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Abstract 

Bac kgr ound: The dynamics of single-nucleotide variants (SNVs) play a critical role in understanding tumor development, yet their 
influence on shaping tumor micr oenvir onments r emains largel y unexplor ed. Spatial transcriptomics offers an opportunity to map 

SNVs within the tumor context, potentially uncovering new insights into tumor microenvironment dynamics. 

Results: This study developed SpatialSNV for identifying effecti v e SNVs acr oss tumor sections using multiple spatial transcriptomics 
platforms. The anal ysis r ev ealed that SNVs r eflect r egional tumor ev olutionar y traces and extend beyond RNA expression changes. 
The tumor margins exhibited a distinct mutational profile, with novel SNVs diminishing in a distance-dependent manner from the 
tumor boundar y. These m utations wer e significantl y linked to inflammatory and h ypoxic microen vironments. Furthermore, spatially 
corr elated SNV gr oups wer e identified, exhibiting distinct spatial patterns and implicating specific r oles in tumor–imm une system 

crosstalk. Among these, critical SNVs such as S100A11 L40P in colorectal cancer were identified as tumor region–specific mutations. 
This mutation, located within exonic nonsynonymous regions, may produce neoantigens presented by HLAs, marking it as a potential 
therapeutic target. 

Conclusions: SpatialSNV r e pr esents a pr omising fr amew ork for unr aveling the mec hanisms underl ying tumor–imm une cr osstalk 
within the tumor micr oenvir onment by lev era ging spatial transcriptomics and SNV-based tissue domain characterization. This ap- 
proach is designed to be scala b le , inte gr ati v e, and adapta b le, making it accessib le to r esear c hers aiming to explore tumor heterogeneity 
and identify therapeutic targets. 

Ke yw ords: spatial transcriptome, tumor neoantigens, single-nucleotide variants 
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Bac kgr ound 

Mutation is one of the hallmarks of tumorigenesis , pla ying a cru- 
cial role in programming tumor pathogenesis [ 1 ], which emerges 
mainly in 3 forms, including single-nucleotide variant (SNV), in- 
sertion and deletion (indel), and structural variation (SV). Indels 
and SVs, such as copy number variants (CNVs), involve long- 
range genomic alterations that are occasionally acquired during 
tumorigenesis and remain relatively stable during tumor expan- 
sion. SNVs are the most common type of genetic variant, occur- 
ring at various loci throughout the genome [ 2 ]. Most actionable 
causal mutations in diseases, including cancers and many other 
genetic disorders, are SNVs [ 3 ]. Consequently, sequencing targeted 

gene panels has dr amaticall y tr ansformed and facilitated disease 
diagnosis and the customization of therapeutic strategies over the 
past decade [ 4 ]. SNVs accumulate during tumorigenesis and ex- 
hibit intercellular heterogeneity [ 5 ]. T herefore , SNVs are theoreti- 
call y mor e ca pable of tr acing the dynamics of tumor de v elopment.
Ho w e v er, cr eating a compr ehensiv e ma p of SNVs with high r eso- 
lution and precision remains challenging. 

Single-cell sequencing allows us to investigate tumor hetero- 
geneity at a single-cell resolution and has greatly extended our 
knowledge about tumor e volution [ 6 ]. Howe v er, losing tissue con- 
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ext information makes r e v ealing intr atumor clonal ecosystems
nd pr ogr ession difficult. It is essential to ca ptur e tumor m uta-
ions in situ to address these issues. Recentl y, spatiall y r esolv ed
equencing tec hnologies hav e become po w erful tools for uncov-
ring tissue slides’ molecular and cellular landscapes, including 
lonal distribution, genetic variation, and tumor cell evolution [ 7 ,
 ]. The spatial structure of intratumor CNVs can be inferred us-
ng spatial transcriptome and genome sequencing [ 7 , 9 ]. Probe-
ased in situ sequencing has been emplo y ed to illustrate the clonal
 utation heter ogeneity of tumor tissues [ 10 ]. While some stud-

es hav e r estor ed SNVs to their spatial context [ 7 , 11–13 ], these
orks mostly focused on the clonal evolution of tumors . T here
 emains a lac k of integr ation acr oss m ultiple platforms, standard-
zed data formats, and, mor e importantl y, a compr ehensiv e under-
tanding of how spatial SNVs shape the tumor micr oenvir onment
n situ . 

Her e, we de v eloped SpatialSNV for calling and analyzing ef-
ective SNVs on tumor tissues using spatial transcriptome data.

e normalized the SNV count against the total unique molec- 
lar identifier (UMI) counts per spatial spot to mitigate the im-
act of sequencing depth. By further exploring the spatially 
istinct SNVs, we demonstrated that SNV patterns are more 
e. This is an Open Access article distributed under the terms of the Cr eati v e 
h permits unrestricted reuse, distribution, and reproduction in any 
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uitable for tracing the spatial clonal evolution of tumors. To gain
eeper insights into tumor micr oenvir onments, we focused on
he tumor margins, a region known for its high genetic and ex-
r essiv e heter ogeneity [ 8 , 14 , 15 ]. We found that the mutational
urden in this region declined in a distance-dependent manner,
ssociated with the inflammatory and hypoxic conditions in the
umor margin microen vironment. Furthermore , we used Spatial-
NV to identify spatiall y corr elated SNVs, termed SNV groups,
nd found that SNVs within the same groups exhibited similar
patial distributions. SNV groups may reflect the states of tumor
ells and surrounding cells in the microenvironment at the tumor
ar gin. We further observ ed that critical tumor SNVs, suc h as tu-
or driv er m utations, exhibit specific spatial patterns within the

issue context. Examination of exonic nonsynonymous SNVs also
dentified KRAS G12D , KRAS G12V , and S100A11 L40P as tumor region-
pecific mutations in colorectal cancer (CRC) samples, which may
ener ate neoantigens pr esented by the human leukocyte anti-
ens (HLAs), r epr esenting the potential ther a peutic tar get. No-
ably, single-cell RN A sequencing (RN A-seq) analysis sho w ed that
100A11 was highly expressed in CRC tumor cells, indicating a
otential ther a peutic tar get of S100A11 L40P . SpatialSNV integr ates
patial SNV and transcriptomic data to unveil a more comprehen-
iv e genetic ma p of tumor tissue, enhancing our understanding of
ow SNVs shape the tumor microen vironment. Moreo ver, effec-
ive SNVs can be used to pinpoint tumor-specific exonic nonsyn-
n ymous m utations, pr oviding potential ther a peutic tar gets for
e v eloping pr ecision medicine str ategies. 

