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Simple Summary: Solid cancers can effectively counteract immune attack by inhibitory checkpoints
in the tumor microenvironment. Blockade of relevant immune checkpoints could be a useful tool
for enhancing the efficacy of antitumor T cell therapies. Here, we studied the capacity of two
nonclassical HLA molecules with known immunosuppressive function, HLA-G and HLA-E, to
prevent antigen-specific immune effector functions of gene-engineered T cells against Ewing sarcoma.
Inflammatory conditions and interactions of Ewing sarcoma cells with antitumor T cells reliably
induced upregulation of the two molecules on the tumor cells. Moreover, as previously shown for
HLA-G, HLA-E was detected in a high proportion of human Ewing sarcoma biopsies. However,
artificial expression of either of the two molecules on Ewing sarcoma cells failed to reduce cytolytic
and activation responses of antigen-specific T cells. We conclude that blockade of HLA-G and HLA-E
immune checkpoints is not a promising strategy for enhancing T cell therapies in Ewing sarcoma.

Abstract: Immune-inhibitory barriers in the tumor microenvironment of solid cancers counteract
effective T cell therapies. Based on our finding that Ewing sarcomas (EwS) respond to chimeric
antigen receptor (CAR) gene-modified effector cells through upregulation of human leukocyte antigen
G (HLA-G), we hypothesized that nonclassical HLA molecules, HLA-G and HLA-E, contribute to
immune escape of EwS. Here, we demonstrate that HLA-G isotype G1 expression on EwS cells does
not directly impair cytolysis by GD2-specific CAR T cells (CART), whereas HLA-G1 on myeloid
bystander cells reduces CART degranulation responses against EwS cells. HLA-E was induced in EwS
cells by IFN-γ stimulation in vitro and by GD2-specific CART treatment in vivo and was detected
on tumor cells or infiltrating myeloid cells in a majority of human EwS biopsies. Interaction of
HLA-E-positive EwS cells with GD2-specific CART induced upregulation of HLA-E receptor NKG2A.
However, HLA-E expressed by EwS tumor cells or by myeloid bystander cells both failed to reduce
antitumor effector functions of CART. We conclude that non-classical HLA molecules are expressed
in EwS under inflammatory conditions, but have limited functional impact on antigen-specific T
cells, arguing against a relevant therapeutic benefit from combining CART therapy with HLA-G or
HLA-E checkpoint blockade in this cancer.
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1. Introduction

Ewing sarcoma is an aggressive bone and soft tissue cancer predominantly arising
in children and adolescents. Intensive multimodality therapy only cures a proportion of
patients [1,2]. In hematological cancers, adoptive immunotherapy with T cells engineered
to express chimeric antigen receptors (CARs) has been successfully developed as a novel
therapeutic option for patients with refractory cancers [3,4]. A potential CAR T cell (CART)
target in EwS is the ganglioside antigen GD2, which can be highly overexpressed on the
tumor cell surface [5]. However, while T cells and NK cells that are gene-modified to
express GD2-specific CARs effectively interact with EwS cells in vitro, adoptive transfer in
preclinical in vivo models so far failed to eradicate the disease, despite a consistent and
high expression of the target antigen [6–8].

One potential explanation for the lack of activity of T cell therapeutics in EwS and
other solid cancers is the presence of immune-inhibitory components in the tumor microen-
vironment (TME), which prevent the infiltration of T cells and other immune effector cells
and tolerize the cells against tumor targets [9]. A powerful inhibitory immune checkpoint
is PD-L1 engaging the PD-1 receptor on T cells, to regulate effector T cell responses in tis-
sues [10]. Therapeutic antibody blockade of PD-1 or PD-L1 has been successful in patients
with various cancers but is ineffective in others, including EwS [11,12]. To enable effective
CART therapy of EwS, relevant barriers in the TME must be identified and co-targeted.

Candidate negative regulators of T cell function in EwS are the non-classical HLA
tolerogenic molecules HLA-G and HLA-E, both strong local inhibitors of cellular immune
responses [13,14]. Unlike classical HLA molecules, HLA-G and -E have low genetic
diversity and play no role in peptide presentation to T cell receptors. HLA-G has a
limited polymorphism with only 7 isoforms (HLA-G1 to G7), which interact with three
inhibitory receptors expressed on T cells, NK cells and myeloid cells and directly or
indirectly reduce effector cell proliferation and functions [15,16]. HLA-E negatively affects
the cytotoxic function of both CD8+ T cells and NK cells by engaging the inhibitory
receptor NKG2A/CD94 [14,17]. Both HLA-G and HLA-E are commonly overexpressed on
tumor cells, and expression is inducible by inflammatory cytokines [18–23]. Experimental
evidence suggests important contributions of HLA-G and HLA-E to immune escape in
many cancers [18,23–25]. Thus, both HLA-G and HLA-E are candidate immune-inhibitory
checkpoints that could prevent antitumor immune responses. Towards a clinical strategy,
an antibody antagonist of the HLA-E/NKG2A interaction was developed, which indeed
potentiates antitumor immunity by T cells and NK cells, and thus represents an attractive
combination partner for cellular immunotherapeutics [18].

In previous work in EwS, we found that tumor xenografts in response to adoptive
therapy with GD2-redirected CAR NK cells or CART strongly upregulate the nonclassical
MHC class I molecule HLA-G [6,26]. Moreover, we found that HLA-G is expressed in a
relevant proportion of human pre-treatment EwS biopsies either on the tumor cells or on
infiltrating lymphocytes and associated with the presence of infiltrating T cells [26]. HLA-E
has not yet been studied in EwS.

