantly weaken the performances of C. pallens in a
Vicia faba–A. craccivora banker plant system compared to aphids. In conclusion, C. cephalonica eggs
can be used for the mass production of C. pallens as the founder population in a banker plant system.
Moreover, linking the life table data with the predation rate is an effective strategy for evaluating
mass rearing programs in establishing banker plant systems.
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1. Introduction

Biological control agents (BCAs), including parasitoids and predators, play an im-
portant role in integrated pest management (IPM) strategies that can lead to a reduction
in the use of chemical pesticides [1–4]. Both biocontrol theory and practice suggest that
generalist predators can be effective BCAs in IPM [5–7]. As a generalist predator, the green
lacewing, Chrysopa pallens (Rambur) (Hemiptera: Chrysopidae) has been valued for the
biological control of pests in agriculture and forestry [8]. It is carnivorous during both the
adult and larval stages [9,10] and preys on various pests, including aphids [11], whiteflies,
mites [12], and lepidopteran larvae [13]. Research on C. pallens has mainly focused on its
biology [14,15], investigating the effect of an artificial diet [16–18], diapause [14,19], and
the detrimental effects of transgenic crops [20,21]. However, knowledge regarding the
practical application of C. pallens in the field is still far from complete. In particular, the
successful establishment of BCA populations released into agroecosystems is challenging
and may be heavily reliant on various means to support their populations [22]. Therefore,
the development of strategies to support BCA populations could be useful in extending
the adoption and efficacy of BCAs in practical applications.

Banker plant systems can be used to sustain a population of reproducing BCAs
within a crop, thereby providing long-term pest suppression [23]. By providing shel-
ter and alternative prey/hosts, banker plants can enable the early colonization of these
natural enemies [24] and the establishment of their populations when target pests are
scarce [25]. Moreover, maintaining the populations of BCAs within an agroecosystem can
limit secondary outbreaks of pest populations [26]. Banker plant systems (Vicia faba–Aphis
craccivora–C. pallens) that support C. pallens have been developed for pest biological control
in commercial greenhouses (Li S, unpublished data), whereas the founder population of
natural enemies in banker plant systems is usually mass-reared on factitious hosts [27,28].
Thus, a better understanding of the population fitness and pest control performance of
mass-reared BCAs is crucial for developing IPM strategies [1,29].

With the mass application of BCAs, there has been increasing interest in the mass rear-
ing of BCAs on factitious hosts [1,2,4]. Hemipteran herbivores (e.g., Megoura japonica) [29],
dipteran larvae (e.g., Ceratitis capitata) [30], lepidopteran eggs (e.g., Ephestia kuehniella,
Sitotroga cerealella) or larvae (Musca domestica) [31–34], and artificial diets [35,36] are valued
as factitious hosts of BCAs. Among them, Corcyra cephalonica eggs, a traditional factitious
host for mass rearing BCAs, have been well developed for the mass production of par-
asitoids (e.g., Trichogramma wasps) [4] and predators (e.g., Orius sauteri [37], Delphastus
catalinae [38], and predatory lacewings [39,40]). Studies have revealed the suitability of
food for the multigenerational mass rearing of BCAs (e.g., parasitoid wasps and preda-
tory mites) [41–43]. Nonetheless, only scarce information is available on the adaption of
C. pallens for mass production in a banker plant system.

The age-stage, two-sex life table, composed of comprehensive datasets regarding the
survival, development, and fecundity of a population [44], can precisely delineate stage
differentiation, including both sexes in data analysis, description, and interpretation as
well as in practical applications [45]. Many studies have used this method to evaluate the
effect of temperature, host plant or prey, pesticide, etc. on insects [45–48]. It is a promising
research tool that can accurately assess the field population size and compare the effects
of different food sources and environmental conditions on BCAs in pest management.
Moreover, linking the life table with the predation rate is also an effective strategy for
successful mass rearing programs and the field application of BCAs [45,49,50].