nalyses 

patialSNV enables effective SNV calling on 

pa tial tr anscriptomics da ta 

o investigate SNVs within tumors in situ , SpatialSNV utilized
utect2 [ 16 ] to call somatic mutations, using panel of normal

PON) germline r esource fr om the GATK r esource bundle to filter
ut potential germline mutations (Methods, Fig. 1 A). At the same
ime, we tested the performance of spatialSNV on multiple spa-
ial transcriptomics platforms, including Stereo-seq [ 15 , 17 , 18 ],
isium [ 19 ], Slide-seq [ 20 ], and Slide-DNA-seq [ 9 ] ( Supplementary
ig. S1 A). To eliminate false-positive callings caused by low se-
uencing depth, we examined the number of unique reads sup-
orting each SNV ( Supplementary Fig. S1 B) and onl y r etained
hose SNVs supported by more than 20 unique reads. Further-

ore, we examined the spatial distribution of SNVs in r epr esen-
ative samples, including “DCIS1,” “CRC-P19-T,” “Slide-RNA-CRC,”
nd “Slide-DNA-CRC” (Fig. 1 B). Corresponding spatial transcrip-
omic pr ofiles wer e also pr epar ed to assist in the analysis of spa-
ial SNVs ( Supplementary Fig. S1 C). Most SNVs a ppear ed in only
 small number of spots, likely due to technical noise. Spatial-
NV regarded SNVs detected in multiple spots as effective SNVs,
hich might indicate similar evolutionary progress in tissue. Fol-

owing this quality control process, we found that Stereo-seq had
 r elativ el y high n umber of effecti ve SNVs, lik ely due to its higher
equencing depth. We then assessed the correlation between the
umber of SNV types and the number of unique reads per sample.
s anticipated, datasets with higher sequencing depths gener all y
 esulted in mor e effectiv e SNV callings (Fig. 1 C, Supplementary
ig. S1 D). Notably, due to the extremely low sequencing depth,
patialSNV could onl y r ecov er 23 effectiv e SNVs in Slide-DNA-seq
ata ( Supplementary Fig. S1 D, E). Ther efor e, Slide-DNA-seq data
ere not included in further analysis. Subsequently, we annotated

he genomic locations of these effective SNVs and found that
NVs identified through spatial transcriptomics predominantly
riginate from gene body regions, with a considerable proportion

n untr anslated r egions (UTRs) (Fig. 1 D, E). Then we compared the
patial distribution of effective SNVs derived from public data on
he Stereo-seq platform (Fig. 1 F). The high consistency of SNVs
mong samples from the same patient demonstrates the robust
NV calling pipeline of SpatialSNV. Mor eov er, the high correla-
ion of SNVs within the same tumor and across different tumors
uggests associations with driver mutations during tumorigene-
is. Consequently, we conducted a Gene Ontology (GO) term en-
ic hment anal ysis on genes affected by common SNVs across all
amples (Fig. 1 G). These SNVs impact molecular functions such
s cadherin binding and transcription coregulator activity, which
re associated with aberrant transcriptional activity [ 21 ]. Then,
e observed a strong linear association between SNV raw count
nd gene expression ( Supplementary Fig. S2 B). To reduce the in-
uence of gene expression and sequencing depth on SNV quan-
ity, SpatialSNV converted the SNV count matrix to a binary ma-
rix and normalized the SNV counts against the total mRNA UMI
a ptur ed. With this correction, we obtained distinct spatial pro-
les between transcriptomics and SNVs ( Supplementary Fig. S2 A)
nd a significant corr elation decr ease betw een RN A expression
nd SNV counts ( Supplementary Fig. S2 B). We then observed sig-
ificant enrichment of SNV mutations on the tumor regions on
umor sections acr oss differ ent spatial transcriptomics platforms
Fig. 1 H). 

patialSNV identifies tumorigenesis-associated 

NVs 

ene mutations play a crucial role in the onset and progression
f tumors. To explore whether SpatialSNV is able to identify es-
ential SNVs in tumorigenesis, we utilized transcriptomics data
o divide the tumor section into the tumor (marked by EPCAM
nd other tumor-associated markers), tumor-adjacent margins
marked by VIM , COL1A2 , PTPRC ), and normal tissues (Fig. 2 A,
, Supplementary Fig. S3 ). Subsequently, we validated the re-
iability of RNA region clustering using the inferCNV(method)
 Supplementary Fig. S4 ). Using the ductal carcinoma in situ (DCIS)
ection from the Visium platform and CRC section from the
tereo-seq platform as examples, we calculated the SNV muta-
ion frequency and occurrence on each gene (Fig. 2 C). We found
he B-cell r eceptor–r elated genes to be highly mutated with low
ccurrence due to the somatic hypermutation progress during
he de v elopment and matur ation of B cells. Mitoc hondrial genes
lso exhibited high mutation frequency and relatively high occur-
ence, consistent with the accumulation of mitochondrial muta-
ions in tumor cells [ 22 ]. We further compared the mutated genes
ith those detected in the BRCA and COAD cohorts from The Can-