Here, we pursued the hypothesis that HLA-G or HLA-E are key contributors to local
immune suppression in EwS and are targetable immune checkpoints for more effective
CART therapy. We used isoform-specific antibodies to identify the HLA-G isoform up-
regulated in EwS cells through exposure to inflammatory cytokines by Western Blot and
by ELISA. Then, we investigated the capacity of HLA-G expressed either by GD2-positive
EwS cells or by myeloid bystander cells to negatively affect antigen-specific activation
and cytolytic responses of GD2-specific CART in in vitro coincubation experiments. We
further studied expression of HLA-E in immune infiltrates of human EwS tissues and
xenografts, through multicolor immunofluorescence analysis, then analyzed the functional
consequences of HLA-E overexpression by EwS cells on GD2-specific CART.
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2. Materials and Methods

Cell lines and IFN-γ pretreatment. The Ewing sarcoma cell lines A673 and TC-71
were obtained from DSMZ (Braunschweig, Germany), VH-64 was kindly provided by
Frans van Valen’s laboratory at the Institute of Experimental Orthopedics of University
of Muenster, Germany, and A4573 and TC-32 were a gift from the Children’s Hospital
Los Angeles. Collagen-coated 25 cm2 tissue culture flasks were used to culture EwS cell
lines in RPMI 1640 medium (Thermo Fisher Scientific, Dreeich, Germany) containing 10%
heat-inactivated fetal calf serum (FCS; Thermo Fisher Scientific, Waltham, MA, USA) and
2 mM L-glutamine (PAA, Freiburg, Germany), at 37 ◦C and 5% CO2. The human leukemia
cell line K562 and the human myeloid cell line THP-1 were purchased from DSMZ and
cultured in uncoated tissue culture flasks. For some experiments, EwS cells, THP-1, and
K562 cells were retrovirally transduced with the HLA-G1 gene (UniProtKB-P17693 Isoform
1), as previously described [6], or with HLA-G5 (UniProtKB-P17693 Isoform 5). THP-
1 were retrovirally transduced with HLA-E (UniProtKB-P13747) and a combination of
the GD3 synthase (GD3S, UniProtKB-Q92185) and the GD2 synthase (GD2S, UniProtKB-
Q00973) genes, to enable the synthesis of ganglioside GD2. The identity of the cell lines was
confirmed by short tandem repeat (STR) profiling. For IFN-γ cytokine pretreatment, EwS
cell cultures at 30–50% confluence were stimulated with a medium containing 2000 U/mL
IFN-γ for 48 h.

Western Blot analysis. Western blot analysis was performed as previously described [6].
In brief, anti-HLA-G antibody clone 4H84 (Exbio, Vestec, Czech Republic) or anti-HLA-
G antibody clone 5A6G7 (Abcam, Cambridge, UK), each diluted 1:1000 in TBST (5%
BSA), were used as primary antibodies, followed by detection with HRP-linked secondary
antibody and enhanced chemiluminescence reagent. After stripping, β-Actin antibody
(Cell Signaling) diluted 1:5.000 in TBST (5% BSA) was added to determine the equal protein
loading. The original western blotting figures can be found in Figure S1.

ELISA. Protein lysates were generated as above and HLA-G expression was analyzed
using a commercially available HLA-G kit (Exbio) for specific detection of HLA-G1 and
5 isoforms. Lysates from HLA-G1 and HLA-G5-transduced and wild-type K562 cells
served as positive and negative controls, respectively. HLA-G (U/mL) was quantified by
measurement of the incorporated calibrator.

Flow cytometry analysis. At least 100,000 tumor cells were stained with fluorescence-
conjugated monoclonal antibodies (mAbs) against HLA-G (clone MEM/G9, Exbio), HLA-E
(clone 3D12, Biolegend, Fell, Germany) and GD2 (clone 14.G2a, Biolegend), respectively,
or the corresponding fluorescence-conjugated isotype controls (BioLegend). CART were
stained with fluorescence-conjugated monoclonal antibodies against CD3 (clone SK7,
Biolegend), CD8 (clone RPA-T8, Biolegend), CD94 (clone HP3D9, BD Pharmingen), CD85j
(clone HP-F1, eBioscience, Frankfurt, Germany), NKG2A (clone 131411, R&D, Brooklyn
Park, MN, USA) and the CAR-specific anti-idiotype antibody ganglidiomab, provided by
H. Lode, Greifswald, Germany, and fluorescence-labeled with the Mix-n-Stain Kit (Sigma-
Aldrich, Taufkirchen, Germany). Samples were fixed with 1% paraformaldehyde (PFA) and
acquired directly or not later than 24 h after staining. For each sample, 10,000 cells within
the respective gates were analyzed with FACS Diva 8.0, using FACS Celesta flow cytometer
(BD Biosciences, Germany) and FlowJo version 10 (FlowJo, LLC, Ashland, OR, USA).

CRISPR/Cas9 knockout. The sgRNAs used to knock out the gene encoding HLA-G1
(UniProtKB-P17693 Isoform 1) were designed using the website http://crispr.mit.edu/
(accessed on 20 May 2021). The sgRNAs were cloned into the BsmBI sites of the lentiviral
vector lentiCRISPR_v2 (Addgene 52961) [27]. The production of lentiviral supernatant
in HEK293T cells was performed, as previously described [28]. HLA-G1 gene knockout
was analyzed by Western Blot analysis, after one week of puromycin (6 µg/mL) selection.
Single cell cloning was done by diluting sgRNA129 transduced A4573 cells to 0.5 and 1 cell
per mL, and plating in 96-well plates with 200 µL per well with continuous puromycin
selection. Viable cell cultures were picked after 3 to 4 weeks of culture and analyzed by PCR,
after gDNA extraction with primers flanking the HLA-G α1 domain (HLA-GCRISPR-fw:

http://crispr.mit.edu/
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ACTCCCATTAGGTGACAGGTTTTTA and HLA-GCRISPR-rev: ATCGTAGGCATACT-
GTTCATACCC). All clones with a PCR product different from the WT were sequenced
(LGC) after cloning of the PCR product into a TOPO TA cloning vector (Thermo Fisher
Scientific, Waltham, MA, USA). A4573 clone 16 was then analyzed by Western Blot and
ELISA, as described above.

CAR constructs and transduction of human T cells. The GD2-specific CAR construct
and the methods used for transduction of human T cells were previously described [6].

Legendplex cytokine bead assay and MACSquant analysis. For cytokine analysis,
1 × 105 GD2-BBζ transduced T cells per well were seeded in a 96 well plate together with
1 × 105 irradiated HLA-G1-transduced VH-64 cells per well, and incubated for 48 h at
37 ◦C and 5% CO2. Mock-transduced VH-64 cells were used as control. Supernatants were
harvested and analyzed with the Legendplex Cytokine Bead Assay Human CD8/NK Panel
(13-plex) from BioLegend, according to the manufacturer’s specifications. Samples were
analyzed after acquisition on a MACSquant Flow Cytometer (Miltenyi Biotech, Bergisch
Gladbach, Germany) with the LEGENDplex v8.0 Software (BioLegend, Fell, Germany).