Furthermore, assessing the field population size and stage structure of BCAs is an
important topic in pest management and the conservation of beneficial species [45]. In
order to facilitate BCAs for biological control, it is valuable to identify the features of
populations that are affected by variations in field conditions. Studies have revealed that
life history traits are generally affected by fluctuations in the field [51–53]. Improving our
knowledge of the population characteristics of BCAs in field conditions will be helpful in
the mass rearing of insects and their application as natural predators of pests [44].
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Therefore, to attain a comprehensive understanding of the fitness of mass rearing food
on the establishment of C. pallens in a banker plant system, we collected data on the popula-
tion dynamics and predation rate of C. pallens cultured on different food sources (i.e., food
for mass rearing or “egg food”, C. cephalonica eggs, and “aphid food”, M. japonica aphids)
in a V. faba–A. craccivora banker plant system under fluctuating temperature conditions. We
then analyzed the raw data using the age-stage, two-sex life table. Lastly, we discussed the
effects of fluctuating conditions on the development and predation rates of BCAs.

2. Materials and Methods
2.1. Insects

Twenty pairs of adults were collected from Beijing Noah Agricultural Development
Co., Ltd. (116◦59′ E, 40◦6′ N), Beijing, China, in April 2015. For the establishment of the
experimental populations for different food treatments, colonies of C. pallens were reared
on “aphid food” with M. japonica and “egg food” with C. cephalonica eggs for 10 generations
in different custom-made culturing cages (60.0 cm width× 60.0 cm length× 60.0 cm height,
constructed using aluminum frames and a plastic fabric 80 mesh net as the walls). In the
aphid food treatment, we reared the lacewings with the M. japonica food source on broad
bean (V. faba) with 3–7 true leaves following the method of Cheng et al. [54]. In the egg
food treatment, the lacewings were reared following the method of Zhang et al. [55]. The
C. cephalonica culture was reared at 22–28 ◦C and 70 ± 5% RH. Fresh eggs were collected
daily from rearing plates and exposed to irradiation from an ultraviolet lamp for at least
24 h to kill the embryo. Chrysopa pallens were reared with 150 eggs per adult per day, and
black papers were provided for oviposition. Either 50 or 100 eggs were provided daily for
first- and second- or third-instar larvae, respectively.

Aphis craccivora was reared on broad bean. The insects and plants were monitored
daily. If necessary, plants were replaced in case of damage caused by aphids. All cultures of
C. pallens and aphids were kept in air-conditioned rooms at 25± 1 ◦C and 50–70% RH, with
a 16:8 h (L:D) photoperiod at the Institute of Plant and Environment Protection, BAAFS,
Beijing, China.

2.2. Evaluation of Population Colonization of Chrysopa pallens Using Life Tables and Predation Rates

Experiments were conducted in a commercial greenhouse (450 m2) from mid-July
to late August 2016 (temperature: 26.2 ◦C average, range 20.6–38.2 ◦C; relative humidity:
range 53–94%) at Beijing Noah Agricultural Development Co., Ltd., (116◦59′ E, 40◦6′ N),
Beijing, China. A total of 100 eggs of C. pallens were collected within 24 h from lacewings
cultured in each of the two food treatments. The hatched larvae were transferred to
individual glass tubes (2 cm in diameter, 7 cm in height) covered with an 80-mesh cotton
net within 24 h. Fifty or 100 third- or fourth-instar A. craccivora were provided daily to first-
and second- or third-instar larvae, respectively, until cocooning. All tubes were placed on
a shelf in the greenhouse. Fresh aphids (maintained on broad bean leaf) were supplied
daily. The development and survival of each remaining larva and aphid were recorded
daily. After the adults emerged, male and female individuals were paired in a cylindrical
glass container (8 cm in diameter, 5 cm in height) covered with an 80-mesh cotton net
and fed 200 aphids daily. Each day, the survivorship and predation rate of C. pallens were
recorded, with A. craccivora being replaced. When the female adult began to oviposit (about
7 days after eclosion), the female and male adults were separated and placed in individual
glass cylindrical containers as mentioned above. A total of 100 aphids were provided daily.
The survival, number of eggs laid, and the adult longevity were monitored and recorded
daily at regular intervals until the death of the female adult. The longevity, fecundity, and
predation rate were recorded daily. The mean daily predation rate per adult was averaged
for both sexes because adults were kept as pairs before oviposition.
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2.3. Life Table Analysis

