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ABSTRACT
Stromal cell-derived factor-1 (SDF-1) and Exendin-4 (EX-4) play beneficial roles in
promoting periodontal ligament stem cells (PDLSCs) osteogenic differentiation, while
the detailed mechanism has not been clarified. In this study, we aimed to evaluate the
biological mechanism of SDF-1 and EX-4 alone or synergistic application in regulating
PDLSCs differentiation by RNA-sequencing (RNA-seq). A total of 110, 116 and 109
differentially expressed genes (DEGs) were generated in osteogenic medium induced
PDLSCs treated by SDF-1, EX-4, and SDF-1+EX-4, respectively. The DEGs in SDF-1
group were enriched in signal transduction related signaling pathways; the DEGs in
EX-4 group were enriched in metabolism and biosynthesis-related pathways; and the
DEGs generated in SDF-1+EX-4 group were mainly enriched in RNA polymerase II
transcription, cell differentiation, chromatin organization, protein phosphorylation
pathways. Based on Venn analysis, a total of 37 specific DEGs were identified in SDF-
1+EX-4 group, which were mainly enriched in negative regulation of autophagy and
cellular component disassembly signaling pathways. Short time-series expressionminer
(STEM) analysis grouped all expressed genes of PDLSCs into 49 clusters according to
the dynamic expression patterns and 25 genes, including NRSN2, CHD9, TUBA1A,
distributed in 10 gene clusters in SDF-1+EX-4 treated PDLSCs were significantly up-
regulated compared with the SDF-1 and EX-4 alone groups. The gene set enrichment
analysis indicated that SDF-1 could amplify the role of EX-4 in regulating varied
signaling pathways, such as type II diabetes mellitus and insulin signaling pathways;
while EX-4 could aggravate the effect of SDF-1 onPDLSCs biological roles via regulating
primary immunodeficiency, tight junction signaling pathways. In summary, our
study confirmed that SDF-1 and EX-4 combined application could enhance PDLSCs
biological activity and promote PDLSCs osteogenic differentiation by regulating the
metabolism, biosynthesis and immune-related signaling pathways.
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INTRODUCTION
Periodontal disease-induced tooth loss has become a global public health challenge
that greatly affects people’s quality of life (Peres et al., 2019). Mesenchymal stem cell
(MSC) based periodontal tissue regeneration has aroused great attention in the field of
regenerative medicine (Hu, Liu & Wang, 2018). Among all MSCs, periodontal ligament
stem cells (PDLSCs) are the main candidate cells for periodontal regeneration. Several
studies have demonstrated that transplanting autologous and allogeneic PDLSCs directly
into periodontal defect areas or surgically created periodontal defect areas could result in
periodontal tissue regeneration, which highlights that PDLSC-mediated tissue engineering
is a promising therapy for periodontitis (Bartold, Shi & Gronthos, 2006; Ding et al., 2010;
Liu et al., 2008; Liu et al., 2019a; Liu et al., 2019b).

An increasing number of researchers have focused on the recruitment of endogenous
PDLSCs to the injury site to enhance healing by harnessing the innate regenerative
potential of the body (Lee et al., 2017a). Cytokines, chemokines, and adhesion molecules
have been used to enhance cell migration, maintain tissue homeostasis, regulate immune
responses, promote wound healing and facilitate periodontal tissue regeneration (Lee et al.,
2017b; Onizuka & Iwata, 2019;Wang et al., 2013). Stromal cell-derived factor-1 (SDF-1), a
member of the chemokine family, can promote the proliferation and migration of various
MSCs by activating the G protein-coupled receptor C-X-C chemokine receptor type 4
(CXCR4) (Du, Feng & Ge, 2016; Kimura et al., 2014; Zhu, Dissanayaka & Zhang, 2019).
Our previous study also demonstrated that topical application of SDF-1 could significantly
recruit MSCs to the wound area and promote local vascular regeneration in a rat model
(Wang, Du & Ge, 2016). SDF-1 possesses great potential in promoting MSC migration and
growth; however, the compromised osteogenic differentiation of these cells could not be
induced by SDF-1. Therefore, the application of SDF-1 alone is insufficient for favorable
bone regeneration, and the optimal method for potentiating periodontal bone regeneration
is to combine SDF-1 with other osteogenic factors.