CD107a assay. Target cells and effector cells were treated with 1 µL/mL Monensin
(Biolegend) and co-cultured at a 1:1 ratio for 3 h at 37 ◦C, in the presence of CD107a BV510
(Biolegend). Then, the cells were washed and stained with CF488 fluorescence-labeled CAR
anti-idiotype antibody ganglidiomab, APC-Fire750-labeled anti-CD3 (Biolegend) and either
anti-CD85j-PE or anti-NKG2A-PE for 15 min in the dark. Cells were washed and analyzed
by flow cytometry. To block HLA-G interactions, tumor cells were preincubated with
20 µg/mL of either 87G antibody or IgG2a isotype control for 15 min, prior to adding the T
cells. At least 400 events were analyzed within the gates of either CD3+/CAR+/CD85j+ or
CD3+/CAR+/NKG2A+ cells, respectively.

Cytotoxicity assay. To test the lytic activity of CART, a calcein acetyoxymethyl (AM)
release assay was used, as previously described [28]. In brief, calcein-stained target cells
were coincubated with CART for 4 h at an effector-to-target cell ratio of 40:1 or alone, and
fluorescence was quantified using the microplate reader GloMax® Discover (Promega,
Walldorf, Germany).

Patient material. Tumor biopsies from EwS patients treated at University Children’s
Hospital Muenster within the multicenter clinical studies EURO-E.W.I.N.G. 99 and EWING
2008 were included with the consent of patients or their legal guardians, in accordance
with the Declaration of Helsinki.

Conventional immunohistochemistry (IHC). Formalin-fixed paraffin-embedded (FFPE)
sections of human tumor biopsies or EwS xenografts were deparaffinized and manually
stained with human HLA-E specific antibody (clone MEM-E/02, ExBio). HLA-E expression
was analyzed for 40 min, after heat-induced antigen retrieval in a pressure cooker with
citrate buffer (pH9), followed by blocking with serum-free blocking solution (Dako, Jena,
Germany) for 1 h at RT. The slides were then incubated overnight at 4 ◦C with unconju-
gated HLA-E antibody, and 1:25 diluted in Antibody Diluent (Dako). Immunoreactions
were visualized using a biotinylated polyclonal secondary antibody (BD Pharmingen) and
Peroxidase/DAB detection. Slides were counterstained with hematoxylin and covered with
Cytoseal (Thermo Fisher). Human tonsil tissue was used as positive control. The intensities
of HLA-E antibody staining were defined by the pathologist, using a semiquantitative
scoring system with three staining intensities (strong, weak, and negative).

Multicolor fluorescence staining. Multiplexed fluorescence staining was performed
by the tyramide signal amplification (TSA) method using Opal fluorophores (Akoya Bio-
sciences, Marlborough, MA, USA). Microwave treatment between each staining cycle was
used to remove primary and secondary antibodies, while retaining the fluorescent signal.
FFPE sections were deparaffinized in xylene, rehydrated, and washed in water, before
staining with a self-designed 5-plex panel with antibodies, against the pan T cell marker
CD3 (clone 26V6, Ventana, Tucson, AZ, USA), the pan-macrophage marker CD68 (clone
KP-1, Ventana), HLA-G (clone 4H84, ExBio) or HLA-E (clone MEM-E/02, ExBio) and the
EwS tumor cell marker CD99 (clone HCD99, Biolegend). To optimize the panel, we first
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selected optimal antibody clones by standard IHC staining, then linked them with opal
fluorophores (Akoya Biosciences) and performed single-plex immunofluorescence stain-
ing. Finally, we optimized the sequences of staining with the individual antibodies and
their concentrations as well as the individual fluorophore pairings. Immunofluorescence
staining was performed manually with 4 staining cycles. First staining cycle—antigen
retrieval (AR) with citrate buffer pH6, blocking with serum-free blocking solution (Dako)
for 1 h at RT, incubation with anti-CD3 antibody (undiluted) overnight at 4 ◦C, incubation
with secondary antibody (polymer HRP Ms+Rb, Akoya Bioscience) for 10 min at RT, then
incubation with Opal 540 (1:50) for 10 min at RT. Second staining cycle—microwave treat-
ment with citrate buffer pH6, blocking as above, incubation with anti-CD68 (undiluted)
antibody overnight at 4 ◦C, incubation with secondary antibody as above, then incubation
with Opal 520 (1:50) for 10 min at RT. Third staining cycle—microwave treatment and
blocking as above, incubation with anti-HLA-G (1:100) or HLA-E (1:25) antibodies, respec-
tively, in antibody diluent overnight at 4 ◦C, incubation with secondary antibody as above,
then with Opal 570 (1:50) for 10 min at RT. Final staining cycle—microwave treatment
and blocking as above, incubation with anti-CD99 antibody (1:3500) in antibody diluent
for 1 h at 37 ◦C, then with secondary antibody as above, then with Opal 690 (1:100) for
10 min at RT. All slides were counterstained with DAPI (BioCat, Heidelberg, Germany) and
enclosed with Prolong Diamond Antifade (Thermo Fisher). Imaging was performed with
Vectra® 3.0 system (Perkin Elmer, Rodgau, Germany). A whole slide scan was first acquired
at 10× magnification, across the full emission light spectrum in each filter tube—DAPI
(450–470 nm), FITC (505–545 nm), CY3 (580–620 nm), Texas Red (600–650 nm), and CY5
(670–720 nm). Four regions of each slide were chosen for multispectral imaging, using the
image analysis software Phenochart™, and were re-scanned at 20× magnification. Multi-
spectral images were unmixed using spectral libraries built from images of single-stained
tonsil or placenta control tissues for each individual fluorophore, with the InForm Analysis
Software (InForm 2.1.4, Akoya Bioscience). The autofluorescence was subtracted from
unmixed multispectral images of an EwS tissue slide that had undergone the complete
staining procedure, omitting the primary antibodies. The images were trained using the In-
Form software (tissue segmentation, cell segmentation, and phenotyping tools). The same
algorithms were used to analyze HLA-G/HLA-E-positive and -negative tumor tissues.
Data processing and analysis were performed with R software version 3.6.3 and integrated
development environment RStudio version 1.4., with packages phenoptrR and phenoptr
Reports (Akoya Bioscience).

Statistical analysis. Data were analyzed and visualized using IBM SPSS Statistics 27
for Windows and Systat SigmaPlot 11.0 software. Statistical analysis was performed with
the paired t-test, unless otherwise indicated in the figure legends. Results were considered
to be statistically significant at p ≤ 0.05.

