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Abstract 

Adequate oxygen supply is essential for maintaining the body's normal physiological function. In chronic inflammatory conditions 
such as inflammatory bowel disease (IBD), insufficient oxygen reaching the intestine triggers the regulatory system in response to 
environmental changes. However, the pathogenesis of IBD is still under investigation. Recent research has highlighted the significant 
role of hypoxia in IBD, particularly the involvement of hypoxia-inducible factors (HIF) and their regulatory mechanisms, making 
them promising therapeutic targets for IBD. This review will delve into the role of hypoxia, HIF, and the associated hypoxia- 
inflammatory microenvironment in the context of IBD. Potential interventions for addressing these challenging gastrointestinal 
inflammatory diseases will also be discussed within this framework.
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Introduction
Crohn's disease (CD) is characterized by transmural inflamma-
tion and skip lesions, which are distributed from the mouth to 
the anus, whereas ulcerative colitis (UC) is generally a luminal in-
flammatory disease with continuous inflammation limited to the 
colon [1]. Although the etiology of inflammatory bowel disease 
(IBD) remains unclear, the most widely held hypothesis is that 
exaggerated aggressive acquired (T-cell) immune responses to a 
subset of commensal enteric bacteria occur in genetically sus-
ceptible hosts [2]. IBD is a complex disease characterized by per-
sistent infection, dysbiosis (an abnormal ratio of beneficial to 
detrimental commensal microbial agents), defective mucosal 
barrier function, defective microbial clearance, and aberrant im-
munoregulation in the hypoxic-inflammatory gastrointestinal 
microenvironment. Hypoxia is a pathological process in which 
the supply of oxygen to tissues in various parts of the body is in-
sufficient or not fully utilized, resulting in abnormal tissue me-
tabolism and impaired function. Hypoxia-inducible factors (HIFs) 
are core regulators of the body's adaptation to a hypoxic environ-
ment and are pivotal for maintaining homeostasis in the body's 
internal environment [3]. Many studies have shown that hypoxia 
is associated with numerous diseases, such as cancer [4], chronic 
kidney disease [5], coronary heart disease [6], and diabetes [7]. An 
increasing amount of evidence suggests that hypoxia exacerbates 

intestinal inflammatory damage and that HIFs play an important 
role in this pathological process [8]. Here, we discussed the roles 
of hypoxia and HIFs in IBD and suggested new approaches for the 
treatment of IBD.

Hypoxia and IBD
Hypoxia is defined as a reduction in O2 tension below critical val-
ues. Ischemia results from insufficient arterial perfusion of tissues, 
resulting in hypoxia, decreased oxidative phosphorylation, and ATP 
depletion. Hypoxia/ischemia is dangerous; therefore, several path-
ways are critical for the cell/tissue response to hypoxia/ischemia, 
including the generation of reactive oxygen species (ROS) [9], dis-
ruption of Ca2þ homeostasis [10], hypoxia-inducible factors [11], un-
folded protein response following endoplasmic reticulum stress 
[12], and inflammation (at the organ level).

ROS are highly bioactive and participate in several biochemical 
processes. They act as secondary messengers in signal transduction 
and gene regulation [13]. When ROS levels exceed the cellular anti-
oxidant capacity, oxidative stress is induced. ROS rapidly increases 
following hypoxia, mainly due to insufficient oxygen in the mito-
chondria to accept the available electrons [14]. ROS mediates 
cell damage, activates 5’ adenosine monophosphate-activated 
protein kinase and pancreatic endoplasmic reticulum kinase-like 
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endoplasmic reticulum kinase, and increases the levels of hypoxia- 
inducible factor (HIF)-1 and nuclear factor κB (NF-κB) [15]. Activate 
5’ adenosine monophosphate-activated protein kinase plays a role 
in glucose uptake and glycolysis and activates HIF-1; HIF-1 plays a 
role in transcription, translation, and stability [16]; NF-κB induces 
cytokines, chemokines, and HIF-1 [17]; and protein kinase RNA-like 
ER kinase induces unfolded protein response and inhibits protein 
synthesis [18]. An increase in free cytosolic Ca2þ is a general media-
tor of cell death. Hypoxia is associated with the influx of extracellu-
lar Ca2þ. Increased cytosolic Ca2þ in hypoxia is caused by increased 
influx, release of Ca2þ in mitochondria, and decreased Ca2þ

efflux secondary to ATP depletion. A critical link exists between 
ROS generation and Ca2þ. In mitochondria, Ca2þ accumulation is 
associated with ROS generation. In addition, AMP accumulates 
when ATP is depleted and is an early and sensitive indicator of met-
abolic deficiency.