Exendin-4 (EX-4), a full agonist of glucagon-like peptide-1 receptor (GLP-1R), has been
widely used in the clinical treatment of type 2 diabetes mellitus (T2DM) (Yap & Misuan,
2019). In addition, EX-4 plays key roles in promoting MSC proliferation and migration
(Zhang et al., 2016; Zhou et al., 2015a). Recently, EX-4 has been confirmed to present
the potential to promote osteogenic differentiation and bone formation in a variety of
stem/precursor cells (Feng et al., 2016; Luciani et al., 2018;Meng et al., 2016). Moreover, in
addition to enhancing the MSC osteogenic differentiation capability, EX-4 could promote
the recruitment effect of SDF-1 (Zhou et al., 2015b). Our previous study also confirmed
that SDF-1 and EX-4 cotherapy synergistically promoted PDLSCs proliferation, migration
and osteogenic differentiation (Liang et al., 2021). However, the mechanism of SDF-1 and
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EX-4 alone or synergetic application for PDLSCs osteogenic differentiation is not fully
understood.

High-throughput RNA sequencing (RNA-Seq) has been widely applied to analyze the
whole transcriptomic changes of eukaryotes, which can provide progressively greater
knowledge of both the quantitative and qualitative aspects of transcript biology (Ozsolak &
Milos, 2011). RNA-seq has been successfully applied to identify the potential transcriptional
mechanisms of various diseases, such as cancers, metabolic diseases and retinal diseases
(Bakhtiarizadeh et al., 2019; Demircioğlu et al., 2019; Farkas et al., 2015). In the present
study, RNA-seq transcriptomic analysis was applied to identify the core dynamic
differentially expressed genes (DEGs) signature affected by EX-4 and SDF-1 alone or
synergistically application in osteogenic medium-induced PDLSCs. Additionally, an
integrated network containing specific DEGs generated in EX-4+SDF-1-treated PDLSCs
was constructed. The results revealed the whole alteration of gene expression in PDLSCs
undergoing EX-4 and SDF-1 application during the osteogenic differentiation process,
which establishes a foundation for further research investigating the synergistic application
of SDF-1 and EX-4 to promote PDLSCs osteogenic differentiation.

MATERIALS AND METHODS
Human subjects and ethics statements
This study was approved by the Medical Ethical Committee of the Stomatology School,
Shandong University (NO. 20170801). Five healthy individuals without systemic diseases
aged from 18–30 who underwent premolar extraction at the Department of Oral and
Maxillofacial Surgery were recruited for this project. All individuals agreed to participate
in the research project and signed the informed consent forms according to the Helsinki
Declaration of 1975.

Cell isolation and culture
The extracted teeth were stored in Dulbecco’s modified Eagle’s medium (DMEM,HyClone,
Logan, UT, USA) with 5% antibiotics (100 U/mL penicillin, 100 mg/mL streptomycin,
Sigma Aldrich, St Louis, MO, USA) and quickly transported from the clinic to the
laboratory. Then, single PDLSCs were acquired as previously described in our previous
study (Du, Feng & Ge, 2016). Specifically, Primary PDLSCs were cultured with DMEM
containing 20% fetal bovine serum (FBS, BioInd, Kibbutz, Israel) at 37 ◦C in a humidified
atmosphere of 5% CO2, and cells were trypsinized and passaged at a dilution ratio of 1:3
to expand the culture in 10% FBS medium upon the cell monolayer reached 80–90%
confluence. Fourth passage cells were used in all experiments.