3. Results
3.1. IFN-γ Cytokine Stimulated EwS Cells Express HLA-G Isoform HLA-G1

To investigate the capacity of HLA-G to inhibit the antigen-specific effector functions
of CART, we aimed to selectively disrupt the HLA-G gene in EwS cells through targeted
mutagenesis. For this purpose, we first set out to identify the individual HLA-G isoforms
expressed in EwS among a total of 4 membrane-bound (HLA-G1 to G4) and two soluble
(HLA-G5 to -G7) isoforms generated by alternative splicing from the HLA-G transcript [23].
EwS cells were pretreated with IFN-γ to induce expression of HLA-G, as previously
described [26]. First, we attempted to determine the amino acid sequence of HLA-G in
whole cell lysates from IFN-γ-pretreated EwS cells using tandem mass spectrometry and
high-performance liquid chromatography. However, the protein sequence similarities
between non-classical and classical HLA molecules prevented fractionation of the low
quantities of HLA-G expressed by EwS against the high-background of classical HLA
molecules (Appendix A). Therefore, we used an indirect approach, based on isoform-
specific antibodies, to identify HLA-G isoforms by Western Blot and by ELISA, along
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with K562 control cells gene-modified to express either HLA-G1 or HLA-G5. Monoclonal
antibody clone 4H84 that binds all HLA-G isoforms detected protein bands corresponding
in size to either HLA-G1 or -G5 in lysates from all 3 EwS cell lines (A673, TC-32, A4573)
after IFN-γ stimulation, and in HLA-G5 transduced K562 cells (Figure 1a). In contrast,
clone 5A6G7, which selectively binds HLA-G5 and -G6, failed to bind protein except in
the HLA-G5-transduced control cell line (Figure 1b), suggesting that the isotype produced
by EwS cells is G1. This result was reproduced by an HLA-G1/5 specific ELISA that
detected HLA-G in lysates of both HLA-G1 transduced K562 control cells, as well as IFN-γ
stimulated EwS cell lines A673 and A4573 (Figure 1c). We conclude that the HLA-G isoform
induced in EwS by IFN-γ cytokine stimulation is HLA-G1.
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and EwS cell lines A4573 and A673, following pretreatment with IFN-γ or untreated, using an ELISA exclusively detecting
the isoforms HLA-G1 and G5.

3.2. HLA-G Expression on EwS Cells Does Not Directly Impair Cytolysis by GD2-Specific CART

To study the functional significance of HLA-G for T cell responses against EwS cells,
we aimed to selectively eliminate HLA-G in EwS through CRISPR/Cas9 genome editing.
Specific single guide RNAs (sgRNAs) were generated against the α1 domain of HLA-G.
High-sequence homologies to other HLA molecules did not allow generation of sgRNAs
with target specificities of >20 by MIT specificity score. To disrupt the HLA-G gene,
we lentivirally transduced A4573 cells with 6 different sgRNA candidates (Appendix B).
Following up to 3 weeks of in vitro selection, HLA-G protein was still detected by Western
Blot analysis in EwS cells transduced with either of all sgRNA candidates. To enhance the
specificity of the knockout, we generated single cell clones from A4573 cells transduced
with the sgRNA with the highest specificity score, sgRNA129, followed by further in vitro
selection. PCR analysis of genomic DNA from 15 clones led to the identification of a single
knock-out clone. Disruption of the HLA-G gene sequence was confirmed by sequencing
analysis. Yet, residual HLA-G protein remained detectable by Western Blot analysis and
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ELISA (Appendix B). A potential explanation is heterozygosity of the gene knockout, with
gene sequencing detecting the knockout allele.

We concluded that the high sequence homology between the HLA-G gene and other
HLA genes represents a significant barrier to successful targeted mutagenesis. There-
fore, we switched to a knock-in model and overexpressed HLA-G1 in 3 GD2-positive EwS
cell lines (A4573, TC-71, and VH-64) [28] through retroviral gene transfer (Figure 2a).
HLA-G1 transduced EwS cells were used as targets for T cells gene-modified to express
a GD2-specific 4-1BB costimulated second-generation CAR (GD2-BBζ). Surface expres-
sion of the HLA-G receptor CD85j (ILT (immunoglobulin-like transcript) 2) was detected
in variable proportions of CAR-transduced T cells generated from 4 individual healthy
donors (Figure 2b). No differences in the patterns and magnitude of secretion of cytokine
IFN-γ or cytotoxic granules were found in response to HLA-G1-wildtype and HLA-G1-
transduced EwS cells through multiplex analysis (Figure 2c). The presence of HLA-G1 on
the cell surface of GD2-positive EwS cells did not significantly reduce the GD2-target-specific
degranulation response of GD2-BBζ CART, even when gating on CD85j-positive CART
(Figure 2d). HLA-G1 wildtype and HLA-G1-transduced tumor cells from the same EwS
cell lines were lysed equally well by GD2-BBζ CART, regardless of the presence or absence
of HLA-G1 blocking antibody 87G [29] (Figure 2e). Thus, HLA-G1 surface expression
in EwS cells does not affect their ability to induce CART activation responses, nor their
sensitivity to antigen-specific lysis by CAR gene-modified T cells.

3.3. HLA-G Expression on Myeloid Bystander Cells Reduces the Degranulation Response of
GD2-Specific CART

After disproving a direct inhibitory interaction between the HLA-G-positive EwS cells
and tumor-antigen specific CART, we addressed the hypothesis that myeloid bystander
cells in the TME can mediate the T-cell inhibitory effects of HLA-G in this cancer. In
inflammatory environments, macrophages and other myeloid cells engage HLA-G by the
ILT4 receptor, which induces a switch of their functional phenotype from activating to
regulatory [21,22].

To investigate whether HLA-G expression in EwS is associated with an inflammatory
TME abundant with myeloid cells, we compared infiltration of CD3+ T cells and CD68+
macrophages in HLA-G-negative and HLA-G-positive pretreatment EwS biopsies through
multicolor immunofluorescence staining (Figure 3a). HLA-G-positive EwS indeed had
significantly higher proportions of infiltrating CD68+ myeloid cells as compared to HLA-
G-negative biopsies, whereas the proportions of CD3+ T cells were comparable (Figure 3a).