er Genome Atlas (TCGA) database and found that most mutated
enes were shared in the TCGA database (Fig. 2 D). Ho w ever, w e
bserved that tumor driver genes such as GATA3 and ESR in DCIS
 23 , 24 ] were almost uniformly distributed spatially, but their cor-
 esponding SNVs wer e onl y pr esent in the tumor. The SNVs and
ene expression exhibited different patterns (Fig. 2 E). Chi-square
ests of SNVs and RNA with tumor incidence indicated that the
ccurrence of SNVs is more closely associated with tumor regions
Fig. 2 F). Given the close association of SNVs and genes with tu-

origenesis, we further examined the distribution of other driver
enes and SNVs to provide additional support for this perspective.
espite these driver genes being widely expressed across differ-
nt spatial regions, the SNVs associated with these driver genes
er e confined solel y to the tumor r egion (Fig. 2 G). Mor eov er, we
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r epr esentativ e sections selected for each platform: CRC-P19-T (Stereo-seq), DCIS1 (Visium), and primary human colorectal cancer (Slide-RNA-seq and 
Slide-DNA-seq). (C) Scatterplot showing the correlation between unique reads (excluding duplicates) from spatial transcriptomics and the number of 
detected effective SNVs. (D) Stacked percentage bar chart showing genomic regions containing effective SNVs. Circular markers denote the platforms 
of the samples, and square markers specify the cancer types. (E) Bar plot detailing the proportion of effective SNVs within gene body regions. (F) UpSet 
plots demonstrating the intersections of effective SNVs among different sections. Yellow bar represents samples from the same patient, while brown 
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Sample IDs are colored according to the same patient. (G) Bar plots illustrating GO Term enrichment for Molecular Function associated with effective 
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r ele v ance. (H) Hematoxylin and eosin (H&E) staining (left) and spatial visualization (right) of normalized SNV counts across re presentati ve samples 
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performed Pearson correlation analysis between normalized SNV 

counts and hallmark gene sets from MSigDB [ 25 ] on tumor sam- 
ples. We found that the mutation burden in both DCIS and CRC 

samples was highly correlated to pathways such as MYC regu- 
lation, o xidati v e phosphorylation, and KRAS signaling, whic h ar e 
nown to play critical roles in tumorigenesis [ 26–28 ] (Fig. 2 H).
hese findings demonstrate that spatially resolved SNVs identi- 
ed by SpatialSNV can offer genetic information from an addi-
ional dimension, extending beyond the insights provided by spa- 
ial transcriptomics data. 
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patialSNV helps to trace tumor development in 

itu 

NVs can serve as imprints to trace tumor development. We
hen explored a DCIS sample previously shown to have 3 sub-
lones [ 19 ]. Consistent with the original study, we observed a pro-
ounced clonal distribution from the transcriptome data (Fig. 3 A,
upplementary Fig. S5 A, B). We also analyzed the CNVs using the
nferCNV algorithm, which confirmed the clonal diversity of the
 tumor subclones (Fig. 3 B). Additionally, to determine whether
NVs could r epr oduce the clustering patterns, we performed di-
ensionality reduction and clustering on the spots using SNV
indows as features . T his anal ysis r e v ealed clustering r esults

imilar to those observed with CNVs ( Supplementary Fig. S5 C).
e used SpatialSNV to perform differential analysis on SNVs and

bserv ed differ ent SNV pr ofiles of 3 tumor subclones (Fig. 3 C).
or example, THOP1 was e v enl y expr essed in 3 subclones, but the
ssociated SNV c hr19_2813592:G > A occurr ed mor e fr equentl y in
ubclone 1. Similarly, PRSS23 expressed high in subclones 0 and 1,
hile the corresponding SNV chr11_86808877:T > C occurred pre-
ominantly in subclone 1 (Fig. 3 D, E). The inconsistency of the spa-
ial patterns between SNVs and gene expression indicated a dy-
amic clonal de v elopment pr ogr ess within the tumor tissue. 

To trace the clonal development in situ of tumor cells, we em-
lo y ed the Mononcle2 algorithm [ 29 ] to construct the de v elop-
ental trajectory using the differ entiall y distributed SNVs. We

ound that subclones 1 and 2 might have differentiated from sub-
lone 0 (Fig. 3 F), which is consistent with the CNV profiles of the
ubclones. Subclone 2 a ppear ed to hav e CNV gains on c hr3 and
NV loss on chr6 and chr11, and subclone 1 suffered CNV gain
n c hr5 (Fig. 3 B). Ther efor e, subclones 1 and 2 would accumu-
ate more mutations during clonal differentiation theoretically.
s anticipated, we identified more SNVs in subclones 1 and 2

Fig. 3 G, H). We also observed that the differ ential SNVs, suc h as
 hr7_98385752:A > G and c hr19_2813592:G > A, wer e ele v ated along

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
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lonal differ entiation tr ajectories (Fig. 3 I), indicating their contri-
utions to the tumor clonal de v elopment. Mor eov er, we ma pped
he predicted pseudotime to the tumor section and found that tu-

or subclone 0 gr aduall y differ entiated into subclones 1 and 2 in
he co-occurring tumor regions (Fig. 3 J). Additionally, in subclone
–specific tumor regions, spots on the tumor margins appeared
t a later de v elopmental sta ge (Fig. 3 J), suggesting that subclone
 was still under going r a pid e volution. SpatialSNV facilitates the
nal ysis of r egional tumor e volution tr aces imprinted on spatiall y
 esolv ed SNVs. 