RNA-seq analysis
PDLSCs from 5 different individuals were cultured in osteogenic medium (OM) and
treated with SDF-1, EX-4 or SDF-1+EX-4 at 21 d, and normal PDLSCs treated with OM
served as a negative control (NC). Totally, we collected 20 samples and RNA-seq was
used to analyze the whole genome expression at LC Sciences through the Illumina X10
platform (Hangzhou, Zhejiang, China). Firstly, the total RNA were performed quality
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control based on previous study (Wang, Wang & Li, 2012), and then the clean reads were
mapped to the reference genome (GRCh38) via hierarchical indexing for spliced alignment
of transcripts (HISAT) (v2.0.4) (Kim, Langmead & Salzberg, 2015). The mapped reads of
each sample were assembled using StringTie (v1.3.0, Pertea et al., 2015). Furthermore, all
transcriptomes samples were merged to reconstruct a comprehensive transcriptome using
Perl scripts. After the final transcriptome was generated, StringTie and edgeR were used
to estimate the expression levels of all transcripts. StringTie was used to determine the
expression level of mRNAs by calculating fragments per kilobase of exon model per million
mapped fragments (FPKM). The DEGs were selected with statistical significance (p value
<0.05) by R package (v 3.2.5).

Volcano analysis of DEGs in PDLSCs
Volcano analysis was used to identify the DEGs between each pair of groups (Li, 2012).
The up- and down-regulated genes were identified, and the total number of each pair of
groups was visualized by the histogram.

Gene ontology (GO) and kyoto encyclopedia of genes and genomes
(KEGG) enrichment analysis
Based on the DEGs generated by SDF-1, EX-4 and SDF-1+EX-4 compared with NC,
the overrepresented GO categories and the significant KEGG pathways were identified
(anonymous, 2019; Kanehisa & Goto, 2000). A q value <0.05 was used as the cut-off
criterion for the selection of significant GO terms and KEGG pathways.

Venn and Upset analysis
To identify the specific DEGs generated by every two different compared groups,
overlapping analysis was performed according to the jvenn website (http://jvenn.toulouse.
inra.fr/app/example.html), and an intersection UpSet diagram based on the UpSet R
package was drawn (Conway, Lex & Gehlenborg, 2017). The specific genes generated by
each group were identified and the gene functions were analyzed according to Metascape
website (http://metascape.org/gp/index.html#/main/step1) (Zhou et al., 2019).

Short time-series expression miner (STEM) analysis
STEM software (version 1.3.8) (Douglas et al., 2019) was applied to identify the specific gene
expression clusters in PDLSCs treated with SDF-1, EX-4 and SDF-1+EX-4. The genes in
the upregulated clusters in SDF-1+EX4-treated PDLSCs were selected, and the expression
of all genes in these clusters was shown by a heatmap. The interaction relationship of these
genes was analyzed according to the GeneMANIA database (http://genemania.org/search)
(Franz et al., 2018).

In-depth mechanism analysis and functional network construction
To identify the function of specific DEGs generated by SDF-1, EX-4 and SDF-1+EX-4-
treated PDLSCs, a functional network was constructed according to STRING database
(https://string-db.org/) and GeneMANIA database (http://genemania.org/search) (Franz
et al., 2018). Functional enrichment analysis of genes in the functional network was further
performed by the Metascape database (Zhou et al., 2019).
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Gene set enrichment analysis (GSEA)
GSEA is one of the functional class scoring analysis methods (Subramanian et al., 2005). To
select the genes that were not significantly differentially expressed but were important for
the function of biological pathways, GSEA was performed method according to all genes
in SDF-1 vs NC, EX-4 vs NC, SDF-1+EX-4 vs NC, SDF-1+EX-4 vs EX-4, SDF-1+EX-4
vs SDF-1, and EX-4 vs SDF-1 groups according to the clusterProfiler and enrichplot R
package.

RESULTS
DEG analysis
To investigate changes in gene expression profiles in SDF-1, EX-4 or SDF-1+EX-4- treated
PDLSCs, FPKM expression values of the genes were calculated based on the read counts
using featureCounts software. The fold change (FC) values of each gene at different time
points post stimulation compared with NC were also calculated using DESeq2 R package.
The thresh old value of |FC|>1 and FDR ≤ 0.05 was used to identify DEGs between two
different groups, and the results indicated that 110, 116, 109, 125, 103 and 100 DEGs
were generated in different comparison groups SDF-1 vs NC, EX-4 vs NC, SDF-1+EX-4
vs NC, SDF-1+EX-4 vs EX-4, SDF-1+EX-4 vs SDF-1, EX-4 vs SDF-1 (Fig. 1). Among all
compared DEGs, 56, 61, 54, 58, 63 and 54 upregulated genes and 54, 55, 55, 67, 40 and 46
downregulated genes were identified (Fig. S1).