To understand whether HLA-G1 expressed by myeloid cell populations can nega-
tively affect antigen-specific effector responses of CART, we generated a model cell line
coexpressing HLA-G1 along with surface GD2, by transducing the myeloid cell line THP-1
with genes encoding HLA-G1 as well as two key enzymes of glycolipid GD2 synthesis,
GD2S and GD3S, which results in surface expression of GD2. Coexpression of HLA-G1 and
GD2 in THP-1 cells after genetic modification was confirmed by flow cytometry analysis
(Figure 3b). The presence of HLA-G1 on the cell surface of GD2-positive THP-1 cells sig-
nificantly reduced GD2-target specific degranulation responses by GD2-BBζ CART from
4 individual donors (Figure 3c). Addition of HLA-G1 antibody 87G, described as blocking
antibody [29], failed to fully restore antigen-specific degranulation of CART, in response
to target cells. We conclude that negative effects on immune effector cells in the TME of
HLA-G-positive tumors can be mediated by myeloid bystander cells rather than by direct
interactions between HLA-G expressing tumor cells and CART. HLA-G antibody clone 87G
in our experimental system was inadequate to fully reverse the inhibitory effect on CART.
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Figure 2. HLA-G1 expressed by EwS cells does not impair antigen-induced cytokine release or cytolysis by CAR gene-
modified effector T cells. (A) HLA-G1 and GD2 expression on the cell surface of the GD2-positive EwS cell lines A4573, TC-71
and VH-64. (B) CD85j (ILT-2) surface expression in GD2-BBζ CART. (C) Secretion of IFN-γ and of perforin, granzymes A
and B and granulysin by GD2-BBζ CART, upon antigen-specific activation with HLA-G1- transduced and mock-transduced
GD2-positive EwS cells (VH-64). (D) CD107a upregulation by CD85j-expressing GD2.BBζ CAR-transduced T cells from
4 individual healthy donors, in response to coincubation with HLA-G1 transduced GD2-positive EwS cell lines. Mock-
transduced EwS cells from the same cell lines (HLA-G1 neg) were used as controls. (E) Cytolysis of HLA-G1-transduced
EwS cells from 3 GD2-positive cell lines by GD2.BBζ CAR-transduced T cells from 4 healthy donors, with and without
preincubation (30 min) with HLA-G1-specific blocking antibody clone 87G (20 µg/mL) or IgG2a control (E:T Ratio 40:1).
Mock-transduced EwS cell lines (HLA-G1-neg) were used as controls.
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Figure 3. HLA-G1 expression in EwS is associated with the presence of myeloid cells, and HLA-G1 expressed by THP-1
monocytic cells reduces the degranulation response of CAR gene-modified effector T cells. (A) Representative multiplex
immunofluorescence staining (20×) of HLA-G-negative (left panel) and HLA-G-positive (middle panel) human EwS
biopsies with antibodies against CD3, CD68, HLA-G, CD99 and DAPI, as indicated. Scatter plot analysis of CD3+ T cell and
CD68+ myeloid cell infiltration in HLA-G-positive and HLA-G-negative EwS biopsies (right panel). Immune cell densities
(cells/mm2) were analyzed in 3 patients and in 4 areas per patient. We applied a generalized linear mixed model to compare
HLA-negative and -positive patients with respect to CD68 and CD3 expression, respectively. Due to skewed distributions
of expression values, a negative-binomial distribution with a log-link function was used. Repeated measurements per
patient (i.e., areas) were modelled by a variance components-type covariance matrix. Wald-test p-values are reported for the
group comparison. (B) HLA-G1 and GD2 coexpression on THP-1 cells after retroviral gene transduction with HLA-G1 and
GD3S/GD2S genes. (C) CD107a expression of CD85j+ GD2.BBζ CAR-transduced T cells from 4 individual healthy donors,
after coincubation with HLA-G1- and GD3S/GD2S-transduced THP-1 cells, with and without preincubation (30 min),
with HLA-G1-specific blocking antibody clone 87G (20 µg/mL) or IgG2a control. THP-1 cells transduced only with the
GD3S/GD2S transgene for GD2 target expression (HLA-G1-neg) were used as controls. Statistical analysis was performed
with one-way repeated measures ANOVA.

3.4. HLA-E Is Expressed in EwS and Associated with Infiltrating T Cells Both in Human
Pretherapeutic Biopsies and in Murine EwS Xenografts Treated with GD2.BBζ CART In Vivo, and
CART Recovered from Treated Mice Express the HLA-E Receptor NKG2A

A related non-classical HLA molecule commonly overexpressed on the surface of
various cancers is HLA-E. Interactions of HLA-E with NKG2A on T cells and NK cells
was found to restrain cytotoxic anti-tumor effector functions [19,20], and a humanized
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monoclonal antibody interfering with this interaction can act as checkpoint inhibitor
to rescue T cell functions against tumors, in a synergistic manner with blockade of the
established PD-1 checkpoint [18]. To investigate a potential role of HLA-E in the immune
defense of EwS, we stained pretherapeutic tumor biopsies from 26 patients with anti-
HLA-E antibodies by immunohistochemistry. The majority (22/26, 85%) of EwS samples
expressed HLA-E on tumor cells, infiltrating macrophages or both (Figure 4a).

Comparisons of immune cell infiltrates in HLA-E positive and negative EwS tumor
samples through multicolor immunofluorescence staining (Figure 4b) did not reveal signif-
icant associations of HLA-E expression with higher densities of infiltrating myeloid cells or
T cells. To understand whether infiltrating antitumor T cells can induce HLA-E expression
in EwS, we analyzed HLA-E in s.c. TC-71 EwS xenografts from mice treated with GD2.BBζ
CART (Appendix C). Indeed, we found HLA-E expressed in xenografts following adoptive
transfer in vivo of GD2.BBζ-transduced T cells, but not in control tumors from untreated
mice (Figure 4c). Peripheral blood, spleen, and tumor-infiltrating T cells obtained from
CART-treated mice on day 28 of the experiment were analyzed by flow cytometry for
expression of the HLA-E receptor NKG2A. Gating on CAR-positive and CAR-negative T
cell populations revealed a significant association and upregulation of NKG2A with T cells
expressing the CAR (Figure 4d).

Thus, HLA-E is common in EwS and is associated with T cell infiltration, both in
human patients and in murine xenografts treated with tumor-antigen specific CART.
Through expression of NKG2A, CART can engage HLA-E.