pa tialSNV re v eals m uta tional dynamics a t the 

umor margins 

s tumors in vade , the tumor margins often exhibit a chronic in-
ammatory micr oenvir onment [ 30 ], whic h may trigger mor e m u-
ation e v ents. Consistentl y, we inv estigated the genetic landsca pe
f the tumor tissues and observed that tumor margins gained
ignificantl y mor e SNVs than distant normal r egions (Fig. 4 A,
, Supplementary Fig. S6 A). Mor eov er, we found that the tumor
argins had unique mutational profiles (Fig. 4 C, D). For exam-

le, SNVs chr20_4024544:C > T and chr20_4024581:C > T occurred
or e fr equentl y in the tumor margins of the CRC-P59-T1 sam-

le and exhibited a clear spatial pr efer ence for the tumor mar-
ins (Fig. 4 D, E). When surveying their genomic loci, we found sig-
ificantl y mor e sequencing r eads cov ering this r egion in the tu-
or margins than in tumor and normal tissues, implying that

hese SNVs may alter gene expression (Fig. 4 F). For instance, the
 utation c hr5_151661589:G > C is located in the UTR region of

PARC , whic h is highl y expr essed in metastatic tumors [ 31 ], poten-
ially indicating the invasiveness of the tumor margin. Similarly,
he UTR mutation chr7_23274960:A > T in GPNMB may also influ-
nce GPNMB expr ession, ther eby pr omoting tumor metastasis [ 32 ]
 Supplementary Fig. S6 B). We further investigated the genes asso-
iated with SNVs pr edominantl y pr esent in tumor mar gins and
ound them to be highly related to the extracellular matrix and
ell adhesion processes (Fig. 4 G), suggesting that the tumor cell in
he adjacent margins may help reshape the microenvironment,
otentially contributing to tumor immune escape [ 33 ]. To verify
his, we examined the inflammatory response and hypoxia pro-
esses, whic h ar e r eported to be essential in tumor immune es-
ape [ 34 , 35 ]. We found that the expression of genes related to both
athways declined along with the normalized SNV count in the
umor margins as the distance increased from the tumor bound-
ry (Fig. 4 H, Supplementary Fig. S6 C). This suggests that tumor
xpansion may lead to the emergence of new tumor cells at the
ar gin, whic h could subsequently give rise to novel SNVs. 
The relationship between the characteristics of the tumor mar-

in micr oenvir onment and tumor pr ogr ession r emains lar gel y un-
no wn. To address this, w e plotted the normalized SNV counts
gainst the distance to the tumor boundaries. We found that SNV
ccumulation was negatively correlated with the distance from
he tumor boundary (Fig. 4 I), a phenomenon similar to the higher
omatic copy number alteration (SCNA) burden observed in the
umor center [ 36 ]. Furthermore, we observed varying rates of de-
line in the mutational dynamics at the tumor margins across tu-
or samples and found that the rate of decline in mutational dy-

amics is highly correlated with the immune activity of the tumor
ection (Fig. 4 J). Tumors with higher immune activity exhibited a
lo w er decline in mutational dynamics, suggesting that the tumor
argin may harbor more neoantigens, leading to the accumula-

ion of immune cells. 
pa tiall y correla ted SNVs contribute to reshaping
umor micr oenvir onments synergistically 

ubsequently, we aimed to identify specific SNVs responsible for
 esha ping the micr oenvir onment of the tumor mar gins. To r e-
uce the sparsity of the spatial SNV matrices, SpatialSNV parti-
ioned the genome into 100,000-bp windows and a ggr egated SNV
 v ents in eac h window for eac h spatial spot. We hypothesized that
NVs occurring in close spatial pr oximity ar e geneticall y associ-
ted. Ther efor e, we calculated the spatial correlations between
NV windows and constructed a connectivity gr a ph of the SNV
indows for SNV cluster detection (Fig. 5 A). Using the Leiden al-

orithm, we partitioned SNVs into different groups, termed SNV
r oups. SNV gr oups exhibited mor e significant spatial distribu-
ion patterns than the individual SNVs they contained (Fig. 5 B,
upplementary Fig. S7 A). The spatial patterns of SNV groups dif-
er ed fr om eac h other (Fig. 5 C), indicativ e of differ ent biological
r ocesses. Consequentl y, we examined the corresponding genes
f eac h SNV gr oup and found them to be involved in distinct GO
erms . For example , SNV gr oup 1 was primaril y associated with
hemokine activity, while SNV group 2 mainly affected compo-
ents related to the extracellular matrix (Fig. 5 D), consistent with
he specific spatial distribution of SNV group 2 at the tumor mar-
ins. Considering that the extracellular matrix is highly related to
pithelial–mesenc hymal tr ansition (EMT) [ 37 ], we speculated that
NVs within SNV group 2 may contribute to the tumor EMT pro-
ess. We then performed gene set variation analysis (GSVA) [ 38 ]
nalysis and confirmed that genes associated with SNVs within
NV gr oup 2 wer e highl y enric hed in the EMT pathway (Fig. 5 E).
imilar SNV groups were also observed across tumor samples. For
nstance, SNV group 1 of the CRC-P19-T sample was distributed
t the tumor margins and was also highly enriched in the EMT
athway ( Supplementary Fig. S7 B–D). These data suggested that
enes involved in similar biological processes may mutate syner-
istically. 

To r e v eal the potential connections between SNV groups, we
nalyzed the levels of calculated connectivity between SNVs
Fig. 5 F). We found that some SNV windows had higher con-
ectivity than others. In SNV group 2, for example, chr22@328,
 hr7@232, and c hr19@449 wer e associated with TIMP3, GP-
MB, and APOE, r espectiv el y, whic h ar e marker genes of tumor-
ssociated macr opha ges (TAMs) (Fig. 5 G). This suggests that SNV
roup 2 may reflect the presence of TAMs in the tumor microenvi-
onment and the genomic alterations driven by their strong tran-
criptional activity. Ther efor e, we examined the TAM signature
nd observed that the TAM signal was highly colocalized with
NV group 2 (Fig. 5 H). Moreover, we found that the pleiotrophin
PTN) signaling pathway was also highly expressed around these
egions, suggesting that SNV group 2 may be responsible for the
AM micr oenvir onment at the tumor margins. In the CRC-P19-T
ection, SNV group 1 contained highly connected SNV windows
uc h as c hr22@455, c hr3@136, and c hr16@555 ( Supplementary
ig. S7 E), as well as associated with tumor metastasis–related
enes of FBLN1 , FBLN2 , and MMP2 [ 39–41 ], r espectiv el y. Another
ighly connected SNV window, chr5@1393, is associated with
ZB1 ( Supplementary Fig. S7 F), an endoplasmic reticulum stress-

