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L-proline: a highly effective 
cryoprotectant for mouse oocyte 
vitrification
Lu Zhang1,2, Xu Xue3, Jie Yan1,2, Li-Ying Yan1,4, Xiao-Hu Jin1,2, Xiao-Hui Zhu1,2, Zhi-Zhu He3, 
Jing Liu2,5, Rong Li1,4 & Jie Qiao1,4

Recent studies have shown that L-proline is a natural osmoprotectant and an antioxidant to protect 
cells from injuries such as that caused by freezing and thawing in many species including plant, ram 
sperm and human endothelial cells. Nevertheless, this nontoxic cryoprotectant has not yet been 
applied to mammalian oocyte vitrification. In this study we evaluated the efficiency and safety of the 
new cryoprotectant in oocyte vitrification. The results indicated that L-proline improves the survival 
rate of vitrified oocytes, protects mitochondrial functions and could be applied as a new cryoprotectant 
in mouse oocyte vitrification.

Since the first baby was born after oocyte vitrification in 19991, approximately 4,000 live births have been obtained 
by vitrification. This technique provides an effective option to preserve reproductivity for women with cancer, 
infertile women, or even fertile women at risk of age-induced fertility decline. Vitrification is characterized by 
an ultra-rapid cooling time and a glass-like formation to avoid forming ice crystals by high cryoprotectant con-
centration2. The standard vitrification solution consists of 15% (v/v) ethylene glycol (EG), 15% (v/v) dimethy 
sulphoxide (DMSO), 0.5 mol/L sucrose medium, 20% fetal bovine serum (FBS) and phosphate-buffered saline 
(PBS)3. Although this protocol is currently widely used for routine oocyte cryopreservation and was recom-
mended by American Society of Reproductive Medicine (ASRM) in 2012, the clinical outcome could be fur-
ther improved because of lower pregnancy and live birth rates resulting from decreased survival rates and poor 
embryo development. This poor clinical outcome is closely related to osmotic stress, oxidative stress and high 
concentrations of cryoprotective agents (CPA) such as DMSO that can injure oocyte during freezing and thaw-
ing4. Although vitrification imparts less stress to the cells, trauma to the human oocytes cannot be avoided. 
During oocyte dehydration-rehydration cycles, cellular alterations associated with osmotic stress may damage 
mitochondrial metabolism5. Even EG, a less toxic CPA, showed cytotoxic effects on cell viability and development 
in a dose-dependent manner. As a consequence, it would be critical to minimize the cryogenic injury and the 
toxicity of CPAs without decreasing the efficiency of vitrification solution.

L-Proline, a natural amino acid, is an ideal candidate for natural cryoprotection since it has a very high sol-
ubility, a neutral pH, exerts a high osmotic pressure, is nontoxic at high concentrations, and is classified as an 
osmoprotectant and an antioxidant. L-Proline was initially found accumulating in plants in response to environ-
mental stress including freezing temperatures. L-Proline protectes yeast and fly larva against the freeze stress, and 
the freeze tolerance is enhanced with the elevated levels of proline6. Because of its role in freeze tolerance in vivo, 
L-Proline was introduced into the in vitro cryopreservation in many species such as plant, yeast, fly, ram, and 
human7–9. For example, ram sperm, human mesenchymal stem cells and human endothelial cells were success-
fully frozen under a low level of L-proline7–9. Nevertheless, this nontoxic cryoprotectant has not yet been applied 
to mammalian oocyte vitrification.

We aim in this study to evaluate the vitrification efficiency of L-Proline combined with DMSO and EG in 
mouse oocytes.

1Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 
No. 49 North Hua Yuan Road, Hai Dian District, Beijing 100191, China. 2Beijing Key Laboratory of Reproductive 
Endocrinology and Assisted Reproduction, Beijing 100191, China. 3Beijing Key Lab of Cryo-Biomedical Engineering 
and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 
China. 4Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China. 5Department of 
Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China. Correspondence and requests for 
materials should be addressed to J.Q. (email: jie.qiao@263.net)

received: 29 February 2016

accepted: 11 April 2016

Published: 14 July 2016

OPEN

mailto:jie.qiao@263.net


www.nature.com/scientificreports/

2Scientific Reports | 6:26326 | DOI: 10.1038/srep26326

Results
L-proline improves the survival rate of oocytes after vitrification and thawing.  At the beginning, 
we selected 2 mol/L as the experimental concentration of L-proline, which was optimized for osmolarity. To assess 
the efficiency of L-proline, we compared two groups: the proline-free group (control) and the proline group 1 
(add 2 mol/L L-proline to the control group). To further reduce the toxicity of vitrification solution, we investi-
gated another group: the proline group 2 (consisting of 2 mol/L L-proline and low levels of DMSO and EG). In 
the preliminary experiment, the survival rate of thawed oocytes vitrified in 2 mol/L L-proline with 7.5% DMSO 
and 10% EG was significantly higher than that of 2 mol/L L-proline with other lower concentrations of DMSO 
and EG, when the concentrations of DMSO and EG were decreased gradually. That is why we selected 2 mol/L 
L-proline with 7.5% DMSO and 10% EG as the experimental proline group 2.

The survival rates of vitrified-warming oocytes in the proline-containing groups (544 oocytes in proline group 
1 and 553 oocytes in proline group 2) were significantly higher than that of the proline-free group (630 oocytes) 
(94.7%, 93.7% vs. 88.4%, P <​ 0.05) (Table 1).

L-proline maintains the normal spindle configuration and protects oocytes from mitochon-
drial damage.  After 2 hours of incubation at 37 °C, the majority of fresh oocytes and thawed oocytes in the 
proline-free group and the proline-containing groups maintained normal meiotic spindle morphology and chro-
mosome alignment (93.46%, 87.43%, 91.30%, 88.96%, respectively, P >​ 0.05) (Fig. 1A,B).

Furthermore, we detected the Inner Mitochondrial Membrane Potential (MMP) of the vitrified-thawing 
oocytes and the unvitrified oocytes by JC-1 staining. Lower ratio of red/green fluorescence intensity represented 
lower MMP and more serious mitochondrial damage10. In Fig. 2, the ratios of red/green optical density captured 
from the proline-containing groups were much higher than that of the proline-free control group (P <​ 0.05), but 
similar to the fresh group (P >​ 0.05) (Fig. 2A,B). It indicated that the MMP of non-proline-vitrified oocytes was 
significantly lower than that of unvitrified oocytes. L-proline protected the MMP in the oocytes against vitrified 
mitochondrial injury.

Intracellular Reactive Oxygen Species (ROS) is a sensitive index to evaluate the oxidative stress in oocytes. 
The relative ratio of DCFH-DA fluorescence intensities of the vitrified groups were much higher than that 
of the fresh oocytes (P <​ 0.05, Fig. 3A,B). But in contrast to the proline-free group, it was much lower in the 
proline-containing groups (P <​ 0.05, Fig. 3A,B).

For apoptosis analysis, we detected by TUNEL assay. As presented in Fig. 4, the relative ratio of TUNEL 
fluorescence intensities in the proline-vitrified oocytes were similar to that of the non-proline-vitrified oocytes 
(P >​ 0.05, Fig. 4A,B). There was no significant difference between the vitrified group and the unvitrified group 
(P >​ 0.05, Fig. 4A,B).

L-proline does not affect the potential of early embryonic development in vitro and in vivo.  We 
observed the embryonic development derived from the vitrified-thawing oocytes. After ICSI, the two pronu-
clei rates of the proline-containing groups were equivalent to that of the proline-free group and the fresh group 
(P >​ 0.05, Table 1). The ICSI rate, two-cell formation rate and blastocyst rate of the proline-containing groups 
were similar tothe proline-free group, but less than that of the fresh group (Table 1).