3.5. HLA-E Does Not Impair Degranulation Responses against EwS Cells or Myeloid Cells by
GD2-Specific CART

Finally, we addressed the question whether HLA-E expression in EwS directly or
indirectly via myeloid cells affects the functional antitumor responses of tumor-antigen
specific CART. As in vitro model, we used EwS cells pretreated with IFN-γ, which reli-
ably induces expression of HLA-E on the cell surface (Figure 5a), and GD2.BBζ CART
expressing NKG2A at variable proportions (Figure 5b). In a direct cytotoxicity assay, IFN-
γ-pretreated EwS cells were equally sensitive to lysis by GD2-specific-CART as compared
to non-pretreated, HLA-E-negative EwS cells (Figure 5c). Thus, HLA-E does not impair
the cytolytic capacity of tumor-antigen-specific CART in direct interactions with EwS cells.
To investigate the capacity of the myeloid cell line THP-1 to impair CART degranulation
responses via HLA-E, we coexpressed HLA-E and GD2 in THP-1 cells through gene transfer
of HLA-E and GD3S/GD2S (Figure 5d) and used these cells as target for GD2-BBζ CART.
Degranulation responses of CART did not significantly vary with and without HLA-E ex-
pressed on THP-1 cells (Figure 5e). Together, these data argue against a relevant inhibitory
effect of the HLA-E/NKG2A checkpoint, in CART therapy of EwS.
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Figure 4. HLA-E is expressed in EwS cells both in vitro and in vivo and associated with T cell infiltrations. (A) HLA-E
expression by immunohistochemistry analysis of 26 EwS biopsies. Shown is one example each for strong, weak, and lack
of HLA-E expression, an example for HLA-E expressed on tumor-infiltrating macrophages and a summary of the results.
(B) Representative multicolor immunofluorescence staining (20×) of HLA-E-negative (left panel) and HLA-E -positive
(middle panel) EwS biopsies with antibodies against CD3, CD68, HLA-E, CD99 and DAPI, as indicated. Scatter plot analysis
of CD3+ T cell and CD68+ myeloid cell infiltration in HLA-E-negative and HLA-E-positive EwS biopsies (right panel.
Immune cell densities (cells/mm2) were analyzed in 3 patients and in 4 areas per patient. We applied a generalized linear
mixed model to compare HLA-negative and -positive patients with respect to CD68 and CD3 expression, respectively. Due
to skewed distributions of expression values, a negative-binomial distribution with log-link function was used. Repeated
measurements per patient (i.e., areas) were modeled by a variance components-type covariance matrix. Wald-test p-values
are reported for the group comparison. (C) HLA-E expression in TC-71 EwS xenografts following in vivo treatment with
GD2-BBζ CART. (D) CD94 and NKG2A expression of CART after 28 days in a TC-71 EwS xenograft model.
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Figure 5. HLA-E expressed by THP-1 monocytic cells does not affect functional responses of CART. (A) Upregulation of
HLA-E in EwS cells after incubation with IFN-γ. (B) NKG2A expression by flow cytometry in GD2-BBζ CART generated
from 4 donors. (C) Cytotoxicity assay of IFN-γ-induced, HLA-E-expressing EwS cells as targets for GD2-BBζ-transduced
effector T cells from 4 donors (effector-to-target ratio 40:1). (D) HLA-E and GD2 coexpression on THP-1 cells after retroviral
gene transduction with HLA-E and GD3S/GD2S genes. (E) CD107a expression of GD2.BBζ CART from 4 individual
healthy donors after coincubation with HLA-E- and GD3S/GD2S-cotransduced THP-1 cells, and with HLA-E-negative,
GD3S/GD2S-transduced THP-1 cells as controls. CD107a expression was analyzed after gating on CD3+ NKG2A+ CART.

4. Discussion

In view of novel cellular cancer therapies, identification of molecules in the TME
that compromise the function of T cells is gaining importance. While antagonists of
inhibitory checkpoints alone are ineffective in cancers lacking tumor-infiltrating T cells
with native specificity for cancer-associated neoantigens, they could serve to enhance
the activity and persistence of adoptively transferred CAR-engineered T cells, to create
powerful combination strategies [30]. With their physiological roles in immune tolerance
and expression in many human solid cancers, HLA-G and HLA-E are both candidate
targets for novel immune checkpoint inhibitors [18–25].

In addition to our previous work [6,26], we provide new evidence for an association
of HLA-G and now also HLA-E expression with EwS: Immunohistochemistry analysis
of pretherapeutic tumor biopsies detected HLA-E at variable densities in 85% of 26 EwS
patients (Figure 4a), compared to 66% of HLA-G positive tumors among 59 EwS patients
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in a previous report [26]. Comparable to HLA-G, HLA-E can be expressed on tumor cells,
stroma cells or both. Both molecules are upregulated under inflammatory conditions in
this cancer, mimicked by IFN-γ stimulation in vitro (Figures 1 and 5a) and by treatment
of xenograft tumors with GD2-specific CART in vivo [6,26] (Figure 4c). Thus, HLA-G
and HLA-E are consistent features of EwS and are responsive to inflammatory stimuli in
this cancer. Considering their immune-inhibitory properties, these molecules constitute a
theoretical challenge for the optimal activity of tumor-antigen specific CART.

Contrary to expectations, the work presented here strongly argues against a direct
negative effect of HLA-G and HLA-E immune checkpoints on CART in EwS. Neither HLA-
G1 nor HLA-E had any functional significance for the target-induced in vitro responses of
CART against EwS cells, when artificially overexpressed on tumor cells (Figures 2 and 5).
This included various parameters of target-induced T cell activation, such as cytokine
secretion, upregulation of the degranulation marker CD107a and direct target cytolysis.
Thus, CART at least in vitro are remarkably resistant against the inhibitory action of
immunosuppressive HLA antigens.