elated gene in B cells [ 42 ]. We also observed B-cell and plasma cell
arker genes such as JCHAIN and CD27 in SNV group 1 enriched

egion ( Supplementary Fig. S7 G), suggesting high transcriptional
ctivity of B cells and plasma cells . T hese findings sho w ed that
patialSNV is able to identify SNV groups composed of SNVs with
imilar spatial patterns and biological functions, which contribute
o the tumor micr oenvir onment syner gisticall y. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
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Figure 5: Spatially correlated SNVs contribute to shaping tumor microenvironments synergistically. (A) Schematic depicting the methodology for 
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patialSNV identifies tumor region–specific 

xonic nonsynonymous SNVs as potential 
eoantigens 

umorgenesis-associated SNVs may serve as therapeutic targets.
pecifically, those exonic nonsynonymous SNVs may result in
eoantigens and subsequently activate the adaptive immune sys-
em. To identify potential neoantigens from exonic nonsynony-

ous SNVs in situ , SpatialSNV used sliding window translation

o  
f exonic mutations to predict potential neoantigen peptides
nd filtered out normally expressed peptides by searching pub-
ic databases and pr otein fr om the human coding DNA sequence
CDS) (Fig. 6 A). In CRC samples (CRC-P59-T1, CRC-P59-T1, CRC-
67-T), we found thousands of mutations occurring in gene exon
egions, most of which were nonsynonymous SNVs (Fig. 6 B). We
bserved that these nonsynonymous SNVs from different sam-
les of the same patient ov erla pped significantl y, while those fr om
ther patients also shared a substantial proportion of nonsynony-
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Figure 6: SpatialSNV r e v eals potential neoantigens in tumors. (A) Schematic illustrating the methodology for constructing mutated peptides. (B) 
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of impact on protein coding caused by SNVs. (C) Venn diagram depicting the quantity and shared extent of nonsynonymous SNVs across different 
samples. (D) Heatmap displaying mutated peptides that are supported by the common epitope database and their sharing levels among samples. (E) 
Bar plot showing the detection of genes originating the mutated peptides featured in panel D across different samples. (F) Spatial visualization of 
wild-type and mutated KRAS or S100A11 spots. (G) Bar plot illustrating the predicted binding affinity of mutated peptides to different HLA types. (H) 
Heatma p gener ated by inferCNV depicting the inferr ed copy number alter ation (CNA) pr ofiles for spots exhibiting the c hr1_152033685 (S100A11 L40P ) 
mutation. (I) UMAP projection of the single-cell data from GSE132465. (J) Dot plot of the expression of primary markers for tumor and S100A11 across 
different clusters. (K) Dot plot of the expression of primary markers for tumor and S100A11 across different samples. 
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ous SNVs (Fig. 6 C), indicating potential ther a peutic neoantigens
or CRC. 

To identify potential ther a peutic neoantigens fr om the nonsyn-
nymous SNVs, we used the HLA Ligand Atlas database [ 43 ] and
rotein CDS to exclude epitopes presented in healthy individuals.
ubsequently, w e sear ched the IEDB [ 44 ], MHC Motif Atlas [ 45 ], and
bPepNeo [ 46 ] to find known peptides presented by HLAs (Fig. 6 D).
e identified 64 potential neoantigens from the 3 CRC samples

Fig. 6 D, Supplementary Table S1 ). We then examined the corre-
ponding genes of these neoantigens and found that mutated pep-
ides from KRAS , SRP9 , MUC3A , and S100A11 appeared in multiple
amples (Fig. 6 E). KRAS m utations a ppear ed in a ppr oximatel y 40%
f patients with CRC, pr edominantl y KRAS G12D and KRAS G12V m u-
ations [ 47 ]. T cells targeting KRAS G12D and KRAS G12V have been
r ov en to contr ol tumors efficientl y [ 48 , 49 ]. MUC3A can pr omote
he pr ogr ession of color ectal cancer thr ough the PI3K/Akt/mTOR
athway [ 50 ] and has been predicted to be a potential chimeric
ntigen receptor (CAR) T-cell therapy target [ 51 ]. We traced the
patial distribution of these nonsynonymous mutations and ob-
erved that although KRAS and S100A11 were expressed in various
 egions, the m utated gene form was mainl y r estricted in the tu-
or regions (Fig. 6 F, Supplementary Fig. S8 A), suggesting potential

eoantigens. 
Mutated peptides should be presented by the HLA molecules

o serve as neoantigens. We determined the HLA types of the pa-
ients from the spatial transcriptomics data using T1K [ 52 ] and
ound both patients to be HLA-A ∗11:01 and HLA-C ∗07:02 allele
ypes ( Supplementary Table S2 ). We then performed HLA affin-
ty prediction of the mutated peptides using TransPHLA [ 53 ]. We
ound that mutated KRAS G12D and KRAS G12V peptides were pre-
icted to hav e str ong affinity with HLA-A ∗11:01, with a KRAS G12V 

eptide also predicted to be presented by HLA-C ∗07:02 (Fig. 6 G).
onsidering that HLA-A ∗11:01 is one of the most abundant HLA
lleles, especially in East Asia [ 54 ], these mutated KRAS peptides
an potentially be good T cell receptor (TCR) T-cell therapy targets.
esides mutated KRAS peptides, we also found a peptide “LSK-
EFPSF” deriv ed fr om S100A11 L40P to hav e a str ong affinity with
LA-C ∗07:02 (Fig. 6 G). To verify whether S100A11 is expressed

n CRC tumor cells, we explored the CNV profile of the spots
ith S100A11 L40P mutation and found them to have significant

enome alterations (Fig. 6 H, Supplementary Fig. S8 B). Moreover,
e examined the S100A11 expression in published CRC single-

ell sequencing data [ 55 ] and confirmed that S100A11 is highly
xpressed in CRC tumor cells (Fig. 6 I–K, Supplementary Fig. S8 C).
hese data suggested that S100A11 L40P can serve as a potential
her a peutic tar get for pr ecision medicine design. 