The implantation rate and the live birth rate of the proline-containing groups were consistent with that of the 
proline-free group, but lower than that of the fresh group (Table 1). There was no congenital malformation among 
the live births of the proline-containing groups, the proline-free group and the fresh group. The birth weight, 
body length and the sex ratio of fetuses have no significant differences between the vitrified groups and the fresh 
group (Table 1).

Discussion
First of all, it is the first time to apply L-proline in mouse oocyte vitrification. In our study, L-proline makes higher 
survival rate and better mitochondrial function in vitrified-thawing oocytes of proline group 1 in contrast with 

Fresh group Proline-free control Proline group 1 Proline group 2

Survival rate %(n/n) – 88.4 (557/630)a 94.7 (515/544)b 93.7 (518/553)b

ICSI rate %(n/n) 88.2 (157/178)a 79.0 (184/233)b 80.1 (173/216)b 81.8 (175/214)b

Two pronuclei rate (per oocyte) %(n/n) 94.9 (149/157)a 92.4 (170/184)a 93.6 (162/173)a 93.7 (164/175)a

Two-cell rate (per oocyte) %(n/n) 90.4 (142/157)a 76.1 (140/184)b 80.3 (139/173)b 79.4 (139/175)b

Blastocyst rate (per oocyte) %(n/n) 75.8 (72/95)a 51.4 (54/105)b 54.1 (53/98)b 52.4 (54/103)b

Implantation rate (per two-cell 
transferred) %(n/n) 80 (32/40)a 52.5 (21/40)b 57.5 (23/40)b 55 (22/40)b

Live birth rate (per two-cell 
transferred) %(n/n) 60.7 (34/56)a 38.3 (23/60)b 40 (24/60)b 38.6 (22/57)b

Healthy live birth rate %(n/n) 100 (34/34)a 100 (23/23)a 100 (24/24)a 100 (22/22)a

Birth weight (1 day old) (g) 1.70 ±​ 0.02a 1.77 ±​ 0.02a 1.74 ±​ 0.02a 1.76 ±​ 0.01a

Birth body length (1 day old) (cm) 2.85 ±​ 0.02a 2.91 ±​ 0.02a 2.85 ±​ 0.02a 2.90 ±​ 0.02a

Sex ratio (female/male) 19/15a 15/8a 9/15a 10/12a

Table 1.   The development of ICSI oocytes after vitrification and thawing in mouse. Note: abValues with 
different superscripts in the same line are significantly different (P <​ 0.05). The data is shown as Means ±​ SE.
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control. One of the explanations is that L-proline is classified as an osmoprotectant and an antioxidant. As been 
reported, human oocytes injury caused by osmotic stress may be associated with the abnormal mitochondrial 
membrane structures during dehydration-rehydration cycles11,12. In addition, the process of freezing and thaw-
ing increases production of ROS which may induce release of cytochrome C and other apoptogenic factors from 
cell mitochondria, and it could eventually lead to programmed cell death12. However, L-proline can reduce the 
excessive ROS to prevent oocytes from oxidative stress damage. An ROS-scavenging mechanism that is important 
to proline stress protection is the facile reaction of proline with singlet oxygen13. Pyrrolidine, which forms the 
5-membered ring of proline, has a low ionization potential that effectively quenches singlet oxygen most likely 
through a charge transfer mechanism in which molecular oxygen returns to the ground triplet state14. In plant 
cells, accumulate proline is considered to be a positive index for osmotic stress resistance15, and a ROS scavenger 
to reduce the potential for oxidative damage.

Secondly, L-proline is safe and nontoxic and could be used in oocyte vitrifcation. It improves the mitochon-
drial function (Figs 2–4) and has no adverse effects on the spindle configuration (Fig. 1) and the in vitro and in 
vivo embryonic development (Table 1). Previous reports showed that mitochondria from freezing-thawed human 
oocytes possess decreased matrix electron density or have ruptures of the outer and inner membranes caused 
by cryopreservation16, which can lead to the malformation during embryonic development17. Freezing proce-
dures can also directly result in DNA fragmentation and cell degeneration via apoptosis in MII bovine ocytes18. 
Therefore, we choose the parameters of spindle recovery, mitochondrial function and embryonic development 
for safety assessment.