The development period, survivorship, longevity of individuals, and female daily
fecundity of C. pallens were analyzed using an age-stage, two-sex life table in the TWOSEX-
MSChart program [56–58]. The age-stage-specific fecundity ( fxj, where x = age and
j = stage), age-specific survival rate (lx), age-specific fecundity curve (mx), preoviposition
period of female adults (APOP), total preoviposition period of females from birth (TPOP),
and key population parameters (r, the intrinsic rate of increase; k, the finite rate of increase;
R0, the net reproductive rate; T, the mean generation time) were calculated accordingly.

The age-specific survival rate (lx) and age-specific fecundity (mx) were calculated as
described by Chi and Liu [56] as follows:

lx =
β

∑
j=1

sxj

mx =
∑

β
j=1 sxj fxj

∑
β
j=1 sxj

.

The intrinsic rate of increase (r) was calculated using the following formula [59]:

∞

∑
x=0

e−r(x+1)lxmx = 1 .

The net reproductive rate (R0) was calculated as

R0 =
∞

∑
x=0

lxmx .

The mean generation time (T) was calculated as T = ln R0/r.
The finite rate of increase (λ) was calculated as λ = er.
The gross reproduction rate (GRR) was calculated using the following formula [60]:

GRR = ∑ mx.

2.4. Predation Rate Analysis

The CONSUME-MSChart computer program [61] was used to analyze the predation
rates. Following Chi and Yang [57], the age-specific predation rate (kx) was calculated as:

kx =
∑

β
j=1 SxjCxj

∑
β
j=1 Sxj

.

The age-specific net predation rate (qx) was calculated as

qx = lxkx .

The cumulative predation rate (Cy) was calculated as

Cy =
y

∑
x=0

lxkx .

The net predation (C0) was calculated as

C0 =
∞

∑
x=0

lxkx .
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The transformation rate from prey population to predator offspring (Qp) was calcu-
lated as Qp = C0/R0.

To compare the predation capacity of a predator on various prey, Yu et al. [30] defined
the finite predation rate (ω) as ω = λψ, where λ is the finite rate of the predator population
and ψ is the stable predation rate.

2.5. Statistical Analysis

The bootstrap method was used to estimate the standard errors of the developmental
time, fecundity, longevity, and population parameters [62] using 100,000 bootstraps in the
TWOSEX-MSChart program [58]. The variances and standard errors of C0, Qp,ω, and λ
were estimated using the same 100,000 bootstrap samples from the life table analysis. The
bootstrap subroutine is included in the CONSUME-MSChart program [61]. The significance
of differences between treatments were calculated using the paired bootstrap test based
on the 95% confidence interval in the TWOSEX-MSChart [58] and CONSUME-MSChart
programs [61].

3. Results
3.1. Age-Stage, Two-Sex Life Table of Chrysopa pallens

The developmental time and adult longevity of C. pallens were not significantly differ-
ent between C. cephalonica eggs and M. japonica treatments under fluctuating temperature
conditions in the greenhouse (Table 1). The egg, first-, second-, and third-instar larva, and
pupa durations of C. pallens were cultured on aphid food (M. japonica) was 3.1, 2.7, 3.0, 4.3,
and 13.0 days, respectively. When cultured on rice moth eggs, the female C. pallens had
increased longevity (17.7 days) and males had decreased longevity (7.7 days) compared
to those cultured on aphid food. Moreover, no significant differences were found in the
APOP, TPOP, and fecundity between both treatments (Table 1).