GO and KEGG enrichment analysis
The GO (biological process) enrichment results showed that the DEGs generated by SDF-1
stimulation were mainly enriched in signal transduction regulation of transcription, cell
differentiation, RNA polymerase II transcription, and multicellular organism development
signaling pathways (Fig. 2A and Table S1). The KEGG analysis results also indicated that
SDF-1-induced DEGs were mainly enriched in the glucagon signaling pathway, NF-kappa
B signaling pathway, and TNF signaling pathway (Fig. 2B and Table S1), and mostly
involved in human diseases and organismal systems, such as viral infectious diseases,
the immune system, and the endocrine system (Fig. S2B and Table S1). In addition,
the DEGs generated by the EX-4 stimulation were mainly enriched in the oxidation–
reduction process, metabolic process, regulation of transcription, DNA-templated, protein
phosphorylation, and lipid metabolic process pathways (Fig. 2C and Table S1). KEGG
analysis also indicated that EX-4-induced DEGs were mainly enriched in metabolism
and biosynthesis-related pathways, such as nicotinate and nicotinamide metabolism,
phenylpropanoid biosynthesis, and phenylpropanoid biosynthesis (Fig. 2D and Table S1),
and all these DEGs were significantly involved in energy metabolism, lipid metabolism
and biosynthesis of other secondary metabolites (Fig. S2D). Moreover, we identified that
the DEGs generated by SDF-1+EX-4 was also mainly enriched in RNA polymerase II
transcription, cell differentiation, chromatin organization, and protein phosphorylation
pathways according to the GO (biological process) analysis results (Fig. 2E and Table S1).
The KEGG enrichment analysis results indicated that these costimulated DEGs were mainly
enriched in pathogenic Escherichia coli infection, mitophagy in animals, bacterial invasion
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Figure 1 Volcano diagram of differentially expressed genes (DEGs) in PDLSCs. The DEGs in SDF-1 vs
NC (A), EX-4 vs NC (B), SDF-1+EX-4 vs NC(C), SDF-1+EX-4 vs EX-4 (D), SDF-1+EX-4 vs SDF-1 (E),
and EX-4 vs SDF-1 (F). Each point represents individual genes. Black dots represent the genes that were
not significantly differentially expressed, red dots indicate the genes that were significantly upregulated
and blue dots indicate the genes that were downregulated (|FC|> 1 and p-adjusted value< 0.05). The vol-
cano plots were analyzed by DESeq2.

Full-size DOI: 10.7717/peerj.12091/fig-1

of epithelial cells and cysteine and methionine metabolism signaling pathways (Fig. 2F
and Table S1). Additionally, we found that all the DEGs generated by the SDF-1, EX-4,
SDF-1+EX-4 groups were significantly enriched in the nucleus, membrane, nucleosome
and cytoplasm pathways according to the GO cellular component analysis, and based on
the GO molecular function analysis, all these DEGs were involved in the DNA binding,
protein binding, ATP binding and protein heterodimerization activity pathways (Figs. 2A,
2C, 2E and Figs. S2A, S2C, S2E).

Screening of specific DEGs and functional analysis
To characterize the DEGs specifically generated by SDF-1 vsNC, EX-4 vsNC, SDF-1+EX-4
vs NC, SDF-1+EX-4 vs EX-4, SDF-1+EX-4 vs SDF-1, and EX-4 vs SDF-1, we performed an
overlapped analysis of the six compared DEG groups, and the results indicated that 34, 30,
37, 39, 35 and 28 DEGs were specially generated (Fig. 3A, Table S2, Fig. S3 and Table S3).
In addition, the Metascape website was referenced to analyze the specific gene functions
in different groups and the results indicated that the 34 specific DEGs generated in SDF-1
vs NC was mainly enriched in response to the wounding, and macromolecule methylation
signaling pathways; the 30 specific DEGs generated in EX-4 vs NC were mainly enriched
in the cellular response to external stimulus, regulation of protein complex assembly,
and regulation of chromosome organization signaling pathways; the 37 specific DEGs
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Figure 2 Functional enrichment analysis of DEGs in compared groups. (A) GO enrichment analysis of
the DEGs in SDF-1 vs NC. (B) KEGG enrichment analysis of the DEGs in SDF-1 vs NC. (C) GO enrich-
ment analysis of the DEGs in EX-4 vs NC. (D) KEGG enrichment analysis of the DEGs in EX-4 vs NC. (E)
GO enrichment analysis of the DEGs in SDF-1+EX-4 vs NC. (F) KEGG enrichment analysis of the DEGs
in SDF-1+EX-4 vs NC. Red bar represents the enriched signaling pathways according to the biological
process. Orange bar represents the enriched signaling pathways according to the cellular component. Gray
bar represents the enriched signaling pathways according to the molecular function (A, C, E). The size of
the symbol represents the gene counts enriched in the signaling pathways. The color indicates the degree
of statistical significance (B, D, F).