Basically, L-proline is natural and nontoxic at high concentrations. And excessive L-proline inside the cell 
could be catabolized in mitochondria by degradation pathways19. The first step is the oxidation of proline to ∆​
1-pyrroline-carboxylate (P5C)19. Then the P5C generated is converted to glutamate20. Unnecessary L-proline is 
metabolized in this physiologic way. Furthermore, due to its action as a singlet oxygen quencher, proline may 
help reduce oxidative damage to vital cellular macromolecules and consequently stabilize proteins21, DNA22 and 
membranes23 to maintain normal meiotic spindle morphology, avoid apoptosis and protect mitochondrial mem-
brane. Consistently, data from in vitro and in vivo embryonic development (Table 1), demonstrate that L-proline 
has no adverse effects on embryo development after vitrification and thawing. Although no obvious differences 
were observed in post-fertilization development between the proline-containing and proline-free group on the 

Figure 1.  Analysis of spindle configuration of oocytes in fresh control (a–c) and vitrified-thawing oocytes 
in proline-free control (d–f), proline group 1 (g–i) and proline group 2 (j–l) 2 hours after thawing. Panel 
A: The immunofluorescence photographs of meiotic spindle morphology and chromosome alignment in these 
groups. Green color: FITC-α​-tubulin; Blue color: Hoechst33342-chromosome. Panel B: Means ±​ SE of the 
spindle recovery rate in these groups. N: The number of oocytes in each group.
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surface, there might be some phenotypic and epigenetic changes in the offspring during later long-term develop-
ment. Indeed, L-proline improved the MMP and decreased the ROS in the mouse oocytes after vitrification and 
thawing. In the later and long-term development study, we prepare to investigate the neurobehavioral manifesta-
tion, epigenetic modification and reproductive alteration of those offspring derived from proline-vitrified oocyte.

Thirdly, we optimize a new vitrification solution with L-proline and lower DMSO and EG (proline group 2). 
It has already been confirmed that L-proline is a nontoxic cryoprotectant and could be applied in mouse oocyte 
vitrification earlier (proline group 1). In order to reduce the total toxicity of vitrification solution, we combine 
L-proline with low concentration of DMSO and EG. It was proved that high concentrations of DMSO and EG 
were toxic to oocyte viability and development during freezing and thawing4. In addition, both of external and 
internal releases of calcium indicated that DMSO may directly impair the abilities of mitochondria and endoplas-
mic reticulum24. It is critical to minimize the concentrations and the toxicities of DMSO and EG without decreas-
ing the efficiency of vitrification solution. As is shown in Table 1, the survival rate of vitrified oocyte in proline 
group 2 with lower DMSO and EG is much higher than that of control (proline-free group). Interestingly, lower 
levels of DMSO and EG are used in proline-containing group (proline group 2), less harmful damage to mito-
chondria is found (Figs 2–4). More than that, there are no adverse effects on spindle configuration and embryonic 
development in proline group 2 (Fig. 1, Table 1). It indicates that L-proline combining with low concentrations of 
DMSO and EG could be a new vitrification solution appropriately for mouse oocyte vitrification.

In conclusion, L-proline can be applied as a new cryoprotectant initially in mouse oocyte vitrification. And a 
new vitrification solution consisting of 2 mol/L L-proline, 10% EG, 7.5% DMSO and 0.5 mol/L sucrose medium 
with hypotoxicity is more suitable for mouse oocyte vitrification. More research is required to determine the cry-
oprotective effects of L-proline in other mammalian species like human oocytes and to determine the phenotypic 
changes of the offsprings from the vitrified mammalian oocytes.