Table 1. Developmental time, longevity, and fecundity of Chrysopa pallens ever cultured on Megoura japonica and Corcyra
cephalonica eggs fed on Aphis craccivora, under fluctuating temperature conditions in a greenhouse (paired bootstrap test,
B = 100,000, the same lowercase letters in the same column indicate the values are not significantly different, P > 0.05).

Parameters Stage
M. japonica C. cephalonica Eggs

P
n Mean ± SE n Mean ± SE

Developmental time (days)

Egg 100 3.1 ± 0.1 a 100 3.1 ± 0.1 a 0.623
1st instar 54 2.7 ± 0.1 a 51 2.8 ± 0.1 a 0.080
2nd instar 45 3.0 ± 0.2 a 42 3.1 ± 0.1 a 0.644
3rd instar 38 4.3 ± 0.2 a 34 4.2 ± 0.1 a 0.511

Pupa 30 13.0 ± 0.2 a 28 13.1 ± 0.2 a 0.620

Adult longevity (days) Female 16 15.8 ± 4.4 a 15 17.7 ± 3.7 a 0.739
Male 14 8.5 ± 2.7 a 14 7.7 ± 2.3 a 0.820

APOP of female (days) Female 7 6.6 ± 0.9 a 10 7.3 ± 0.3 a 0.433
TPOP of female (days) Female 7 33.3 ± 1.0 a 10 33.7 ± 0.4 a 0.710

Fecundity (eggs/female) Female 16 35.5 ± 14.8 a 14 33.6 ± 11.7 a 0.910

The age-stage specific survival rates (Sxj) of C. pallens showed the probability of a
newborn surviving to age x and stage j. We can detect stage overlaps in the survival curves
because Sxj takes into account the variation in individual developmental rates among
individuals (Figure 1). The results show that, under fluctuating temperature conditions in
a summer greenhouse, the survival rate of C. pallens decreased with the developmental
stage (Figure 1). The age-stage-specific fecundity ( fxj) and age-specific fecundity curve
(mx) initially increased and then decreased with time, showing roughly periodic peaks in
reproduction. The maximal daily mean fecundity of C. pallens cultured on C. cephalonica
eggs (4.3 eggs) and M. japonica (4.5 eggs) was observed at 42 days (Figure 2).
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Figure 2. Age-specific survival rate (lx), age-stage specific fecundity ( fx7) of the female stage, age-
specific fecundity (mx) of Chrysopa pallens ever cultured on Megoura japonica (A) and Corcyra cephalonica
eggs (B) under fluctuating temperature conditions in a greenhouse.

3.2. Population Parameters of Chrysopa pallens under Fluctuating Temperature Conditions in
a Greenhouse

The mean and standard errors of the population parameters were estimated using the
bootstrap techniques [63]. When exposed to the same prey (A. craccivora) and environmental
conditions, there were no significant differences in the main population parameters between
both treatments. The intrinsic rates of increase (r) of C. pallens cultured on M. japonica and
C. cephalonica eggs were 0.0379 and 0.0359, respectively (Table 2).

Table 2. Population parameters of Chrysopa pallens ever cultured on Megoura japonica and Corcyra cephalonica eggs fed on
Aphis craccivora under fluctuating temperature conditions in a greenhouse (paired bootstrap test, B = 100,000, the same
lowercase letters in the same column indicate the values are not significantly different, P > 0.05).