Inhibition of protein synthesis is a common adaptation 
employed by hypoxic cells to survive O2/ATP depletion [19]. The 
initial decrease is mediated by activation of the unfolded protein 
response, a set of pathways activated in response to endoplasmic 
reticulum stress [12, 20]. Unfolded protein response is activated 
by Ca2þ depletion in the endoplasmic reticulum or by the deple-
tion of ATP. Activation of the endoplasmic reticulum transmem-
brane protein pancreatic endoplasmic reticulum kinase-like 
endoplasmic reticulum kinase is mediated by ROS. Hypoxia also 
inhibits the mechanistic target of rapamycin activation, thereby 
halting protein synthesis [21]. Due to increased metabolic activity 
and disrupted perfusion at sites of inflammation, hypoxia also 
contributes to inflammation through the regulation of gene ex-
pression via key oxygen-sensitive transcriptional regulators, in-
cluding HIF and NF-κB [22]. It has been suggested that the effects 
of NF-κB during hypoxia induce a number of cytokines and che-
mokines and promote the adhesion of inflammatory cells [23]. 
Peroxisome proliferator-activated receptors (PPARs), including 
PPARα, PPARβ/δ, and PPARγ, are nuclear hormone receptor super-
family members [24, 25]. PPARα and PPARγ agonists inhibit iNOS 
and TNF-α, while negatively regulating NF-κB [26].

The intestinal mucosa actively participates as an innate im-
mune sensor against microbial pathogens and commensal organ-
isms. It undergoes multiple large fluctuations in blood perfusion 
and metabolism daily with a dynamic oxygenation profile [27]. 
Because of the high energy requirements of the gastrointestinal 
tract and the integral role of the epithelium in maintaining intes-
tinal homeostasis, these cells have evolved many molecular 
mechanisms to match the challenging metabolic conditions [28, 
29]. Furthermore, the intestinal epithelium is remarkably resis-
tant to hypoxia, and the lower levels of oxygen within this cell 
layer can be altered to regulate mucosal integrity and barrier 
function. During active mucosal inflammation, nutrients and lo-
cal oxygen are rapidly depleted, resulting in hypoxia, hypoglyce-
mia, lactate accumulation, and acidosis [30]. Gut bacteria are 
critical for intestinal immunity. IL-22 is an important anti- 
inflammatory cytokine in the gut. Yang et al. [31] found that 
microbiota-derived short-chain fatty acids promote IL-22 produc-
tion to maintain intestinal homeostasis. Another study reported 
that intestinal ischemia/reperfusion injury induces gut microbial 
alterations, such as an increase in the relative abundance of 
Bacteroidetes and Firmicutes, leading to epithelial damage [32]. It 
has recently been shown that melatonin can alleviate chronic in-
termittent hypoxia-induced intestinal barrier dysfunction by reg-
ulating flora dysbiosis [33].

Inflammatory mucosal lesions observed in mouse models of 
colitis are highly hypoxic or anoxic. Moreover, additional data 

indicate that microvascular deficits in inflammatory bowel dis-
ease (IBD) may cause mucosal hypoxia [34]. Based on available 
evidence, integration of intestinal epithelial and mucosal im-
mune cells within the hypoxic inflammatory microenvironment, 
and the effect of hypoxia and HIF signaling on immune cell me-
tabolism and effector function in IBD seem to be probable mech-
anisms [35, 36]. ROS, nitric oxide (NO), NF-κB, and cytokines in 
immune cell and microenvironment are also major players 
[37–39].