Methods
Oocytes collection.  Female B6D2F1 mice (Vital River Laboratory Animal Technology Co. Ltd., Beijing, 
China) were maintained according to the Chinese National Standard (GB14925–2001). Denuded metaphase II 
(MII) oocytes were obtained from super-ovulated mice. All procedures involving mice were operated under strict 
criteria on the basis of the Guide for Care and Use of Laboratory Animals of Peking University, and the ani-
mal experiments were approved by the Institutional Animal Welfare and Ethics Committee of Peking University  
(No. LA2012-12).

Vitrification solution.  MII oocytes were divided into four groups: fresh group (without vitrification), 
proline-free control group (vitrified-thawed in solution: 15% EG (Sigma, cat.no. 293237, USA), 15% DMSO 

Figure 2.  MMP assessment of oocytes in fresh control (a–d) and vitrified-thawing oocytes in proline-free 
control (e–h), proline group 1 (i–l) and proline group 2 (m–p). Panel A: The fluorescence photographs of 
MMP detected by JC-1 in these groups. Red color: Hyperpolarized mitochondria (a,e,i,m); Green color: Lower 
MMP (b,f,j,n). Panel B: Comparison of the relative ratios of red/green fluorescence intensities stained by JC-1 
in these groups. *#Values with different superscripts are significantly different (Mean ±​ SE, P <​ 0.05). No 
differences between values with the same superscript. N: The number of oocytes in each group.
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(Sigma, cat.no.D2650, USA), 0.5 mol/L sucrose medium (Sigma, cat.no.V900116, USA) and 20% FBS (Thermo 
Fisher, cat.no. 10099-141, Australia) in PBS (Thermo Fisher, cat.no. 14190-250, USA)), proline group 1 
(vitrified-thawed in solution: 2 mol/L L-proline (Sigma, cat.no.P5607, USA), 15% EG, 15% DMSO, 0.5 mol/L 
sucrose medium and 20% FBS in PBS), proline group 2 (vitrified-thawed in solution: 2 mol/L L-proline, 10% EG, 
7.5% DMSO, 0.5 mol/L sucrose medium and 20% FBS in PBS).

Oocyte vitrification and thawing.  Mature oocytes were vitrified by a standard procedure. Briefly, oocytes 
were equilibrated in a 7.5% EG plus 7.5% DMSO (v/v) solution for 5 minutes at room temperature. Then oocytes 
were exposed to the vitrification solutions respectively for less than 1 minute at 25 °C and immediately loaded on 
sterile iVitri straw (Reprobiotech Corp., cat.no.RBC-S-008, USA). And the iVitri straws were plunged directly 
into liquid nitrogen and stored at −​190 °C for at least 1 month.

Thawing was carried out by five steps using sucrose solutions in PBS containing 20% FBS at room tempera-
ture. First the oocytes were expelled from the straws into 1.0 mol/L sucrose for 3 minutes, then successively trans-
ferred into 0.5 mol/L, 0.25 mol/L and 0 mol/L sucrose medium each for 3 minutes, and finally the thawed oocytes 
were cultured in human tubal fluid (HTF) (LifeGlobal, cat.no.LGGF-100, Belgium) medium at 37 °C in 5% CO2 
of a humidified air, and assessed for survival rate. After incubation for 2 hours, the oocytes were ready for further 
research. The oocyte survival was characterized by the morphological appearance of membrane integrity and dis-
coloration of the ooplasm25. And the survival rate of the thawed oocytes was assessed 2 hours after incubation25. 
The survival oocytes were used for spindle analysis, mitochondrial analysis and embryo development assessment.

Immunofluorescence.  For spindle analysis, vitrified-thawing oocytes were detected by α​-tubulin-FITC 
antibody (diluted 1:100 in PBS; Sigma; cat.no.F2168). Images were captured by a confocal laser scanning micro-
scope (LSM710 Carl Zeiss, Oberkochen, Germany).