Population Parameter M. japonica C. cephalonica Eggs P

Intrinsic rate of increase (r) (day–1) 0.0379 ± 0.0119 a 0.0359 ± 0.0109 a 0.916
Finite rate of increase (λ) (day–1) 1.0386 ± 0.0122 a 1.0366 ± 0.0112 a 0.916

Net reproduction rate (R0) (offspring individual–1) 5.68 ± 2.64 a 4.67 ± 1.96 a 0.753
Mean generation time (T) (day) 45.83 ± 1.72 a 42.90 ± 1.14 a 0.071

Gross reproduction rate (GRR) (offspring) 72.58 ± 24.29 a 55.61 ± 16.32 a 0.560

3.3. Predation Rate of Chrysopa pallens under Fluctuating Temperature Conditions in
a Greenhouse

Under fluctuating temperature conditions in the greenhouse, the predation rate of
larva on A. craccivora increased with the developmental stage. No significant differences in
predation rate were found between both treatments at different developmental stages. The
third-instar larvae consumed the greatest amount of prey in the larval stage, reaching 190.8
to 191.1 aphids consumed per larva. Female C. pallens lived longer and consumed more
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aphids than males regardless of the food source (Table 3). A male adult could consume as
many as 270 aphids, while a female adult could consume 609 aphids in the C. cephalonica
egg treatment under fluctuating temperature conditions in the greenhouse.

Table 3. Predation rates and parameters of Chrysopa pallens ever cultured on Megoura japonica
and Corcyra cephalonica eggs fed on Aphis craccivora under fluctuating temperature conditions in a
greenhouse (paired bootstrap test, B = 100,000, the same lowercase letters in the same column indicate
the values are not significantly different, P > 0.05).

Parameter Stage M. japonica C. cephalonica Eggs
P

Mean ± SE Mean ± SE

Predation
rate(aphids/predator)

1st instar 14.9 ± 0.9 a 15.1 ± 0.7 a 0.837
2nd instar 35.5 ± 2.4 a 35.5 ± 2.2 a 0.987
3rd instar 191.1 ± 5.7 a 190.8 ± 6.3 a 0.954

Female 539.0 ± 150.0 a 609.0 ± 120.0 a 0.715
Male 291.1 ± 79.8 a 270.2 ± 68.1 a 0.836

Net predation rate C0 236.00 ± 39.66 a 220.97 ± 36.33 a 0.776
Transformation rate Qp 54.22 ± 43.93 a 55.97 ± 29.41 a 0.945
Stable predation rate ψ 9.19 ± 0.73 a 8.92 ± 0.78 a 0.799
Finite predation rateω 9.53 ± 0.80 a 9.23 ± 0.87 a 0.802

The daily predation rate of larvae showed the same trend as the age-stage specific
predation rate (cxj) of C. pallens fed on A. craccivora, i.e., an initial increase followed by a
decrease. The daily predation rate of C. pallens cultured on rice moth eggs peaked for the
third-instar larvae on the 13th day (55.3 aphids) and was slightly higher than when cultured
on aphids (on the 12th day with 53.4 aphids). The nonpredatory stages, including eggs
and pupae, were responsible for the two gaps in predation rate (Figure 3). Considering
the sex differentiation and stage differentiation, the age-specific predation rate (kx) is the
mean number of aphids consumed per C. pallens of age x. Taking the age-specific survival
rate (lx) into account, the age-specific net predation rate (qx) of C. pallens can be obtained.
With an increase in age, there is a gradual decrease in the age-specific survival rate (lx), and
less fluctuation in the age-specific predation rate (kx). The age-specific predation rate (kx)
and the age-specific net predation rate (qx) curve also exhibited two gaps, representing the
sanctuary stage of A. craccivora (Figure 4).
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Figure 4. Age-specific survival rate (lx), age-specific predation rate (kx), and age-specific net predation
rate (qx) of Chrysopa pallens ever cultured on Megoura japonica (A) and Corcyra cephalonica eggs
(B) under fluctuating temperature conditions in a greenhouse.

The mean and standard errors of the predation rate parameters estimated by means
of the bootstrap technique [63] are listed in Table 3. There were no significant differences
in the main predation rate parameters between both treatments after incorporating the
survival rates and predation rates. The net predation rate (C0) of C. pallens cultured on
aphid food (M. japonica) was higher than when cultured on rice moth C. cephalonica eggs.
The transformation rates (Qp) of C. pallens cultured on aphid food (M. japonica) and rice
moth C. cephalonica eggs were 54.22 and 55.97, respectively (Table 3).