Full-size DOI: 10.7717/peerj.12091/fig-2

Kang et al. (2021), PeerJ, DOI 10.7717/peerj.12091 7/20

https://peerj.com
https://doi.org/10.7717/peerj.12091/fig-2
http://dx.doi.org/10.7717/peerj.12091


Figure 3 Screening of specific DEGs and function analysis of each compared group. (A) Venn analysis
of the DEGs among SDF-1 vs NC, EX-4 vs NC, SDF-1+EX-4 vs NC, SDF-1+EX-4 vs EX-4, SDF-1+EX-4 vs
SDF-1, and EX-4 vs SDF-1. (B) Functional enrichment analysis of the specific DEGs in each two compared
groups (SDF-1 vs NC, EX-4 vs NC, SDF-1+EX-4 vs NC, SDF-1+EX-4 vs SDF-1, EX-4 vs SDF-1), which
were exhibited in the outermost layer in the Venn analysis.

Full-size DOI: 10.7717/peerj.12091/fig-3

generated in SDF-1+EX-4 vs NC were mainly enriched in the negative regulation of
autophagy and cellular component disassembly signaling pathways; the 39 specific DEGs
generated in SDF-1+EX-4 vs SDF-1 were mainly enriched in the Notch signaling pathway
and Asparagine N-linked glycosylation signaling pathways; and the 28 specific DEGs
generated by EX-4 vs SDF-1 group were mainly enriched in the response to inorganic
substance, embryonic organ development and A positive regulation of cell migration
signaling pathways (Fig. 3B and Table S4).

Screening of core DEGs generated by the SDF-1 and EX-4 combined
application
To identify the core DEGs generated by the SDF-1 and EX-4 combined application, STEM
software was applied to perform a pattern analysis (mock infection was designated NC),
and the results revealed 49 gene clusters among all DEGs generated by SDF-1, EX-4 and
SDF-1+EX-4-treated PDLSCs (Fig. S4 and Table S5). In all gene clusters, we focused on
genes in clusters 14, 39, 47, 36, 7, 28, 45, 25, 18, and 41, which were significantly upregulated
by the SDF-1 andEX-4 combined application comparedwith SDF-1 or EX-4 alone (Fig. 4A).
Among the 10 clusters, a total of 25 genes, including NRSN2, CHD9, TUBA1A, AKAP13,
VAMP7, NPIPA2 etc., were identified, and all DEG expression in different groups is shown
by a Heatmap (Fig. 4B and Table S6). The GeneMANIA analysis network showed that
these genes possessed an intricate tangle of connections through genetic interactions and
co-expression pattern (Fig. 4C and Table S7). Functional enrichment analysis indicated that
our core DEGs and their related genes constructed in the network were mainly enriched
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in the metallothioneins binding metals, asparagine N-liked glycosylation, response to
stimulus, detoxification, biological regulation and growth signaling pathways (Fig. 4D and
Table S8).