iscussion 

n this study, we de v eloped SpatialSNV for calling and analyz-
ng effective SNVs from spatial transcriptomics data. Incorporat-
ng spatial mutation information provides a more comprehensive
issue context of tumors. We observed significant platform bias
hen calling SNVs from spatial transcriptomics data generated by
iffer ent tec hniques, likel y attributed to the v arying RNA ca ptur e
fficiency and sequencing depth among the platforms. Notably,
tereo-seq data tend to have higher total UMI counts, enhancing
ffective SNV calling [ 56 ]. Although SpatialSNV was de v eloped on
patial transcriptomics data, calling SNVs from transcriptomics
ata still has limitations: a r elativ el y higher false-positive rate [ 6 ,
7 ] and high correlation with gene expression, compared to DNA-
eq data. We selected SNVs supported by multiple unique reads
nd observ ed acr oss se v er al spots to reduce the false-positive er-
 or r ate. Furthermor e, we normalized the SNV counts against the
equencing depth (total UMI count) at each spot, which has been
r ov ed to reduce the influence of gene expression on SNV quanti-
ies efficiently. T hus , our study pro vides a r elativ el y r obust method
o r ecov er SNV information fr om spatial tr anscriptomics data.
or eov er, SpatialSNV can also be modified for spatial DNA se-

uencing data such as Slide-DNA-seq. Due to the poor sequencing
epth, we could not r ecov er enough SNVs for subsequent analy-
is, demonstrating that calling SNVs from spatial DNA-seq data
emains a big challenge. More precise spatial SNV analyzing will
eed a further de v eloped spatial DNA-seq technology with higher
ata quality and deeper sequencing depth. It is also important
o note that platforms such as Visium, Stereo-seq, and Slide-seq
r e pol y(T) ca pturing-based sequencing methods, whic h may in-
roduce a strong bias to w ar d SNVs near the 3 ′ end. Recent spa-
ial tec hniques, suc h as P atho-DBiT [ 58 ], could pr ovide a r elativ el y
 v en gene body cov er a ge. This experimental adv ancement may
elp to impr ov e the efficiency in ca pturing v ariations acr oss the
ene body. 

Many cancer cells at solid tumor margins exhibit reversible in-
 asiv eness, coor dinated b y a de v elopmental r egulatory pr ogr am
nown as EMT [ 59 ]. Specific conditions, such as hypoxia and fac-
ors such as cytokines secreted by stromal cells, can induce EMT,
her eby pr omoting inv asiv eness [ 27 ]. EMT r egions ar e associated
ith tumor pr ogr ession and often coexist with immune responses.
 high degree of immune infiltration is closely linked to EMT, sug-
esting that EMT pr ogr ess closel y inter acts with the imm une sys-
em. Our data sho w ed that the mutational dynamics of the tu-

or mar gins ar e involv ed in hypoxic and imm une r egulatory pr o-
esses, whic h ar e essential in shaping the tumor micr oenvir on-
ent and promoting tumor expansion [ 60 ]. We recognized that
utations at the tumor margins may originate fr om ne wl y pr o-

iferating tumor cells , which ma y influence the tumor microen-
ironment in the peripheral regions. Ho w ever, it is important to
ote that somatic mutation frequencies are also high in normal
onblood tissues [ 61 ]. Ther efor e, when examining the mutational

andscape of the tumor microenvironment, the extent of the influ-
nce of tumor cells on this landscape remains unclear. Although
he tumor center in clear cell renal cell carcinoma (ccRCC) has
een c har acterized by pr olifer ation, necr osis, and hypoxia [ 36 ], the
umor margin exhibits significant collagen deposition, leading to
ncreased ECM density and stiffness, which further reduces oxy-
en supply and creates a hypoxic environment [ 62 ]. By integrating
NVs with the spatial context, we identified spatially correlated
NVs , termed SNV groups . We found that SNVs within the same
roup tend to be involved in similar biological pr ocesses. Mor eov er,
e noticed that specific SNV gr oups ar e associated for the EMT
rocess of the tumor margin regions, which are conserved across
ifferent tumor samples, indicating that these SNV groups may be
ritical factors in regulating the tumor margin environment. We
bserved these intriguing phenomena in the collected samples,
ut the potential role of SNV groups in EMT requires more data
o support, as does the role of SNVs at the tumor margin. More-
ver, the biological significance of SNV groups may require further
nvestigation. We hypothesize that SNVs appearing in other cells

ay indicate high transcriptional activity in these cells within the
umor micr oenvir onment, leading to certain genetic mutations.
ince SNVs are essential sources of tumor-specific neoantigens,
hese SNVs can potentially be used as therapeutic biomarkers tar-
eting tumor margin regions. 

