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Modified Dixon-Based Renal Dynamic Contrast-Enhanced
MRI Facilitates Automated Registration and
Perfusion Analysis

Anneloes de Boer,* Tim Leiner, Eva E. Vink, Peter J. Blankestijn,

and Cornelis A.T. van den Berg

Purpose: Renal dynamic contrast-enhanced (DCE) MRI pro-

vides information on renal perfusion and filtration. However,

clinical implementation is hampered by challenges in postpro-

cessing as a result of misalignment of the kidneys due to res-

piration. We propose to perform automated image registration

using the fat-only images derived from a modified Dixon

reconstruction of a dual-echo acquisition because these pro-

vide consistent contrast over the dynamic series.
Methods: DCE data of 10 hypertensive patients was used. Dual-

echo images were acquired at 1.5T with temporal resolution of

3.9 s during contrast agent injection. Dixon fat, water, and in-

phase and opposed-phase (OP) images were reconstructed.

Postprocessing was automated. Registration was performed both

to fat images and OP images for comparison. Perfusion and filtra-

tion values were extracted from a two-compartment model fit.

Results: Automatic registration to fat images performed better

than automatic registration to OP images with visible contrast

enhancement. Median vertical misalignment of the kidneys

was 14 mm prior to registration, compared to 3 mm and 5 mm

with registration to fat images and OP images, respectively

(P¼0.03). Mean perfusion values and MR-based glomerular

filtration rates (GFR) were 233 6 64 mL/100 mL/min and 60 6

36 mL/minute, respectively, based on fat-registered images.

MR-based GFR correlated with creatinine-based GFR

(P¼0.04) for fat-registered images. For unregistered and OP-

registered images, this correlation was not significant.
Conclusion: Absence of contrast changes on Dixon fat

images improves registration in renal DCE MRI and enables

automated postprocessing, resulting in a more accurate estima-

tion of GFR. Magn Reson Med 80:66–76, 2018. VC 2017 The
Authors Magnetic Resonance in Medicine published by Wiley
Periodicals, Inc. on behalf of International Society for Mag-
netic Resonance in Medicine. This is an open access article
under the terms of the Creative Commons Attribution Non-
Commercial License, which permits use, distribution and

reproduction in any medium, provided the original work is
properly cited and is not used for commercial purposes.
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INTRODUCTION

Dynamic contrast-enhanced (DCE) MRI of the kidneys
provides information on renal perfusion (1) and (single
kidney) glomerular filtration rate ((sk)GFR) (2–4). It can be
used for characterization of renal masses (5–7) and is a
promising noninvasive tool for early detection of renal
transplant rejection (8,9), although the risk of nephrogenic
systemic fibrosis might limit the use of contrast-based MR
techniques in this population. DCE MRI consists of acqui-
sition of a dynamic series of images during injection of a
contrast agent (CA). By fitting a pharmacokinetic model to
the data, quantitative information on renal perfusion and
filtration can be obtained. Although renal DCE MRI is a
growing field of research, implementation in clinical prac-
tice is limited due to challenges in the postprocessing of
data and a lack of standardized protocols. A main postpro-
cessing challenge is misalignment of the kidneys in the
dynamic series due to respiration. This leads to disturban-
ces in the time-intensity curves, which affects the pharma-
cokinetic model fit and therefore leads to errors in the
estimation of perfusion and filtration values (10).

Numerous methods exist to deal with respiratory

motion in the kidneys, with breath holding presumably

the simplest and most intuitive (11). Yet, a single breath

hold limits the length of the time series and requires

cooperation of the patient, which is hardly achievable in

diseased or pediatric populations. Alternatively, artifacts

induced by respiratory motion can be minimized by

respiratory gating (12,13), but the resultant time intervals

are not regular and temporal resolution is reduced.

Therefore, a free-breathing approach with retrospective

motion correction often is preferred. Approaches include

retrospective respiratory gating (5,14), that is, discarding

images acquired during inspiration, and image registra-

tion. Retrospective triggering again limits temporal reso-

lution because images acquired during inspiration are

removed from the dataset. Furthermore, image registra-

tion in DCE MRI is complicated by the large dynamic

range in image contrast over the dynamic series. To

avoid this problem, advanced registration techniques are

used, such as those based on edge detection (8,10,15–18)
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or mutual information (19,20). Registration has been

shown to improve estimation of filtration (21,22).
We propose to circumvent the problem of changes in

contrast enhancement through use of a Dixon reconstruc-
tion of dual-echo DCE data, which allows for reconstruc-
tion of fat-only images on which renal contours are
intrinsically outlined. Because gadolinium-based CAs are
confined to the intravascular and extracellular compart-
ments (23), kidney outlines are not subject to changes
typically seen over the course of the DCE acquisition
using conventional sequences.

Furthermore, we aim to enable automated registration
and perfusion analysis of renal DCE data by implement-
ing a combination of image registration to Dixon fat
images and automated kidney delineation using the
approach proposed by Z€ollner et al. (19).