HIF-transcriptional regulators in response to 
hypoxia in IBD
Hypoxia-inducible factor (HIF) is a member of the Per-ARNT-Sim 
family of basic helix-loop-helix transcription factors that bind to 
hypoxia response elements at target gene loci under hypoxic 
conditions [40]. They are heterodimers, consisting of HIF-α (hyp-
oxia-inducible α component) and HIF-β (constitutive subunit). 
The stabilization of the α-subunit is regulated by a family of 
oxygen and iron-dependent prolyl hydroxylases and asparaginyl 
hydroxylase [41, 42]. Three α-subunits have been identified and 
characterized: HIF-1α, HIF-2α, and HIF-3α [43]. Although there is 
a high level of conserved sequence homology between HIF-1α 
and HIF-2α, HIF-1 and HIF-2 have non-redundant functions in ge-
netic mouse models, despite their concurrent expression in 
many cell types, including intestinal epithelial cells [44]. For ex-
ample, transcriptional regulation of genes encoding glycolytic 
enzymes appears to be more specifically mediated by HIF-1 [45], 
whereas HIF-2 selectively regulates the gene expression of fac-
tors involved in iron homeostasis and early erythropoiesis [46].

HIF has a protective role in promoting intestinal 
epithelial barrier function in IBD
HIF-1 is expressed focally (epithelial cells, stromal fibroblasts, 
and myocytes) in both UC and CD, whereas HIF-2α is expressed 
focally in UC and diffusely in CD. The role of hypoxia in the path-
ogenesis of UC is different from that in CD. Crawling fat is a spe-
cific feature of CD. Inhibition of HIF-1α was found to alleviate 
adipose tissue fibrosis in mice models of CD; however, the exact 
mechanism is not clear [47]. It has also been reported that the 
deleterious effects of hypoxia on T helper 17 cells (Th17) in CD 
can be ameliorated by inhibiting HIF-1α [48]. However, it has also 
been shown that hypoxia reduces intestinal inflammation in CD 
by inhibiting the mechanistic target of the rapamycin/NLRP3 
pathway and promoting autophagy [49]. A recent study showed 
that hypoxia enhances the pathogenicity of Th1 and Th17 cells 
and increases intestinal inflammation in mice models of UC [50]. 
Xue et al. [51] discovered that vitamin D signaling prevents colitis 
by inhibiting HIF-1 activation in colonic epithelial cells. In con-
clusion, hypoxia appears to have two opposite effects, detrimen-
tal or protective, depending on the circumstances. However, for 
the time being, hypoxia is considered the most damaging ele-
ment. Hypoxia-inducible factors play various roles in UC and CD 
owing to their distinct pathogenic characteristics.

HIF-regulated signaling promotes overall tissue integrity, 
influencing functions that range from increased mucin produc-
tion [52] by intestinal trefoil factor [53], to xenobiotic clearance 
by P-glycoprotein, to nucleotide metabolism by 5’-ectonucleoti-
dase (CD73) [54], and nucleotide signaling through the adenosine 
A2B receptor [55].

HIF-1 induces the integrin β1 subunit, which regulates fibro-
blast contraction, epithelial migration, and mediates restoration 
of the damaged mucosal barrier [56]. Experiments using a chemi-
cal model of colitis revealed that the loss of HIF-1 correlated with 
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more severe clinical symptoms, including intestinal epithelial 
permeability [57]. Nitric oxide synthase inhibitors attenuate 
HIF-1 stabilization and accumulation. The induction of nitric ox-
ide synthase by pro-inflammatory cytokines may contribute to 
the protection of the mucosal barrier (Figure 1). The overall role 
of HIF-1 in epithelial wound responses is complex and variable, 
and is associated with nitric oxide (NO) signaling and pre-existing 
O2 conditions. HIF-2α regulates duodenal iron uptake through 
the apical iron uptake pathway, via discrete regulation of 
Duodenal cytochrome b (Dcytb) and divalent metal transporter 1 
(DMT1), rather than via basolateral iron transport [58].

HIF regulates inflammatory response of immune 
cells in IBD by nitric oxide
Naïve T cells activated by antigen-presenting cells can be differ-
entiated into at least four major types: Th1, Th2, Th17, and in-
ducible regulatory T cells. HIF-1 is associated with Th1, and 
Th17, whereas HIF-2 is associated with Th2 and regulatory T cells 
(Figure 2). Increased synthesis of NO by the induction and activa-
tion of nitric oxide synthase is a common hallmark of inflamma-
tory diseases, including IBD.