Although SNVs are the most prevalent type of mutation at the
enomic le v el in tumor cells [ 63 ], CNVs involving tumor driv er
enes are generally regarded as the characteristics of many can-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf065#supplementary-data
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cers [ 64 , 65 ]. Analyzing SNVs and CNVs at the single-cell level 
allows for the reconstruction of tumor evolutionary pathways 
[ 66 , 67 ], aiding in identifying tumor driver genes. Notably, tumor- 
specific neoantigens, resulting from mutations in tumor cells, 
pr esent pr omising tar gets for cancer imm unother a py [ 63 ]. Al- 
though neoantigens can arise from structural variations such as 
CNVs [ 68 ], most tumor neoantigens ar e deriv ed fr om SNVs [ 69 ,
70 ]. In our study, we used SpatialSNV to identify tumor region–
specific SNVs in CRC samples. By focusing on the nonsynonymous 
SNVs in exonic regions of protein-coding genes, we found poten- 
tial neoantigens of the tumors and predicted their HLA affini- 
ties. With this a ppr oac h, we identified KRAS G12D , KRAS G12V , and 

S100A11 L40P mutations as potential therapeutic targets. KRAS G12D 

and KRAS G12V are common mutations used as targets for univer- 
sal ther a py str ategies, while S100A11 L40P is mor e likel y an indi- 
viduall y expr essed m utation, whic h can be targeted in person- 
alized ther a pies. We pr ovided a neoantigen prediction guidance 
in this study, but did not perform experimental validations. How- 
e v er, the KRAS associated neoantigens, which have been widely 
documented in the liter atur e to be genuinel y pr esent in color ec- 
tal cancer, could demonstrate the reliability of our methodology 
to some extent. Ther efor e, spatiall y r esolv ed SNVs ar e useful in 

finding ther a peutic tar gets for pr ecision medicine design. 

Methods 

Spa tial tr anscriptomics da ta processing 

For Visium ( RRID:SCR _ 023571 ) spatial transcriptomics, we em- 
plo y ed Space Ranger version 1.3.1 ( RRID:SCR _ 025848 ) to gener- 
ate binary alignment map (BAM) files, utilizing the hg38 r efer ence 
genome (GRCh38-2020-A provided by 10x Genomics). For the anal- 
ysis of Stereo-seq data, we utilized the Ster eo-seq Anal ysis Work- 
flow [ 71 ] (SAW V4.0, RRID:SCR _ 025001 ), with default parameters 
to align sequences against the hg38 r efer ence genome, using the 
GRCh38.p12 GTF file for gene annotations. Slide-DNA-seq was per- 
formed in accordance with the established protocols. For Slide- 
RN A-seq, w e implemented the Drop-seq tools integrated within 

the Slide-seq Tools suite, aligning to the hg38 r efer ence genome,
consistent with the r efer ence used for Visium analyses. 

Analysis and visualization of spatial transcriptomics data were 
conducted using Scanpy [ 72 ] ( RRID:SCR _ 018139 ). For the Stereo- 
seq platform, gene counts were aggregated within 100 × 100 spot 
blocks to construct the bin100 gene count matrix. Spots contain- 
ing fewer than 100–200 genes and genes present in fewer than 10 
spots were excluded to ensure data quality. Additional spot fil- 
tering was applied based on metrics such as n_genes_by_counts 
and pct_counts_mt, which were tailored to the specific c har acter- 
istics of each sample. Counts were normalized using the normal- 
ize_total function in Scanp y, follo w ed b y dimensionality reduction 

through principal component analysis (PC A). T he top 15 princi- 
pal components were selected to construct neighbor gr a phs with 

a parameter setting of 15 neighbors. Clustering of spatial spots 
was performed using the Leiden algorithm to identify potential 
clusters. Spatial domains within the tissue, such as tumor region,
adjacent margins, and normal region, were preliminarily catego- 
rized using marker genes, including MKI67 , TP53 , EPCAM , VIM , and 

PTPRC . 

Inferred copy number v aria tion (inferCNV) 
analysis 

To validate the effectiveness of tumor regions identified from 

spatial transcriptomics, we used inferCNV to verify copy num- 
er variations in different areas further to determine the ac-
uracy of the region segmentation. The gene matrix was used
s input for inferCNV (inferCNV of the Trinity CT A T Project,
RID:SCR _ 025804 ). Sim ultaneousl y, c hr omosomal positions for all
enes are annotated b y sear ching the GTF file, which also serves
s input for inferCNV. The cnv.tl.infercnv function was set with
he following parameters: lfc_clip = 3, window_size = 250, and
xclude_c hr omosomes = (“c hrX, ”“c hrY”). The normal r egion was
elected as a r efer ence for inferCNV analysis. 

xpression track visualization 

he BigWig files ar e cr eated fr om BAMtype files using the pr ogr am
amCov er a ge fr om deepTools ( RRID:SCR _ 016366 ) [ 73 ] with pa-
ameters “–binSize 1,” “–normalizeUsing RPKM,” “ –exactScaling,”
nd “–minMappingQuality 10.” All BigWig data were stored in Cy- 
erse ( RRID:SCR _ 014531 ) [ 74 ] for uploading to the UCSC genome
rowser ( RRID:SCR _ 005780 ) [ 75 ] for visualization. 

oma tic muta tion calling with mutect2 

ligned SAM files wer e conv erted to BAM files and sorted by co-
rdinate using Samtools ( RRID:SCR _ 002105 ) [ 76 ] (version 1.11). To
 emov e duplicated r eads on spatial tr anscriptomics data, we uti-
ized a custom Python script to combine UMI and barcode tags.
he MarkDuplicate function of Picard ( RRID:SCR _ 006525 ) was ap-
lied to r emov e duplicated reads from each BAM file. 

GATK’s Mutect2 [ 16 ] ( RRID:SCR _ 026692 , version 4.2.6.1) was
sed to call mutations according to their somatic pipeline. We first
sed ad dOrRe placeReadGroups to ad d group information to the
AM file, which facilitates the recognition of tumor files by Mu-
ect2. Following GATK’s recommendations for calling mutations 
n transcriptomes, we proceeded with splitNCigarReads and Ap- 
l yBQSR to pr ocess the BAM files, wher e Appl yBQSR’s –known-
ites parameter used dbsnp_151.hg38.vcf.gz from the GATK re- 
ource bundle. Mutect2’s tumor-only mode was employed for mu- 
ation calling in spatial transcriptomics with default parameters,
here the germline resource and Panel of Normals were af-only-

nomad.hg38.vcf.gz and 1000g_pon.hg38.vcf.gz r espectiv el y, fr om 

he GATK resource bundle. Although Mutect2 is not the optimal
hoice for calling mutations from DN A, w e utilized Mutect2 with-
ut the splitNCigarReads option for SNV calling in Slide-DNA-seq.