METHODS

Subjects

A representative selection of 10 patients (4 male, mean
age 57 years, mean systolic/diastolic blood pressure 156/
94 mm Hg, mean estimated glomerular filtration rate
(eGFR) 80 mL/min/1.73 m2) was made out of a cohort of
hypertensive patients referred for treatment with renal
denervation. A detailed description of this population
was published earlier (24). eGFR was estimated using the
chronic kidney disease epidemiology collaboration (CKD-
EPI) equation (25) based on creatinine clearance. Plasma
creatinine levels were measured within a week of the
MRI. All patients underwent DCE MRI as part of the renal
denervation workup. Permission from the local medical
ethics review committee was obtained, and all patients
signed informed consent prior to inclusion into the study.

Imaging Protocol

Dual-echo images were acquired on a 1.5 T (Ingenia 4.1,
Philips Healthcare, Eindhoven, the Netherlands) MR sys-
tem using a 3D gradient-echo dual-echo protocol with a
modified Dixon reconstruction (26). All images were
acquired with repetition time of 5.9 ms and echo times
of 1.8 and 4.0 ms. First, three precontrast acquisitions
(prescans) with a variable flip angle (5�, 13�, and 20�)
were acquired for determination of precontrast longitudi-
nal relaxation rate (R1). Subsequently, a dynamic series
consisting of 25 dynamics with flip angle 15� was
acquired. Twenty-five coronal slices were acquired with
voxel size 2.5� 2.5� 3.0 mm and field of view of
420� 420 mm. Based on the work of Michaely et al. (12),
we kept temporal resolution to less than 4 s per dynamic
phase. Using a sensitivity-encoding technique factor of
2.5 in left–right direction, an acquisition time of 3.9 s
per dynamic was achieved. During the dynamic series,
0.1 mmol/kg of Gadovist was infused at a rate of 1 mL/s,
followed by a saline flush of 25 mL. Subsequently, Dixon
water-only, fat-only, in-phase (IP), and opposed-phase
(OP) images were generated.

Segmentation

Postprocessing was performed with a MatLab (MatLab
2014b, MathWorks, Natick, Massachusetts, USA) graphic

user interface that was developed in-house. Kidney

delineation was performed according to the image seg-

mentation method described by Z€ollner et al. (19). This

approach consists of k-means clustering of the voxel-

based time-intensity curves obtained from the whole

range of dynamics. Due to the difference between corti-

cal and medullary time-intensity curves, cortex and

medulla usually are assigned to different clusters. To

obtain parenchymal regions of interest (ROIs), cortical

and medullary ROIs were combined. To improve speed

and robustness of this method, we made some slight

adjustments. First, because fat images were available,

voxels containing mostly fatty tissue could easily be

excluded using a simple thresholding approach. In adi-

pose subjects with enough fat surrounding the kidneys,

thresholding alone was sufficient to create renal masks.

In the remaining subjects, thresholding diminished the

computation time because adipose tissue could be

excluded for clustering. The default fat threshold could

be adjusted manually using a slider. Second, because the

renal cluster often also encompassed the renal artery,

masks were eroded and dilated to exclude the artery.
Due to smoother time-intensity curves after registra-

tion, the segmentation algorithm performed better on reg-

istered data. Therefore, it was performed both before and

after image registration. The initial rough masks (Fig. 1a)

were employed to make wide crops around both kidneys

to enable separate registration. The second and more pre-

cise masks (Fig. 1b) were used for calculation of whole

kidney time-intensity curves. For each segmentation,

manual interaction was required to adjust the fat thresh-

old (optionally); set the number of clusters; and label the

resultant masks as kidney, cortex, or medulla.
Segmentation of a ROI inside the aorta for determina-

tion of the arterial input function was fully automated

(Fig. 2). Analogous to a maximum-intensity projection,

which consists of the maximum intensities reached in a

spatial direction, a time maximum-intensity projection

was created, which consists of the maximum intensities

reached in the dynamic series. On this time maximum-

intensity projection, 98% of voxels with lowest signal

intensity were discarded. For the remaining voxels, com-

ponents consisting of connected voxels were identified.

The largest component represented the aorta. To mini-

mize the impact of inflow often present in the cranial

part of the aorta, a 5� 8 voxel arterial ROI was placed in

FIG. 1. Segmentation of the kidney. (a) Rough mask created

before registration, used only to crop with a wide margin around
the kidney. (b) Precise cortical (gray) and medullary (white) mask
created after registration. Combined, these masks form a paren-

chymal mask.
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the most caudal row of the largest component, with a
width of five voxels or more, and in seven rows above
that row. No manual interaction was required.

Registration

Rigid registration was performed in 3D to the fat-only
first dynamic image using the visualisation toolkit (VTK)
Registration Toolkit (v2.0.0 (27), freely available at
http://www.vtk.org/ (Kitware Inc, New York, New York,

USA)). To enable separate registration for left and right

kidneys, the initial rough renal masks were employed to

create wide crops around both kidneys. Because there is

no contrast enhancement in the fat images used for regis-

tration, the choice of the reference image is not pivotal.