Network construction and the mechanism analysis of the SDF-1 and
EX-4 synergistic effect in PDLSCs
To further clarify the mechanism of the SDF-1 and EX-4 combined application to
promote PDLSC osteogenic differentiation, a detailed complex network analysis was
performed based on the DEGs generated by the different groups through the STRING and
GeneMANIA. A network analysis based on the STRING database showed that the DEGs
generated by EX-4 and SDF-1 alone were centralized and converged into a network, while
the DEGs in the SDF-1+EX-4 group were scattered in the network. The DEGs generated
in SDF-1+EX-4 vs SDF-1, and SDF-1+EX-4 vs EX-4 were also centralized (Fig. S5). In
addition, compared with the NC group, EX-4 significantly elevated the expression of
the core gene MAPK27, which plays central roles by activating MAPK-related signaling
pathways; and SDF-1 mainly changed the expression of the key genes CREB1, MMP13,
RHOQ and BIRC2, which exert their roles by activating ATP signaling pathways (Figs.
5A and 5B). More importantly, we identified that the gene expression levels of NEDD8,
CHCHD1, LMO7, and ATP5L were significantly varied the SDF-1+EX-4 vs EX-4 groups,
which played crucial roles in activating ATP-related signaling pathways and indicated that
SDF-1 could amplify the EX-4 effect in elevating ATPase activity and promoting PDLSC
osteogenic differentiation. Additionally, we found that the DEGs of SOX15, UBC, VAMP7
and ARPC5 were significantly changed in SDF-1+EX-4 vs SDF-1 groups, which played
vital roles in promoting cytoskeletal protein formation and degradation (Figs. 5C and 5D).
Although the DEGs generated in the SDF-1+EX-4 vs NC group were dispersed, most of
these genes could be centralized by the genes HAP1, TP53, TAL1, RRPF40A and TALDO1
(Fig. S6).

Gene set enrichment analysis (GSEA) based on all genes
All of the above analyses were based on the DEGs selected according to our threshold value
and statistical analysis technique; however, genes that are not significantly differentially
expressed but are important for the function of the SDF-1 and EX-4 biological pathways
may be omitted, and thus, we performed a GSEA according to all genes in SDF-1 vs
NC, EX-4 vs NC, SDF-1+EX-4 vs NC, SDF-1+EX-4 vs EX-4, SDF-1+EX-4 vs SDF-1,
and EX-4 vs SDF-1. The results indicated that SDF-1 played its roles in regulating the
metabolism of xenobiotics by cytochrome P450, regulation of autophagy, neuroactive
ligand receptor interaction signaling pathways (Fig. 6A and Table S9); EX-4 played roles
mainly through affecting the metabolism related signaling pathways, such as, starch
and sucrose metabolism, arginine and proline metabolism, and type II diabetes mellitus
signaling pathways (Fig. 6B and Table S9); and the combination of SDF-1 and EX-4 mainly
regulating PLDSCs biological process through activating metabolism and immunity
related signaling pathways, such as pantothenate and COA biosynthesis, vascular smooth
muscle contraction, and maturity onset diabetes of the young (Fig. 6C and Table S9). In
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Figure 4 Screening of core DEGs generated by the combined SDF-1 and EX-4 application. (A) Short
Time-series Expression Miner (STEM) analysis in PDLSCs cocultured with SDF-1, EX-4 and SDF-1+EX-
4. Gene clusters (including 14, 39, 47, 36, 7, 28, 45, 25, 18, 41) that were upregulated by the SDF-1and EX-
4 combined application were selected out (mock infection was designated as NC, the first node was SDF-1
stimulated group, the second node was EX-4 stimulated group, and the final node was SDF-1+EX-4 com-
bined stimulated group). (B) Heat map of the 25 upregulated DEGs generated by the combined SDF-1
and EX-4 application. (C) GeneMANIA analysis network based on these 25 DEGs; the genes in circles with
a white slash are the actual DEGs, and the genes in circles without a slash are genes predicated based on
physical interactions, coexpression, predications, colocalization, pathways, genetic interactions and shared
protein domains. (D) Functional enrichment analysis of genes presented in the GeneMANIA network of
C.

Full-size DOI: 10.7717/peerj.12091/fig-4
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Figure 5 Network construction and the mechanism analysis of SDF-1 and EX-4 synergistic effects in
PDLSCs. The network constructed through the GeneMANIA database based on the core DEGs in SDF-1
vs NC (A), EX-4 vs NC (B), SDF-1+EX-4 vs EX-4 (C), and SDF-1+EX-4 vs SDF-1 (D). The genes in circles
with a white slash are the actual dynamic DEGs. The dynamic DEGs and predicted genes interact based on
physical interactions, coexpression, predictions, colocalization, pathways, genetic interactions and shared
protein domains.