Nitric oxide (NO) is a versatile mediator of inflammatory im-
mune responses. Owing to its considerable similarities to O2, NO 
also interferes with O2 distribution, and senses and regulates the 
HIF downstream signaling pathways. NO can affect HIF-1 func-
tions at multiple levels through various mechanisms [59]. Many 
studies have indicated that these regulatory networks of NO are 
complex and depend on the local NO concentration, variable 
effects of different NO metabolites or bioactive forms, and oxy-
gen availability. NO can readily react with iron in proteins 
because it can inhibit prolyl hydroxylases by coordinating its 
non-heme Fe2þ and thereby stabilize HIF. NO and related reactive 

nitrogen species are involved in these activation mechanisms. 
Within the range of biological partial arterial oxygen pressure 
(PaO2) (20–70 mmHg), biological NO can be produced by nitric ox-
ide synthase. It reveals that the ability of nitric oxide synthase to 
affect HIF-1 activation is greater during relative normoxic condi-
tions and may be diminished during hypoxia. Under hypoxic con-
ditions, NO readily interacts with cytochrome C oxidase, 
modulates its activity, and decreases O2 consumption [60]. When 
O2 concentrations are low and cytochrome C oxidase levels are 
reduced, competitive binding of NO inhibits cytochrome C oxi-
dase activity, resulting in decreased consumption and redistribu-
tion of cellular O2, leading to increased O2 availability for prolyl 
hydroxylation of HIF-1α.

In addition to NO, it has also been reported that carbon diox-
ide and carbon monoxide modulate the production of hypoxia- 
inducible factors. It has been shown that high carbon dioxide 
concentrations counter-regulate HIF pathway activation by low-
ering intracellular pH and promoting lysosomal degradation of 
the HIF-α subunit [61]. Further, carbon monoxide promotes the 
expression of HIF-1α [62].

HIF-1-mediated inflammatory response in 
myeloid cells
Myeloid cells such as neutrophils and macrophages are recruited 
to inflammatory sites and act as the front line of defense during 
immune responses. Upon arrival at the inflammatory site, they 
facilitate microbial killing through the release of antimicrobial 
peptides and granule proteases, production of reactive oxygen 
species/reactive nitrogen species, and phagocytosis. Through the 
release of pro-inflammatory cytokines [63, 64], macrophages re-
cruit more cells to the inflammatory site and, together with 

Figure 1. Summary diagram of the protective role of HIF-1 in IBD. NO enhances HIF-1 synthesis and hence integrin β1 subunit production in hypoxic 
environments, which regulate fibroblast contraction, and epithelial migration and mediate restitution of the mucosal barrier. HIF-1 ¼ hypoxia- 
inducible factor-1; IBD ¼ Inflammatory bowel diseases; NO ¼ nitric oxide.
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dendritic cells, participate in antigen presentation, which plays 
an important role in connecting innate and adaptive immune 
responses. As mentioned above, inflammatory sites also present 
the additional challenge of hypoxia; therefore, myeloid cells 
recruited to these sites must adapt to survive in hypoxia- 
inflammatory microenvironments.

HIF-1 could widely impact myeloid cell functions [65], includ-
ing glycolysis, recruitment, migration, phagocytosis, cytokine se-
cretion, neutrophil expression of the anti-microbial molecules 
(cathepsin G, cathelicidin-related antimicrobial peptide, and neu-
trophil elastase), and induction of β2 integrin, which promotes 
neutrophil epithelial binding and inhibits neutrophil apoptosis 
(Figure 2). Additionally, dendritic cells play an important role in 
maintaining intestinal immunity and clearing pathogens. In 
patients with IBD, the number of dendritic cells in injured intesti-
nal tissue increases, secreting large amounts of inflammatory 
factors and compromising the intestinal mucosal barrier [66]. 
Fl€uck et al. [67] claimed that HIF-1 promoted gene expression in 
dendritic cells. In mice with dextran sulfate sodium-induced coli-
tis, knocking down HIF-1 in dendritic cells resulted in a consider-
ably greater loss of body weight and more severe intestinal 
inflammation with elevated levels of proinflammatory cytokines 
than in control mice [67]. However, B€acker et al. [68] found that 
the knockdown of myeloid cell HIF-1α ameliorates the acute pa-
thology in dextran sulfate sodium-induced colitis, and reduced 
markers for dendritic cells. I believe that the underlying differen-
ces should be further investigated.