Prescans were also registered to the first dynamic. The

registration procedure is illustrated in Figure 3. In our

proposed method, registration is performed on fat

images, which are not expected to show contrast

enhancement. The obtained transformation matrices are

subsequently applied to the corresponding water images,

which have identical time stamps. To compare our

method with the conventional approach, we also per-

formed registration on OP images, which do show con-

trast enhancement. Of the available images, OP images

have the lowest echo time and are probably most similar

to images acquired in a standard postcontrast dynamic

series. It would have been more appropriate to perform

this comparison with source first echo images, but unfor-

tunately only the reconstructed Dixon images were saved

and the source images were not available.
Both for registration to fat and to OP images, gradient

cross-correlation (GCC) was used as a similarity measure,

but in OP images normalized mutual information (NMI)

was also used to compare performance. Mutual informa-

tion in image registration is discussed in detail else-

where (28). In short, NMI does not depend on the actual

intensity of the images and therefore might yield better

results in registration to contrast-enhanced OP images.

Both GCC and NMI are available in the VTK registration

toolbox (v2.0.0).
For the arterial ROI in the aorta, the prescans were reg-

istered to the first dynamic because replanning some-

times occurred between the prescans and the dynamics.

FIG. 3. Image registration algorithm. Left: Conventional method. OP images were used because they have the shortest echo time of the
images available. Registration of the prescans and dynamic 2 through 25 was performed to the first dynamic, and transformation matri-
ces were applied to the OP images. Right: Proposed method. Registration of the prescans and dynamic 2 through 25 to the first

dynamic was performed on fat images, in which no contrast enhancement is visible. Subsequently, fat transformation matrices were
applied to water images. OP, opposed phase; transform, transformation matrix.

FIG. 2. Time maximum-intensity projection of unregistered images
used for automated segmentation of aorta ROI. The 2% voxels

with highest signal intensity are highlighted red and blue. The blue
voxels denote the largest connected component, that is, the
aorta. As caudal as possible in this component, a 5�8 voxel ROI

is delineated in green. Although not clearly visible in this time
maximum-intensity projection, an inflow artefact also is present in

the cranial parts of the aorta in this subject. ROI, region of
interest.
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To quantify the resulting registration error, two metrics

were used. First, as a measure of respiratory-induced

motion, root-mean-square (RMS) vertical misalignment

of the top of the kidney was measured manually with

respect to the first dynamic on all dynamics. This was

repeated after registration both to OP and fat images to

measure residual vertical misalignment and to allow for

comparison. However, this only measured registration

performance in one direction. As a second measure of

registration error, the whole parenchyma time-intensity

curve was calculated on all dynamics using fat images.

Assuming perfect registration, the time-intensity curve of

the whole kidney will be constant. However, because the

kidneys are surrounded by adipose tissue, registration

errors result in fluctuations in the whole kidney time-

intensity curve when adipose tissue is shifted inside the

renal mask. To quantify registration accuracy, the nor-

malized RMS (NRMS) error of the curve was calculated

with respect to the first dynamic:

NRMS ¼ 1

smax � smin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

24

X25

i¼2

ðSi � S1Þ2
vuut :

Here, Si denotes the value of the whole-parenchyma

time-intensity curve at instance i, and smax and smin

denote the maximal and minimal signal intensity in the

kidney on the first dynamic. To be able to calculate

time-intensity curves on the fat images, transformation

matrices obtained from registration to both fat and OP

images also were applied to the fat images.

Conversion of Signal to Contrast Agent Concentration

For a spoiled gradient echo experiment, the relation

between R1 and signal magnitude is given by:

Sða;R1Þ ¼ kr
sinðaÞ

�
1� expð�TR R1Þ

�

1� cosðaÞexpð�TR R1Þ
expð�TE R�2Þ:

[1]

Here, a denotes the flip angle, R1 the spin-lattice relaxa-

tion rate, TR the repetition time, TE the echo time, and

kr is a scaling factor to account for proton density and

system gain. The influence of R2* was ignored, which

will result in a slight underestimation of R1. In the fast

exchange limit, CA concentration C is given by:

C � 1

r1
ðR1 � R1;0Þ: [2]

Here, R1,0 denotes precontrast R1, and r1 is the relaxivity

of the CA. To estimate contrast agent concentration, joint

estimation of pre- and postcontrast R1 using a direct fit

of the arterial input function signal to Equation [1] was

used. The fit was solved using varpro.m (29), a MatLab

(MatLab 2014b, MathWorks) implementation of the vari-

able projection algorithm (30). In this algorithm, separate

solution of the linear and nonlinear parameters reduces

covariance between these parameters. In comparable

applications, joint estimation has been shown to provide

increased precision and accuracy (31,32) because it

enables incorporation of information of all dynamics in

the estimation of the relaxation times. A thorough analy-

sis of the performance of joint estimation in comparison

with other methods to estimate R1 in a DCE experiment

is beyond the scope of this paper.
For each voxel, the time-intensity curve over the first

three prescans and the 25 dynamics was extracted. Using

these i¼ 28 measurements (three prescans with flip angle

5�, 13�, and 20�; 25 postscans with flip angle 15�), 26

parameters were fitted: the linear parameter kr and

n¼ 25 nonlinear parameters R1,n, with n the number of

postscans. The function evaluated by varpro.m was

defined piecewise:

Si

kr
¼

sinðaiÞ
�

1� expð�TR R1;1Þ
�

1� cosðaiÞexpð�TR R1;1Þ
; if i � 4

sinðaiÞ
�

1� expð�TR R1;i�3Þ
�

1� cosðaiÞexpð�TR R1;i�3Þ
; if i � 5

:

8>>>>>><
>>>>>>:

[3]

For the three prescans and the first dynamic, that is, the

first four measurements, the same value of R1 was used.

This is reasonable because these scans were performed

before CA administration. This forces the algorithm to

use the first four measurements to obtain a reasonable

estimate of precontrast R1. The combination of prescans

and postscans in a single fit enables the calculation of

pre- and postcontrast R1 with a single value for kr. The

approach was used both for the arterial input function

and CA concentration in the kidneys.

Pharmacokinetic Modeling

In renal pharmacokinetic modeling, the renal-specific

two-compartment models of Sourbron (33) or Tofts (34)

often are used. In principle, the models are identical,

although Sourbron also models tubular outflow. In the

supporting information, numerical simulations compar-

ing both approaches are described (Supporting Figs. S1–

S3). Although the Sourbron model is physiologically

more accurate, it yields an extra time constant, Tt, the

tubular transit time. For limited temporal resolution and

measurement duration, Tt becomes unstable and has a

large covariance with the other parameters, especially

Ktrans (Supporting Fig. S3). This leads to a markedly

increased variance in Ft, resulting in unstable GFR esti-

mates, as shown in the supplementary material (Support-

ing Figs. S2 and S3). Therefore, the Tofts model was

chosen, although it gives a systematic underestimation of

GFR (Supporting Fig. S2). In the Tofts model, two free

parameters are fitted: the blood volume vb and Ktrans, a

transfer constant from the intravascular to the extravas-

cular compartment. In the kidney, Ktrans equals the GFR

per unit volume of tissue. For vascular impulse response

function (VIRF), we used a delayed exponential, also

yielding two free parameters: Tp, the time constant in

the VIRF, and a delay. Together, Tpþdelay equal the

mean residence time. This is dominated by transit time

over the renal vascular bed because transit time along

the renal artery is very short (about 0.15 s) (34). Flow

then can be estimated by dividing vb by the mean
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residence time (Tpþdelay). To correct for hematocrit dif-

ferences between large and small vessels, we used two

hematocrit values: 0.41 for large vessels and 0.24 for

small vessels. Fitting to the Tofts renal-specific model

was performed in MatLab (MathWorks) for parenchymal

ROIs using the trust-region-reflective algorithm. Paren-

chymal ROIs were used because calculation of GFR in a

cortical ROI has been shown to underestimate GFR (34).

This is reasonable because the model does not account

for tubular outflow. In a cortical ROI, there is an outflow

of contrast agent to the medulla. Initial values and

bounds were partly copied from Sourbron et al. (33):

fractional plasma volume vp 0.15 (bounds 0–1), Tp 4.5 s

(bounds 1–10), and Ktrans 40 mL/100 mL/min (bounds 6–

120). Delay was excluded from the fit and was varied

stepwise from 0 to 4 s in steps of 0.25 s. The Tofts model

was fitted both to time-intensity curves obtained from

unregistered and fat- and OP-registered images. To gener-

ate time-intensity curves, masks generated on fat-

registered images were used for consistency.

Statistical Analysis

The Wilcoxon signed rank test was used to test the dif-

ference in registration error between registration to fat

images and OP images because it does not assume a nor-

mal distribution of the data. Spearman’s correlation coef-

ficient was used to test correlation between MR-based

and creatinine-based GFR. Here, MR-based GFR was cor-

rected for body surface area using the du Bois formula

(35). The intraclass correlation coefficient (ICC) was used

to test agreement between CKD–EPI-based eGFR and

DCE-based GFR. A P value of less than 0.05 was

considered statistically significant. Analysis was per-
formed with the SPSS 20 (IBM Corp., Armonk, New
York,, USA). Values are reported as mean (standard devi-
ation) or median (interquartile range), when appropriate.

RESULTS

Segmentation

Segmentation of rough renal masks and aorta ROIs was
successful in all subjects. In one subject (patient (P)5),
no precise renal mask could be constructed after registra-
tion due to heavy respiratory motion, as discussed in
detail below. For the remaining subjects, segmentation of
precise renal masks was successful.