4. Discussion

The use of banker plants was developed to increase the effectiveness of BCAs in
pest control [24,25]. Most studies on banker plant systems have focused on assessing
the suitability of a plant species as a banker plant [63–65] or the fitness of alternative
prey on natural enemies [25,66]. Conversely, studies on the population fitness of BCAs
in banker plant systems using alternative prey have received less attention. Yet, with the
mass production of BCAs in biocontrol application systems, the population fitness and pest
control performance of BCAs in banker plant systems are crucial when developing IPM
strategies. The growth rate, stage differentiation and development, fecundity, and predation
rate of predatory natural enemies in the field are key to determining their biological control
efficiency [67]. The age-stage, two-sex life table is a promising research tool that can be used
to accurately assess the effects of different food sources and environmental conditions on
BCAs [45]. In the present study, we showed that C. pallens could complete its development
while preying on A. craccivora in a summer greenhouse. Moreover, no significant differences
were found in the population and predation rate parameters of C. pallens when cultured on
either aphid food with M. japonica or egg food in the case of C. cephalonica eggs. The study
indicated that C. pallens mass reared on C. cephalonica eggs can be suitable for population
colonization in a Vicia faba–A. craccivora banker plant system in IPM.

Laboratory measurements of life parameters usually take place under controlled
conditions at single constant temperatures, while field conditions are much more complex
with climatic conditions fluctuating over time and space [53,68]. As insects are ectothermic
organisms, their responses to constant and fluctuating temperature can vary widely [69–73].
Under controlled conditions in a laboratory, Mu et al. [74] showed that the development
of C. pallens larvae was 10 to 12 days. Zhao [75] determined the mean developmental
times of the egg, larval, and pupal stages of C. pallens reared on A. craccivora at 25 ◦C to be
3.38, 11.01, and 13.26 days, respectively, whereas the average durations of the egg, larval,
and pupal stages of C. pallens reared on A. craccivora at 22 ◦C were 4.3, 11, and 13 days,
respectively [30]. Unlike the pupal period, the egg and larval stage durations in our study
were shorter than those reported by Yu et al. [30]. Our results are in accordance with
the results of previous studies showing that the development time of insects at constant
temperature is longer than that under fluctuating temperature conditions [52,76]. On the
other hand, the fecundity of female adults in the laboratory was 661 eggs according to
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Yu et al. [30], which is 18 times higher than that in our studies (33.6–35.5 eggs). Significant
reductions in the survival and reproduction of C. pallens under greenhouse conditions can
be observed in the curves of Sxj (Figure 1), fxj, and mx (Figure 2). Studies have revealed
that the life history traits of insects are generally affected by fluctuations in the field [51–53].
For example, in the preadult stage of ladybird Cheilomenes sexmaculata, development occurs
more slowly under greenhouse conditions, with lower survival and reproductive rates [51].
Our study also revealed different life table parameters for C. pallens under laboratory
and greenhouse conditions, indicating that the survival rate of C. pallens was higher at
intermediate temperatures than at high or low temperatures.

Variable temperatures have complex effects on insect performance [77,78]. Under
controlled conditions in the laboratory, El-Serafi et al. [79] and Cheng et al. [54] studied the
predation rates of C. pallens feeding on Aphelinidae (A. gossypii, Sitobion avenae, Rhopalosi-
phum maidis, A. nerii, and M. japonica). The average predation rates of females and males
fed on A. craccivora in a summer greenhouse in our study were lower than the values
determined by El-Serafi et al. [79] and Cheng et al. [54]. Previous studies indicated that
fluctuating temperature conditions affect the life history traits of insects, often resulting
in low survival rates, fecundity, and longevity [51,78]. Our study also indicated that the
predation rate of C. pallens was higher at intermediate temperatures than at high or low
temperatures. The shorter longevity of adults may have accounted for the lower predation
rate under fluctuating temperature conditions.