Interaction between HIFs and nitric oxide 
in macrophage
The dynamic crosstalk between nitric oxide (NO) and hypoxia 
signaling has been extensively studied. Recent studies have indi-
cated diverse roles for HIF in macrophage polarization and NO 

homeostasis [69]. M1 macrophages respond primarily to Th1 
cytokines, whereas M2 macrophages respond to Th2 cytokines. 
While induction of HIF-1α by Th1 cytokines was found to mediate 

upregulation of nitric oxide synthase, induction of HIF-2 by Th2 
cytokines was found to mediate upregulation of arginase 

1 (Figure 2).

HIF modulates angiogenesis in IBD
An abnormal microcirculatory system has also been implicated 
in IBD pathogenesis. A high degree of mucosal vascularization 

was found in active IBD, which did not support an obvious link 
between HIF upregulation and prolonged hypoxia of vascular ori-
gin. The pathological relevance of HIF-α overexpression in IBD 

should be examined in relation to the lack of vascular 
endothelial-derived growth factor (VEGF) reactivity; however, 

HIF-1α and HIF-2α are inducers of VEGF gene expression [70]. The 
rather focal expression of HIF-1α in the intestinal mucosal and 
submucosal cells is compatible with the lack of VEGF upregula-

tion. The diffuse expression of HIF-2α by all cellular components 
in Crohn's disease (CD), including the muscular layer and serosa, 

Figure 2. Schematic diagram of the interaction between HIFs and immune cells. M1 macrophages respond primarily to Th1 cytokines, while the 
induction of HIF-1α by Th1 cytokines mediates the upregulation of NOS, resulting in increased NO synthesis. M2 macrophages respond to Th2 
cytokines, while the induction of HIF-2 by Th2 cytokines mediates the upregulation of arginase 1, resulting in decreased NO synthesis. HIF-1 is 
associated with Th1 and Th17; HIF-2 is associated with Th2 and Treg. HIF-1α knockout reduces DC marker CD11c expression, exacerbating intestinal 
damage. HIF-1 could induce β2 integrin, inhibiting neutrophil apoptosis. CD11c, integrin alpha X; DC, dendritic cell; HIF, hypoxia-inducible factor; NO, 
nitric oxide; NOS, nitric oxide synthase; PMN, polymorphonuclear leukocytes; Th1, T-helper 1 cells; Th2, T-helper 2 cells; Th17, T-helper 17 cells; Treg, 
regulatory T cell.
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conforms with an intensively activated HIF-2α, which fails to in-
duce VEGF. Therefore, the disruption of the HIF-2α–VEGF path-
way is probably part of the pathogenesis of CD. Unlike CD, 
overexpression of HIF-2α in UC affects mainly the inflammatory 
component and not the intestinal cell population. Constantly, al-
though low, VEGF production may be essential to maintain tissue 
integrity by regulating the delicate balance between proliferation 
and apoptosis, and is required to facilitate tissue regeneration 
and repair.

In 2014, Bakirtzi et al. [71] found that neurotensin (NT) and its 
receptor (NTR1) were required for colitis-associated neovascula-
rization. NT signaling promotes HIF-1α stabilization, transcrip-
tional activity, and stimulates VEGFα expression. In addition, 
they claimed that NT signaling increases miR-210 expression by 
activating HIF-1α, which plays a crucial role in colitis-induced co-
lonic angiogenesis [72].

Conclusions
The etiologies of IBD are complex and still to be fully elucidated. 
In this review, we aim to establish the axis of the hypoxic- 
inflammatory microenvironment to model the pathogenesis of 
IBD. HIF is known to mediate the hypoxic response. HIF-1α 
reduces intestinal inflammation and does not increase the risk of 
colon cancer. Based on the pivotal role of HIF, targeting HIF has 
become an effective therapeutic strategy for IBD.
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