Registration

The proposed registration algorithm relies on the absence
of contrast enhancement in the Dixon fat images. Figures
4a and 4b (larger version in online supporting informa-
tion; Supporting Fig. S4) indeed show near the absence
of contrast enhancement in the fat images, which is con-
trary to OP images for which contrast enhancement is
clearly visible.

Registration to OP images was performed using both
GCC and NMI as similarity measure. GCC-based registra-
tion performed significantly better, resulting in a mean
NRMS error of the fat time-intensity curve of 0.08 versus
0.10 for NMI-based registration (P¼0.005). Therefore,
GCC was used as a similarity measure in the comparison
with registration to fat images.

In Figure 4a, results of registration to both fat and OP
images in one of the study subjects (P4) are shown. Reg-
istration to fat images resulted in good alignment of the

FIG. 4. (Larger version in online supporting information. See Supporting Fig. S4.) Dynamic series of two subjects, registered both to fat

images (upper row) and OP images (lower row). For clarity, here the fat and OP images are shown in the upper and lower row, respec-
tively. In red, the contour of the kidney is shown as segmented in the first dynamic. The number of the dynamic is indicated in each
image. (a) Subject P4: Registration to fat images performs clearly better than registration to OP images. (b) Subject P5: Poor registration

due to severe respiratory motion during the dynamic series with both techniques. OP, opposed phase; P, patient.
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kidney, whereas registration to OP images failed to regis-
ter the kidney properly, already before CA inflow. In
subject P5 (Figure 4b), registration was poor, which was
explained by the severe respiratory motion during the
dynamic series. This also was illustrated by a RMS verti-
cal misalignment of 58 mm (left kidney) and 66 mm
(right kidney) before registration. Overall, image quality
was acceptable, although later phase images were partic-
ularly affected by motion artefacts. In Figure 5, fat time-

intensity curves are shown for four different kidneys.
The curves in Figures 5a and 5b correspond to the kid-
neys shown in Figures 4a and 4b. Difference in registra-
tion quality in subject P4 and poor registration in subject
P5 are clearly visualized.

In Figure 6, box plots of the registration errors, as mea-
sured by RMS vertical misalignment and the fat time-
intensity curve, are shown (for errors per subject, see Sup-
porting Table S1 in the online supporting information).

FIG. 5. Fat time-intensity curves for four kidneys, calculated on Dixon fat images both for registration to fat images and registration to
OP images to compare performance. (In addition, the time-intensity curve before registration is shown.) (a) The dynamic series of this

kidney is shown in Figure 4a. Registration to fat images performs clearly better. (b) The dynamic series of this kidney is shown in Figure
4b. Here, both registration to fat and to OP images fail to achieve adequate alignment of the kidneys. (c) Performance of both methods

is equal. (d) Although the difference is less pronounced than in (a), registration to fat performs clearly better compared to registration to
OP images. Nr, number of; OP, opposed phase; P, patient.

FIG. 6. Box plots of the registration error. (a) RMS vertical misalignment before registration and after registration to OP and fat images.

(b) NRMS error of the time-intensity curve for registration to OP and to fat. In both graphs, the outlier corresponds to subject P5, in
whom registration was poor. NRMS, normalized root-mean-square; OP, opposed phase; P, patient; RMS, root-mean-square; TIC, time-

intensity curve; VM, vertical misalignment.
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Respiratory-induced RMS vertical misalignment was calcu-

lated prior to registration as a measure for initial motion.

Residual RMS vertical misalignment was calculated both

after registration to fat and to OP images to allow for com-

parison. NRMS of the fat time-intensity curve is given for

all subjects both after registration to fat and to OP images.

Respiratory-induced motion, as measured by RMS vertical

misalignment prior to registration, was 14 mm (interquar-

tile range 13) (median over left and right kidneys over all

subjects). RMS vertical misalignment was improved more

by registration to fat compared to registration to OP

(median 3 (3) mm vs. 5 (13) mm, respectively, P¼ 0.03).

NRMS of the fat time-intensity curve was smaller for regis-

tration to fat, median 0.025 (0.010) compared to 0.030

(0.095) for registration to OP images (median over left and

right kidneys over all subjects, P¼ 0.04). Subject P5, for

whom registration was poor, was excluded from further

analysis.

Pharmacokinetic Model Fit

Precontrast arterial T1 as obtained by joint estimation was

1,621 (761) ms. Estimated peak arterial contrast agent con-

centration was 1.0 (0.3) mM. Pharmacokinetic model fits

were performed on time-intensity curves from unregis-

tered and fat- and OP-registered images. In Figures 7a and

7b, the best and worst obtained pharmacokinetic fits are

shown for registration to fat, although even the worst fit

is reasonably accurate. The corresponding curves for reg-

istration to OP are shown in Figures 7c and 7d, where the

curve in Figure 7c is heavily affected by motion due to

suboptimal registration. Perfusion and GFR values are

provided in Table 1 for all subjects except subject P5.