One explanation could be the low and variable expression of inhibitory receptors
on GD2-specific CART in vitro, which directly engage HLA-G (CD85j, Figure 2b) or HLA-
E (NKG2A, Figure 4d), respectively. This finding is in line with published reports of
a high variability of CD85j and NKG2A expression on human CD3+ and CD8+ T cells
affected by donor age, T cell source, antigen experience, and also technically by individual
antibody clones used for surface detection [31–34]. Activating cytokines and inflammatory
conditions in infections and cancer are known to increase the proportions of NKG2A or
CD85j-expressing T cells [18,35–38]. Own work by our group found that exposure of
GD2-specific CART-expressing NK cells to GD2-positive EwS cells induces upregulation of
CD85j on NK cells [6]. In vitro retroviral engineering of human T cells with CAR genes,
despite involving CD3- and CD28-mediated in vitro T cell activation and IL-2 cytokine
expansion, did not produce higher populations of T cells expressing CD85j (Figure 2b) or
NKG2A (Figure 4d). However, ex vivo studies in our xenograft model revealed substantial
upregulation of NKG2A on CART, following GD2-specific CART therapy (Figure 4d). Thus,
with all the limitations of the murine xenograft model, CART can upregulate NKG2A
upon antigen encounters. However, since even the selective analysis of CD85j or NKG2A-
positive subpopulations of CART failed to identify any inhibitory effect of HLA-G or
HLA-E expressing EwS targets on the strength of the cytolytic response (Figures 2d and 5e),
the functional relevance of engagement of these receptors on CART remains questionable.

Another explanation for the unexpected HLA-G/HLA-E resistance of CART is that
relevant HLA-G or HLA-E-mediated immune-inhibitory effects could rely not on direct
interactions with CART but on bystander cells in the TME, a scenario not reflected by
coculture experiments of CART with HLA-G/HLA-E expressing tumor cells. EwS is
characterized by high densities of tumor-associated macrophages [39] (Figures 3a and 4b),
and myeloid cell infiltration has been associated with lack of in vivo activity of CART in
murine models of this cancer [8], suggesting important roles of myeloid cell populations in
immune escape. Indeed, we found HLA-G expression to be associated with infiltrating
myeloid cells in pretherapeutic EwS biopsies (Figure 3a). In support of this hypothesis,
HLA-G did have a functional impact on antigen-specific CART responses when artificially
expressed on a monocytic cell, rather than on the tumor cell itself (Figure 3c). Thus,
HLA-G could still be a potent functional barrier to CART targeting when expressed in
the context of myeloid bystander cells, as is frequently the case in EwS, by triggering
additional inhibitory pathways. At the same time, HLA-G expressed by EwS cells could
engage the receptor ILT4 on tumor-associated macrophages, resulting in acquisition of
immune-suppressive properties and selective expansion of myeloid suppressor cells [16,40].
Thereby, HLA-G could contribute to a hostile TME and to local immune escape of EwS from
CART-mediated immune control. The association with infiltrating myeloid cells in human
EwS biopsies was limited to HLA-G and not found with HLA-E (Figure 4b). Accordingly,
HLA-E expressed by a monocytic cell type failed to affect CART responses (Figure 5d,e).
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This argues against but does not rule out indirect bystander effects of HLA-E on CART
function. In vivo studies reflecting the complexity of HLA-G and HLA-E checkpoints by
acknowledging indirect interactions between EwS cells and CART via myeloid cells are
impeded by the lack of in vivo EwS models that adequately reflect these interactions within
a single species. Meaningful in vivo studies will have to be performed in humanized mouse
models. As a third explanation, non-classical HLA molecules in EwS could be indicators
of inflammatory components of the TME, without making any active contributions to
immune inhibition. While a vast number of reports exist that associate either HLA-G or
HLA-E with relapse and poor clinical outcome [19,25,41–44], evidence for the capacity
of these molecules to suppress antitumor responses by CD8+ T cells remains limited. To
our knowledge, this is the first report addressing the potency of either HLA-G or HLA-E
to impair CART-mediated antitumor responses. A recently developed antagonist of the
HLA-E/NKG2A interaction, monalizumab, was found to rescue NK cell activity against
tumors as stand-alone therapy, but required concomitant PD-1 checkpoint blockade for
enhancing efficacy of antigen-specific T cells [18]. Thus, HLA-G or HLA-E could still
be relevant inhibitors of CART function in EwS in the context of additional inhibitory
or tolerogenic pathways. More extensive studies of candidate immune checkpoints in
EwS, besides PD-L1, including alternative ligands of the B7 family and others, e.g., the
Nectin-like family, could be helpful to understand in more detail how this cancer affects
immune effector cells and their function.

Finally, technical limitations could have affected the outcome of the functional exper-
iments. Compared to the knock-in studies that we performed by artificially expressing
HLA-G and HLA-E in EwS cells, genetic knockout could have revealed more subtle
functional roles. In our hands, the high sequence homology of HLA-G with other HLA
molecules did not allow us to perform a specific genetic knockout. The difficulty to discern
HLA-G isoforms against the background of classical HLA molecules not only affected
identification of relevant isoforms but could also limit the development of therapeutic
blocking antibodies.

This work was motivated by the urgent medical need to develop more effective
therapies against EwS, which remains a fatal malignancy in many patients despite highly
intensive multimodal treatment strategies. Adoptive transfer of CAR-engineered T cells
overcomes the lack of effector cells in the immunological desert of EwS, which explains
the failure of PD-1 checkpoint antagonists to produce clinical responses. Yet, T-cell based
immunotherapies will need to be combined with agents that enable optimal effector
functions in the context of the solid tumor microenvironment. HLA-G or HLA-E could
be valuable enhancers of immune responses in other cancers and for NK-cell targeted
strategies, as shown for the anti-NKG2A blocking antibody monalizumab now developed
as a novel first-in-class checkpoint inhibitor for HLA-E-positive cancers [18]. For EwS,
the search continues for strategies that overcome locoregional immune escape in the
tumor niche.

5. Conclusions

While HLA-G and HLA-E expression is common in EwS, with consistent upregulation
under inflammatory conditions, these checkpoints do not affect the function of GD2-specific
CART, unless HLA-G is expressed on myeloid bystander cells. The functional robustness
of CART against HLA-G and HLA-E expressed on EwS cells argues against the use of
inhibitors of these molecules to enhance CART-mediated antitumor responses. Yet, non-
tumor cells of myeloid origin are widely present in EwS and likely to contribute to an
immune-suppressive TME in this cancer. Therefore, our observation of a potential role of
HLA-G in mediating inhibitory bystander effects on CART deserves further investigation.