Mass rearing of BCAs on alternative foods may reduce their performance during
the rearing period or after release upon encountering the target prey in the field [80].
Researchers have demonstrated that the natal rearing experience of parasitoids may affect
their behavioral and physiological characteristics [80–83]. Ghaemmaghami et al. [84] found
that laboratory mass-reared colonies of T. brassicae (Hymenoptera: Trichogrammatidae)
declined in quality after 15 generations. On the other hand, the long-term rearing of preda-
tory mite Neoseiulus californicus (Acari: Phytoseiidae) on almond pollen positively affected
its attributes, including in promoting high survivorship, body size, and fecundity [80].
Our results demonstrate that long-term feeding on mass rearing food, Corcyra cephalonica
eggs, did not affect the performance of the predatory lacewing C. pallens in a V. faba–A.
craccivora–C. pallens banker plant system. Accordingly, mass-reared predatory lacewings
can be introduced into a banker plant system for IPM programs.

The specialization of predators on one kind of prey generally entails a tradeoff in
performance on another [85]. The net predation rate, stable predation rate, and finite
predation rate of C. pallens cultured on rice moth C. cephalonica eggs and fed on A. crac-
civora were lower than when cultured on aphid food (M. japonica). As C. cephalonica eggs
were stationary when being consumed, C. pallens cultured on rice moth eggs had poor
performance when exposed to moving prey, i.e., M. japonica. More studies need to be
conducted to determine the differences in behavior of C. pallens cultured on different food.
Although the biological performance and population parameters of C. pallens cultured
on factitious hosts, i.e., C. cephalonica eggs, were slightly lower than when cultured on
aphid food, there was no significantly negative effect. A life table study incorporating
the age-stage predation rate is obviously capable of providing an accurate and thorough
understanding of the predator–prey relationship as well as producing a comprehensive
evaluation of the potential of a predator/parasitoid as a biological control agent [44,50].
In predator–prey interactions, the nonpredatory egg and pupal stages of the predator
represent times of refuge for the prey, and the pest population can grow during these times.
Thus, release of C. pallens in a mixture of development stages may help to overcome these
gaps in a biological control program. That is, natural enemies in banker plant systems
can be introduced at mixed stages for better population establishment and pest biological
control efficiency. Although the predation rates of C. pallens on aphid food observed in our
study were lower than those in controlled conditions [54,74,75,79], evidence of the control
efficiency of C. pallens in practical applications suggests its potential application as a BCA
in the field.
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Despite an increasing number of studies on biological control programs, there is a
paucity of literature on the population and predation parameters of BCAs under variable
environmental conditions, even though these are essential in the mass rearing and release
of BCAs [51,86]. Moreover, such studies can provide a theoretical basis and practical
knowledge for the application of C. pallens in greenhouses. Fluctuating temperature
conditions as well as a higher humidity, photoperiod, and light intensity may be responsible
for the lower survival rate, shorter longevity, and even lower reproduction of predators
in the field [51,87]. We suggest that temperature is a key variable that restricts the adult
longevity, fecundity, and predation rate of C. pallens in the field. The application of
banker plant systems in commercial greenhouses require consideration of these fluctuating
environments. However, there are many other factors (e.g., light, humidity, population
density, and nutrition) affecting the population dynamics and predation ability of C. pallens.
The susceptibility of insects to numerous environmental factors, natural enemies, and
pesticides often varies in relation to their developmental stage [47,88], and more studies
regarding the population stage structure under critical conditions are necessary for ensuring
effective pest management. Our study confirmed that linking the life table with the
predation rate is an effective strategy to evaluate mass rearing programs and the field
application of BCAs. Ultimately, these approaches could support the use of generalist
predators in more environmentally friendly pest management methods, with reduced
negative side-effects compared to regular pesticides in the field [3,89].
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