Mean perfusion and GFR were 233 (64) mL/100 mL/min

and 60 (36) mL/min (corrected for body surface area 50

(26) mL/min/1.73 m2), respectively. Mean renal volume

and fractional blood volume were 172 (48) mL and 0.24

(0.10), respectively. Measured renal volume is likely an

underestimation because the collecting system and partial

volume artefacts were discarded during segmentation.

Mean plasma transit time was 4.0 (1.4) s, with a delay of

1.9 (0.88) s. For registration to OP, mean perfusion and

GFR were 265 (174) mL/100 mL/min and 84 (77) mL/min

(corrected for body surface area 68 (57) mL/min/1.73 m2).

Without registration, mean perfusion and GFR were 303

(190) mL/min and 83 (83) mL/min (corrected for body

surface area 67 (62) mL/1.73 m2/min). For registration to

OP and unregistered images, pharmacokinetic analysis

yielded unphysiological values mainly in subject P9, with

perfusion exceeding 500 mL/100 mL/min and skGFR

exceeding 100/mL/min.
Creatinine-based eGFR is also shown in Table 1. In Fig-

ure 8, DCE-based GFR is plotted against eGFR, and a Bland-
Altman plot of the difference is shown for registration to fat
images. The correlation coefficient was 0.68 (P¼0.04),
with limited agreement between the measurements as

FIG. 7. Pharmacokinetic model fits to parenchymal time-concentration curves. (a) Subject P4, in whom the fit to the pharmacokinetic
model was the worst (registration to fat). (b) Subject P6, in whom the best fit was obtained (registration to fat). (c) Time-concentration

curve of subject P4, heavily affected by motion, obtained from OP-registered images. (d) Time-concentration curve obtained from
images registered to OP in subject P6, in whom registration to OP and to fat performed comparably. OP, opposed phase; P, patient; R1,
longitudinal relaxation rate.
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illustrated by an ICC of 0.38. For registration to OP images,
the correlation coefficient was 0.55 without reaching signif-
icance (P¼ 0.13), and the ICC was 0.10. Without registra-
tion, the correlation coefficient was 0.58 (P¼ 0.10), and the
ICC again was 0.10.

DISCUSSION

We described an approach for automated postprocessing

in renal DCE MRI, which employs a new approach to

image registration. Registration to Dixon fat images

resulted in better registration compared to the conven-

tional method. Furthermore, it improved the estimation

of kidney perfusion and GFR, both compared to pharma-

cokinetic analysis without registration and analysis with

registration to OP images. The proposed registration algo-

rithm relies on the absence of contrast enhancement in

fat images because gadolinium-based CAs, which are

confined to the extracellular space, do not influence the

relaxation of fat protons, which are contained inside adi-

pocytes. As expected, fat images hardly showed any con-

trast enhancement. Registration performed evidently
better on fat images compared to OP images. However,

in one subject with pronounced initial respiratory
motion, registration was poor for both approaches. Pre-

sumably, this was caused by blurring of the edges of the
kidney due to motion artefacts in the fat images. Con-

trary to our expectation, GCC-based registration per-
formed better than NMI-based registration in OP images,

despite visible contrast enhancement. This might be the

result of the phase cancellation artefact around the kid-
neys, present on all dynamics regardless of the timing

after contrast inflow.
Because no agreed upon measure for registration qual-

ity exists, it is difficult to make a quantitative compari-

son between registration algorithms. Only Merrem et al.
(36) report coronal motion: the standard deviation of the

vertical position of the kidney. They report an average

Table 1
Perfusion and GFR Values

Perfusion skGFR GFRa (DCE) eGFRb

(mL/100 mL/min) (mL/min) (mL/1.73 m2/min)

Left Right Left Right Both
Both

Reg to – OP Fat – OP Fat – OP Fat – OP Fat – OP Fat NA

P1 122 115 118 160 165 161 28 22 22 17 22 22 41 39 40 110.3
P2 174 211 225 457 790 247 18 10 9 14 13 7 32 23 16 73.1

P3 322 257 250 297 232 233 16 24 24 14 19 19 28 40 39 83.8
P4 102 3 158 97 101 152 8 9 16 7 12 10 14 20 22 67.9

P6 594 282 266 416 340 300 33 39 40 43 42 41 72 78 79 89.8
P7 181 217 211 162 230 225 75 63 64 67 60 60 109 95 95 88.5
P8 317 300 297 332 308 308 42 48 48 50 66 66 63 78 78 86.2

P9 759 597 324 608 252 349 169 149 31 122 127 29 224 212 46 78.6
P10 121 182 181 231 191 195 11 17 17 14 15 21 22 28 33 41.8

Mean 299 240 225 307 290 241 44 42 30 39 42 31 67 68 50 80.0
SD 219 152 63 156 189 64 48 41 16 35 36 20 62 57 26 18.7

Perfusion and GFR values measured using DCE MRI separate for left and right kidneys, both for registration to fat and to OP. In addi-

tion, combined GFR corrected for body surface area is calculated and shown together with GFR estimated using the CKD-EPI formula.
aCorrected for body surface area using the du Bois formula (35).
bCalculated using the CKD-EPI formula.
CKD-EPI, chronic kidney disease epidemiology collaboration equation; DCE, dynamic contrast-enhanced; eGFR, estimated glomerular
filtration rate; GFR, glomerular filtration rate; NA, nonapplicable; OP, opposed phase; P, patient; Reg, registration; SD, standard devia-

tion; skGFR, single kidney GFR.