Effective CART-targeting of EwS has multiple requirements. CART must infiltrate
into sarcoma tissues and exert potent cytolytic effector functions against tumor cells, while
acquiring a memory T cell state that allows the cells to persist and become reactivated.
Any single-targeted checkpoint inhibitors will likely be insufficient to bring CART to their
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full potential in this and other solid cancers. More promising are functional enhancers
that simultaneously co-target various impeding mechanisms. One strategy could be a
target-induced release of a multifunctional cytokine that counteracts immune-suppressive
pathways while enhancing the activity and persistence of CART and recruiting additional
effector cells [45].
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Appendix A

Mass spectrometric quantification of human HLA-G was attempted as described [46].
Five peptides were selected for target analysis. Not many peptides were suited as markers.
In fact, the most abundant peptide (WAAVVVPSGEEQR) is homologous in at least six
different human proteins, another peptide (DYLALNEDLR) in at least five. They were still
used in the analysis, next to three truly unique peptides for HLA-G as a background check.
Figure A1 shows the respective peptide ion response in the experiment.

In the samples, peptides WAAVVVPSGEEQR and DYLALNEDLR were detected with
confidence and good signal strength (Figure A2), in contrast to the unique peptides of
HLA-G. They were not seen properly, as is exemplarily shown in Figure A3.
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correspond to unique peptides of HLA-G. (b) Response of peptides WAAVVVPSGEEQR and 
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Figure A1. (a) Target peptide ion response in the pseudo multiple reaction monitoring experiment (for details see [46]).
One peptide is identical in six other proteins and is used as a background marker (WAAVVVPSGEEQR). Another peptide
(DYLALNEDLR) partially serves the same purpose. It differs in two amino acids, but the change from leucine to isoleucine
cannot be distinguished by mass spectrometry in five other human proteins as these amino acids have the same residue
mass. The starred peaks correspond to the unique peptides of HLA-G. (b) Response of peptides WAAVVVPSGEEQR and
DYLALNEDLR in reference and an exemplary sample. (c) Response of unique peptide SWTAADTAAQISK in reference and
an exemplary sample.



Cancers 2021, 13, 2857 17 of 20

Appendix B

Cancers 2021, 13, x 17 of 20 
 

 

Appendix B 

 
Figure A2. CRISPR/Cas9 knock-out. (A) Design of single guide RNA sequences. (B) Western Blot analysis of HLA-G 
expression in whole cell lysates of HLA-G1-transduced K562 cells (positive control) and the CRISPR/Cas9-sgRNA-
transduced EwS cell line A4573, following pretreatment with IFN-γ. Wildtype A4573 cells were used as a control. (C) 
Genomic DNA sequence analysis of CRISPR/Cas9-sgRNA 129-transduced EwS cell line A4573 after single cell cloning. 
(D) Western Blot analysis of HLA-G expression in whole cell lysates of HLA-G1-transduced K562 cells (positive control) 
and the CRISPR/Cas9-sgRNA 129-transduced EwS cell line A4573 after single cell cloning, following pretreatment with 
IFN-γ or without. (E) Expression of HLA-G in whole cell lysates of HLA-G1 transduced K562 cells (positive control) and 
the CRISPR/Cas9-sgRNA 129-transduced EwS cell line A4573 after single cell cloning, following pretreatment with IFN-γ 
or untreated, using an ELISA for the isoforms HLA-G1 and G5. Wildtype A4573 cells were used as a control. 

  

Figure A2. CRISPR/Cas9 knock-out. (A) Design of single guide RNA sequences. (B) Western Blot analysis of HLA-G ex-
pression in whole cell lysates of HLA-G1-transduced K562 cells (positive control) and the CRISPR/Cas9-sgRNA-transduced
EwS cell line A4573, following pretreatment with IFN-γ. Wildtype A4573 cells were used as a control. (C) Genomic DNA
sequence analysis of CRISPR/Cas9-sgRNA 129-transduced EwS cell line A4573 after single cell cloning. (D) Western
Blot analysis of HLA-G expression in whole cell lysates of HLA-G1-transduced K562 cells (positive control) and the
CRISPR/Cas9-sgRNA 129-transduced EwS cell line A4573 after single cell cloning, following pretreatment with IFN-γ
or without. (E) Expression of HLA-G in whole cell lysates of HLA-G1 transduced K562 cells (positive control) and the
CRISPR/Cas9-sgRNA 129-transduced EwS cell line A4573 after single cell cloning, following pretreatment with IFN-γ or
untreated, using an ELISA for the isoforms HLA-G1 and G5. Wildtype A4573 cells were used as a control.
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Figure A3. In vivo experiment used to provide tumor samples for HLA-E analysis. (A) Schematic of 
the in vivo experiment and timeline. (B) Percent (%) tumor volume. Murine blood, spleen, and EwS 
xenografts were obtained from previous mouse experiments approved by the animal care 
committee of the local government (LANUV, Recklinghausen, Az. 84-02.04.2014.A160). TC-71 cells 
had been injected subcutaneously into 8–12 week-old NOD scid gamma (NSG) mice. Upon a tumor 
volume of 50–100mm3, 3 doses of 5 × 106 gene-modified, GD2.BBζ T cells were injected 
intratumorally over a period of 2 weeks. Control mice received analogous injections of non-
transduced T cells. Mice were sacrificed either earlier according to the score sheets or after a 
maximum of 28 days, post tumor injection. The analytic endpoint was relative tumor growth (in %), 
and was determined by dividing the tumor volume (mm3) at the time of analysis by the initial tumor 
volume on day 1 (mm3) (×100). For histological analysis, tumor tissue had been preserved. The 
experiment was not designed and performed for the direct purpose of the current research question. 
Outcome analysis of this in vivo experiment is not a subject of the current report. 
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Figure A3. In vivo experiment used to provide tumor samples for HLA-E analysis. (A) Schematic of the in vivo experiment
and timeline. (B) Percent (%) tumor volume. Murine blood, spleen, and EwS xenografts were obtained from previous
mouse experiments approved by the animal care committee of the local government (LANUV, Recklinghausen, Az. 84-
02.04.2014.A160). TC-71 cells had been injected subcutaneously into 8–12 week-old NOD scid gamma (NSG) mice. Upon
a tumor volume of 50–100 mm3, 3 doses of 5 × 106 gene-modified, GD2.BBζ T cells were injected intratumorally over a
period of 2 weeks. Control mice received analogous injections of non-transduced T cells. Mice were sacrificed either earlier
according to the score sheets or after a maximum of 28 days, post tumor injection. The analytic endpoint was relative tumor
growth (in %), and was determined by dividing the tumor volume (mm3) at the time of analysis by the initial tumor volume
on day 1 (mm3) (×100). For histological analysis, tumor tissue had been preserved. The experiment was not designed and
performed for the direct purpose of the current research question. Outcome analysis of this in vivo experiment is not a
subject of the current report.
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