Full-size DOI: 10.7717/peerj.12091/fig-5

addition, we confirmed that SDF-1 could amplify the role of EX-4 in regulating various
signaling pathways, such as type II diabetes mellitus, the insulin signaling pathway, and the
allograft rejection pathway (Fig. 6D and Table S9), while EX-4 could aggravate the effect
of SDF-1 on PDLSC biological roles by regulating signaling pathways, including primary
immunodeficiency, tight junction, and basal transcription factors (Fig. 6E and Table S9).
Interestingly, we found that the signaling enrichment analysis based on the DEGs andGSEA
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shared similarity, which indicated that SDF-1 and EX-4 may regulate PDLSC biological
activity by enhancing each other’s biological functions.

DISCUSSION
The effects of SDF-1 and EX-4 alone on bone regeneration have been widely reported;
however, the synergetic effects of SDF-1 and EX-4 on PDLSC osteogenic differentiation
and the potential mechanism have not been reported. In our previous study, we confirmed
that the combined application of SDF-1 and EX-4 could significantly promote osteogenic
differentiation of PDLSCs (Liang et al., 2021). In this study, we confirmed that SDF-1 could
amplify the role of EX-4 by significantly activating metabolism-related signaling pathways,
such as type II diabetes mellitus and insulin signaling pathways; and EX-4 could aggravate
the effect of SDF-1 on PDLSCs biological roles by regulating primary immunodeficiency
and tight junction signaling pathways. Briefly, our study confirmed that the SDF-1 and EX-4
combined application could enhance PDLSCs biological activity and promote PDLSCs
osteogenic differentiation by regulating the metabolism, biosynthesis and immune-related
signaling pathways.

EX-4, a common glucagon-like peptide-1 receptor agonist, has been confirmed to
possess excellent effects on treating patients with T2DM by significantly reducing HbA1c
content compared to basal insulins (Singh et al., 2017). Our current study confirmed that
EX-4-generated DEGs were enriched in the type II diabetes mellitus signaling, starch
and sucrose metabolism, arginine and proline metabolism, and alanine aspartate and
glutamate metabolism signaling pathways, while the combination of SDF-1 and EX-4
could significantly activate more metabolism-related signaling pathways, such as the valine
leucine and isoleucine degradation, insulin signaling, phenylalanine metabolism, and
pyruvate metabolism signaling pathways. In the plasma of type II diabetes, a pronounced
postprandial rise in amino acids (such as leucine, isoleucine, valine, lysine, and threonine)
and glucose-dependent insulinotrophic polypeptide was observed, which finally resulted
in glycemic and insulinemic responses (Nilsson, Holst & Björck, 2007). In our study, we
confirmed that SDF-1 and EX-4 combination therapy could significantly increase the
gene expression of EHHADH, HMGCL, IL4I1, PKLR, PIK3CG, PYGM, SLC2A4, RHOQ,
PRKCZ, FBP1, and SH2B2, which play key roles in promoting amino acid degradation
and insulin secretion; thus, SDF-1 assists EX-4 in controlling the blood glucose level
of diabetes patients. EX-4 could promote the osteogenic differentiation of osteoblasts,
adipose-derived stem cells, and PDLSCs by activating the Hedgehog/Gli1, Wnt and NF-
κB signaling pathways; however, the interactive relationship of EX-4 regulating PDLSCs
metabolism-related pathways and osteogenic differentiation pathways and the mechanism
by which SDF-1 amplifies the effect of EX-4 on PDLSCs osteogenic differentiation need to
be further clarified (Deng et al., 2019;Gao, Li & Li, 2018; Liu et al., 2019a; Liu et al., 2019b).