FIG. 8. (a) DCE-based GFR compared to eGFR estimated using the CDK-EPI formula; (b) Bland-Altman plot of the difference between
the DCE-based GFR and the eGFR. CKD-EPI, chronic kidney disease epidemiology collaboration equation; DCE, dynamic contrast-

enhanced; eGFR, estimated glomerular filtration rate; GFR, glomerular filtration rate. DCE, dynamic contrast-enhanced; eGFR, estimated
glomerular filtration rate; GFR, glomerular filtration rate.
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initial coronal motion of only 3.4 mm, reducing to
1.7 mm after deformable registration, a reduction of 50%.
In comparison, when we calculate this measure in our
dataset, registration to fat images results in a reduction
of 60%; therefore, performance of the Merrem approach
seems comparable to ours. Because Merrem et al. used
cross-correlation as a similarity measure, which is sensi-
tive to contrast changes during CA inflow, registration
could likely be improved further by registration to Dixon
fat images.

Others (19,20,37) proposed registration algorithms
based on MI. However, they all used a preregistration
module before MI-based registration. Consequently, our
method will be easier to implement. Other groups used
approaches based on edge detection (8,10,15–18), yield-
ing good results without requiring preregistration mod-
ules. However, implementation of the algorithms might
be challenging in clinical practice, whereas the registra-
tion algorithm we used is freely available. In addition,
postprocessing is automated in a graphical user interface
and therefore does not require specialist knowledge.
Only for segmentation is manual interaction required to
adjust the fat threshold (optionally), set the number of
clusters, and label the resultant masks.

In the aorta, calculation of CA concentration could be
improved by implementation of the approach recently
proposed by Simonis et al. (38). Here, the complex signal
is used instead of magnitude alone. In large vessels par-
allel to the direction of the static (B0) field, signal phase
proves to be linearly related to CA concentration. In
addition, this approach can correct for spatial inhomoge-
neity of the radiofrequency (B1) field, which we could
not correct for. This is less relevant on 1.5 T because B1

inhomogeneity is limited but must be accounted for
when moving to higher field strengths. In this analysis,
this approach could not be implemented because the
source images were not available.

Fitting of the Toft renal two-compartment model
yielded a mean cortical perfusion of 233 mL/100 mL/min
for fat-registered images. The values obtained using fat-
registered images are in good agreement with other renal
DCE MRI studies, whereas unregistered and OP-
registered images yielded unphysiological values in
some kidneys. Sourbron et al. (33) report a perfusion of
229 mL/100 mL/min, calculated with an instantaneous
exponential VIRF. Tofts et al. (34) report a renal flow of
465 mL/100 mL/min, calculated with a delayed exponen-
tial VIRF. The hypertensive population in our study
probably explains the relative low perfusion because
renal vascular resistance is known to be increased in
hypertensive subjects (39). Correlation between eGFR
based on creatinine clearance and GFR measured using
DCE MRI was significant when fat-registered images
were used, although agreement was limited (ICC of 0.38).
This is worse compared to results reported recently by
Eikefjord et al. (40), who found an ICC of 0.49 in living
kidney donors. In nephrectomized subjects, Tipirneni-
Sajja et al. (41) found comparable results for DCE MR-
based GFR measurement. However, both authors com-
pared MR-based GFR to reference standard methods of
GFR measurement: iohexol and 99mTC-DTPA clearance,
respectively. Very good agreement between DCE-based

GFR and creatinine-based GFR was reached by Pandey

et al. (42). They used a golden angle stack-of-stars

approach for data acquisition. From eight different image

reconstruction schemes, one resulted in< 5% discrep-

ancy between the DCE-based and creatinine-based

approach. However, creatinine-based GFR provides only

a crude estimate of actual GFR. For example, the CKD-

EPI formula yields an eGFR within 10% of the value

measured using the reference standard (inulin, iohexol,

or iothalamate clearance) only for less than 45% of the

subjects (43). According to the same study, it overesti-

mates the GFR in healthy adults on average by more

than 10%. In contrast, the Tofts model gives an underes-

timation of the GFR, which was expected to be about

20 mL/100 mL/min according to the simulations in the

supporting information. This presumably explains the

large mean difference between creatinine-based eGFR

and MR-based GFR in our study, which is clearly visual-

ized in the Bland-Altman plot in Figure 8b. Furthermore,

the time delay between measurement of the creatinine

level and the MRI might be a possible explanation for

the limited agreement between creatinine-based eGFR

and MR-based GFR. Biological variation of creatinine

clearance is considerable, with a standard deviation of

about 12% for repeated measurements (44). Nevertheless,

our DCE protocol can be improved. Most importantly,

both the temporal resolution and the duration of mea-

surement must be increased. The limited temporal reso-

lution and measurement duration prevents us from using

the Sourbron model (33). This model is physiologically

more accurate because it also models tubular outflow.