Inner mitochondrial membrane potential (MMP) and Reactive Oxygen Species (ROS) staining.  
To evaluate MMP and ROS, fresh and the post-thaw oocytes were detected by JC-1 fluorochrome (Invitrogen, 

Figure 3.  ROS assessment of oocytes in fresh control (a–c) and vitrified-thawing oocytes in proline-free 
control (d–f), proline group 1 (g–i) and proline group 2 (j–l). Panel A: The fluorescence photographs of ROS 
detected by DCFH-DA in these groups. Green color: ROS (a,d,g,j). Panel B: Comparison of the relative ratios 
of ROS fluorescence intensities in these groups. *#$Values with different superscripts are significantly different 
(Mean ±​ SE, P <​ 0.05). No differences between values with the same superscript. N: The number of oocytes in 
each group.
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cat.no.M34152, Carlsbad, CA) or DCFH-DA (Nanjing Jiancheng Bioengineering Institute, cat.no.E004, Nanjing, 
China).

TUNEL Apoptosis Assay.  For Terminal Deoxynucleotideyl Transferase-mediated dUTP Nick-End Labeling 
(TUNEL), fresh and warmed oocytes were applied by TUNEL kit (Beyotime Biotechnology, cat.no.C1086, 
Shanghai, China).

Intracytoplasmic sperm injection (ICSI).  Before ICSI, the sperm suspensions, retrieved from the 
cauda epididymis of 10-week-old ICR male mice (Vital River Laboratory Animal Technology Co. Ltd., Beijing, 
China), were capacitated first. Fresh and vitrified-thawing oocytes were microinjected using a Piezo drill (PMM 
Controller, Prime Tech, Ibaraki, Japan) as described26. The ICSI rate referred to the percentage of survival oocytes 
after ICSI. Then fertilized oocytes with a second polar body or two pronuclei (2PN) were removed and cultured 
in GM media (lifeGlobal, cat.no.LGGG-50, Belgium) to two-cell stage under 5% CO2 in humidified air at 37 °C. 
Part of two-cell embryos were cultured in vitro to blastocyst stage and the rests were used for embryo transfer for 
in vivo development.

Embryo transfer.  Pseudopregnant ICR female mice were mated with vasectomized ICR male mice. Then 
two-cell embryos were transferred into the oviduct of pseudopregnant ICR female 0.5 day post-coitus. Some mice 
delivered naturally and the others delivered by cesarean section to analyze embryo implantation on day 19.5. Each 
fetus was examined for macroscopic malformations, and measured by weight and body length at birth.

Figure 4.  Apoptosis assessment of oocytes in fresh control (a–c) and vitrified-thawing oocytes in proline-
free control (d–f), proline group 1 (g–i) and proline group 2 (j–l). Panel A: The fluorescence photographs 
of apoptosis detected by TUNEL assay in these groups. Green color: TUNEL staining positive (a,d,g,j,m). The 
bottom panel (m–o) is the positive control. Panel B: Comparison of the relative ratios of TUNEL fluorescence 
intensities in these groups.
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Assessment of implantation and post-implantation development.  Some of the pregnant female 
mice were sacrificed by cervical dislocation at 19.5 day post-coitus. The uterine contents were examined. The 
number of live births, stillborns and early and late resorptions in each uterine horn was recorded. The implanta-
tion rate was calculated as: total number of live births, stillborns and resorptions/number of embryos transferred. 
The live birth rate represented the total number of live birth by vaginal delivery and cesarean delivery/the total 
number of two-cell embryos transferred.

In vitro embryo culture.  Fertilized zygotes by ICSI were cultured in GM media until blastocyst stage under 
5% CO2 in humidified air at 37 °C. Two pronuclei rate was recorded 12 hours after culture, two-cell rate was 
recorded on day 1 of culture and blastocyst rate was recorded on day 4 of culture.

Statistical analysis.  Differences among groups were analyzed with Chi square test for categorical data and 
ANOVA for numeric data using SPSS 20.0 software. Results were expressed as Mean ±​ SE. P <​ 0.05 was consid-
ered statistically significant. For all results, the examples shown are representative of at least three replications.
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