SDF-1 could promote PDLSCs proliferation, migration and osteogenic differentiation
in vitro, play key roles in recruiting endogenic PDLSCs into the periodontal defect area
and then contribute to angiogenesis in vivo (Bae et al., 2017; Du, Feng & Ge, 2016). In the
current study, we confirmed that SDF-1 significantly activatedmetabolism-related signaling
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Figure 6 GSEA enrichment based on all genes.GSEA enrichment plots of gene expression signatures of
SDF-1 vs NC (A), EX-4 vs NC (B), SDF-1+EX-4 vs NC (C), SDF-1+EX-4 vs EX-4 (D), and SDF-1+EX-4 vs
SDF-1(E), which are sorted according to the differences between the means of samples with high and low
HOTAIR expression. The barcode plot indicates the position of the genes in each gene set; red and blue
colors represent positive and negative Pearson correlations with HOTAIR expression, respectively.

Full-size DOI: 10.7717/peerj.12091/fig-6
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pathway of PDLSCs cultured in OM, such as the metabolism of xenobiotics by cytochrome
P450, alanine aspartate and glutamate metabolism; however, the effects of metabolism on
PDLSCs osteogenic differentiation have not been reported. In addition, SDF-1 activated
the renin angiotensin system, basal transcription factor, and neuroactive ligand receptor
interaction signaling pathways, which is consistent with previous studies (Chu et al., 2009;
Wang et al., 2015). Moreover, we found that the EX-4 and SDF-1 combined stimulation
significantly activated the immunodeficiency, tight junction, complement and coagulation
cascade signaling pathways compared to SDF-1 stimulation alone in osteogenic medium
cultured PDLSCs. The adaptive immune system plays a prominent role in the development
of heterotopic ossification (Ranganathan et al., 2016), and tight junctions (TJs) play
a pivotal role in the modulation of paracellular permeability. For example, Cldn11
recombinant protein, a well-established component of TJs, could significantly decrease the
resorption of lipopolysaccharide-induced calvarial bone and increase the osteogenic activity
of calvarial bone formation (Baek et al., 2018). Moreover, stress-induced hematopoietic
stem cell mobilization is enhanced by the fibrinolytic and complement cascades (Nguyen,
Lapidot & Ruf, 2018). In the current study, we confirmed that EX-4 could enhance the role
of SDF-1 in PDLSCs osteogenic differentiation through RNA-seq analysis, although this
process was limited due to the lack of biological experimental validation. In the future,
we will design related biological experiments to validate the mechanism of the SDF-1 and
EX-4 combined application in promoting PDLSCs osteogenic differentiation.

In adipose-derived stem cells, EX-4 could activate the PI3K/AKT pathways and then
augment the SDF-1α/CXCR4 cascade, which finally promotes cell migration (Zhou et
al., 2015b). In endothelial progenitor cells, EX-4 could activate the SDF-1β/CXCR7-
AMPK/p38-MAPK axis and then ameliorate high glucose-induced EPC dysfunction
(Yang et al., 2020). In the current study, we confirmed that EX-4 and SDF-1 coordinate
to change PDLSCs gene expression of CHD9, MT1A, RNF145, ASPN, SIX1, TUBA1A,
PRR5L, UBFD1, SEC14L1, ANP32E, AKAP13, and VAMP7, which could combine with
TMEM159, CEACAM7, CEBPB, ABCG4, NPAT, UNG, TMEM256, MT1F, CCDC28A,
DUSP19, ANGPTL2, PRPSAP1, C9orf116, MT1H, TIPRL, MAN1B1, FPGT, AHDC1,
TMEM5, and C5orf15, and then activate various signaling pathways including response to
stimulus, detoxification, biological regulation and growth pathways. However, the role of
these DEGs and signaling pathways identified by RNA-seq in the current study on PDLSCs
osteogenic differentiation needs to be further validated.

CONCLUSION
Our study confirmed that SDF-1 could amplify the role of EX-4 by activating more
metabolism-related signaling pathways, such as type II diabetes mellitus and the insulin
signaling pathways, and EX-4 could aggravate the effect of SDF-1 on PDLSCs biological
roles by regulating primary immunodeficiency and tight junction signaling pathways. In
addition, we confirmed that the SDF-1 and EX-4 combined application could enhance
PDLSCs biological activity and promote PDLSCs osteogenic differentiation by regulating
metabolism, biosynthesis and immune-related signaling pathways. Our current study lays
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a solid foundation for exploring the effects of SDF-1 and EX-4 synergistic application on
periodontal tissue regeneration.
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