The simulations in the supporting information show this

model indeed yields more accurate results compared to

the Tofts model. Furthermore, separate analysis for the

cortex and medulla can easily be implemented because

separate masks already are generated using the k-means

clustering approach. Because filtration only occurs in the

glomeruli in the cortex, this will likely result in

improved accuracy of the GFR measurement. In addition,

it enables voxelwise analysis to construct perfusion and

filtration maps of the kidney, possibly demonstrating

focal differences in renal perfusion and function.

Limitations

A drawback of our method is the increase in DCE acqui-

sition time inherent to the acquisition of dual-echo

images. Despite this, we still managed to achieve a tem-

poral resolution of less than 4 seconds, as recommended

by Michaely et al. (12). The relatively long acquisition

time for 3D acquisition results in more pronounced

respiratory motion artefacts in the images; however, on

the fat images, motion artefacts seem to disturb the con-

tour of the kidney less when compared to OP images,

presumably due to the great contrast between the kidney

and the surrounding adipose tissue. The temporal resolu-

tion can easily be decreased by moving to 3T because

the twofold increase in the Larmor frequency, and hence

in the water–fat shift, in principle allows for a twofold

decrease in echo time. In addition, parallel imaging per-

formance is better at 3T.
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Only rigid registration was performed because cranio-
caudal translation is the dominant motion during respi-
ration in the kidneys. Furthermore, the added value of
nonrigid registration is not clear (15,45), whereas it does
result in increased computational time.

Unfortunately, hematocrit values were not available
for most subjects; therefore, we had to assume a fixed
value for large vessel hematocrit. Likely, perfusion esti-
mates can be improved when incorporating individual
hematocrit values (34).

CONCLUSION

We have demonstrated the feasibility of automated post-
processing in renal DCE MRI. To handle respiratory
motion, one of the main challenges in renal DCE MRI,
image registration to fat images was employed. Registra-
tion quality was superior to registration to OP images,
thanks to negligible contrast enhancement in fat images.
The method was robust, being able to register nine out of
10 images in a satisfactory manner. Because manual
interaction was limited, postprocessing does not require
specialist knowledge. Therefore, it will be easy to imple-
ment in clinical practice. A drawback of this method is
the cost in imaging time, resulting in a temporal resolu-
tion of 3.9 s; however, straightforward reduction in
dynamic imaging time can be achieved by migrating to
3T. After implementation of the improvements men-
tioned in the discussion, the next step will be to validate
the GFR obtained using this renal DCE-MRI protocol in
healthy volunteers compared to a reference standard
such as inulin clearance.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this
article.

Fig. S1. Example of tissue-concentration curve and AIF (generic AIF as
modelled by Parker et al. (S3)) used for determination of fit accuracy. In
solid lines the high resolution curve is depicted, the sampling points denote
the measurements in our MR sequence. Sample points: dt 3.94 s, tmax
98.5 s.
Fig. S2. Comparison of perfusion and GFR estimated using Sourbron’s and
Tofts’ models. The shaded area denotes 1.96 times the standard deviation.
The black horizontal line denotes true perfusion or GFR and the dotted
black vertical lines denote dt and tmax of our data (3.94 s and 98.5 s,
respectively); a) dependence of perfusion estimation on decreasing tempo-
ral resolution (or increasing dt on the x-axis); b) GFR dependence on tem-
poral resolution; c) estimation of perfusion, dependence on duration of
measurement (tmax) and d) the same for GFR.

Fig. S3. a) Normalized variance
ffiffiffiffiffiffiffiffiffiffi
VarðxÞ

l2
x

q� �
of Tt (tubular transit time) and the

other fit parameters versus measurement time. Note that the variance of Tt

exceeds the variance of the other parameters by far; b) normalized covari-

ance
ffiffiffiffiffiffiffiffiffiffiffiffi
VarðxyÞ
lxly

q� �
of Tt with the other parameters as a function of measure-

ment time.
Fig. S4. Full version of figure 4 in the main text. Dynamic series of two sub-
jects, registered both to fat-images (upper row) and OP images (lower row).
For clarity, here the fat and OP images are shown in the upper and lower
row, respectively. In red, the contour of the kidney is shown as segmented
on the first dynamic. The number of the dynamic is indicated on each
image; a) subject P4: registration to fat-images performs clearly better than
registration to OP images; b) subject P5: poor registration due to severe
respiratory motion during the dynamic series with both techniques.
Table S1. Quantitative registration results. Respiratory induced RMS verti-
cal misalignment for all subjects before and after registration to OP and
fat-images are depicted. Normalized RMS error of the time-intensity curve
of the fat-image only was calculated after registration, to allow comparison
between registration to fat and OP images. In almost every subject, regis-
tration to fat results in smaller errors than registration to OP.
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