Follo wing SNV calling, w e emplo y ed FilterMutectCalls to fil-
er the SNVs, excluding those annotated with tags such as
eak_evidence , germline , strand_bias , slippage , contamination,
nd panel_of_normals in the VCF file. We then traced the reads
ligned to each SNV locus, extracting the coordinates of reads that
ontained the alternative base . T hese coordinates were used to
onstruct a binary matrix, indicating the occurrence of specific 
NV e v ents at each spot. Specifically, on the Stereo-seq platform,
NV counts were aggregated within blocks of 100 × 100 spots to
orm the bin100 SNV count matrix. For an SNV to be considered
ffective, it was required to be supported by at least 20 unique
eads and appear in at least 5 spots. Effective SNVs were anno-
ated using ANNOVAR ( RRID:SCR _ 012821 ) [ 77 ]. 

ene mutation frequency 

e quantified the number of effective SNV sites per gene to assess
ene mutation frequency and normalized these figures by gene 
ength. A higher gene m utation fr equency suggests an increased
 utational pr essur e on that gene. 

https://scicrunch.org/resolver/RRID:SCR_023571
https://scicrunch.org/resolver/RRID:SCR_025848
https://scicrunch.org/resolver/RRID:SCR_025001
https://scicrunch.org/resolver/RRID:SCR_018139
https://scicrunch.org/resolver/RRID:SCR_025804
https://scicrunch.org/resolver/RRID:SCR_016366
https://scicrunch.org/resolver/RRID:SCR_014531
https://scicrunch.org/resolver/RRID:SCR_005780
https://scicrunch.org/resolver/RRID:SCR_002105
https://scicrunch.org/resolver/RRID:SCR_006525
https://scicrunch.org/resolver/RRID:SCR_026692
https://scicrunch.org/resolver/RRID:SCR_012821
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ormalization of SNV counts 

or the calculation of the normalized SNV cont, in order to elimi-
ate the impact of sequencing depth on SNV counts, we used the
MI counts of each spot to normalize the expression of SNVs. 

Norm SNV i = log 

( 

s i ∑ n 
j=1 u j 

+ 1 

) 

here i is the i th SNV, s i r epr esents the SNV count number, u j 
 epr esents the UMI count number, and n is the total number of
enes. 

dentification of tumor subclones and 

seudotime analysis 

he expression matrix from spots designated as tumor regions
as extracted. This matrix was then normalized and subjected to
imensionality reduction clustering via Scanpy, consistent with
he methods described in the “Spatial Transcriptomics Data Pro-
essing.”

Next, normalized SNV count matrices were extracted from
pots designated as tumor r egions. Anal ytical objects were cre-
ted using Monocle2’s GaussianFF model ( RRID:SCR _ 016339 ) [ 29 ].
NVs for inferring spot pseudotime were identified by Scanpy
s differential SNVs (log-fold change ≥ 1, P < 0.5). Pseudotime
rdering of different spots was determined using reduceDimen-
ion with norm_method = none and orderCells function. Visualiza-
ion of SNVs acr oss e volutionary br anc hes was facilitated using
ython. 

orrela tion betw een normalized SNV counts and 

istance 

he KDTree function in the Python pac ka ge scip y w as used for
ear est-neighbor searc h (NNS). The av er a ge distance and feature
xpression of the 5 ( k = 5) nearest tumor region spots around
ac h adjacent mar gins spot wer e calculated. We emplo y ed the
cipy.stats.linr egr ess function to fit a linear model between the
ogarithm of normalized SNV count and the logarithm of av er a ge
istances from the tumor for each spot. The correlation between
hese was quantified using the coefficient of determination ( R 

2 ),
eriv ed fr om the squar ed Pearson corr elation coefficient pr ovided
y the r egr ession. 

nrichment analysis 

or GO analysis and visualization, we utilized the R pac ka ge clus-
erPr ofiler ( RRID:SCR _ 016884 ) [ 78 ]. GO enric hment anal ysis was
onducted using the enric hGO function, tar geting specific gene
ets with the following k e y parameters: pAdjustMethod was set
o “BH” for multiple testing correction, and qvalueCutoff was es-
ablished at 0.01 to filter significant terms. 

The Gene Matrix Transposed File Format (GMT) file,
.all.v2023.1.Hs .symbols .gmt, w as sour ced from the MSigDB
 79 ] database to facilitate these analyses. For GSVA analysis
nd visualization, w e emplo y ed the Python pac ka ge gsea py
 RRID:SCR _ 025803 ) [ 80 ]. The gp.pr er ank function was utilized for
SVA analysis on specified gene sets, with parameters configured
s min_size = 5, max_size = 1,000, and permutation_num = 1,000
o ensure robust statistical interpretation. 

For GSEA analysis and subsequent visualization, the raw ex-
ression matrix from spatial transcriptomics data was first con-
erted into a Seurat [ 81 ] object. Normalization was performed us-
ng the NormalizeData function. Subsequent GSEA analysis was
onducted using the gsva function from the GSVA [ 38 ] R pac ka ge,
ith kcdf set to “Gaussian” to assess the enrichment of gene sets
n the context of our spatial transcriptomics data. 

ssessment of immune scoring in spatial 
ranscriptomics 

o e v aluate the pr oportion of imm une cells in eac h section, we
tilized the R pac ka ge estimate [ 82 ]. Initially, gene count matri-
es for each section were aggregated to create pseudobulk data.
hese pseudobulk data were normalized using counts per million

CPM) normalization follo w ed b y log tr ansformation. Imm une cell
r oportions wer e then assessed using the estimateScor e function,
pecifying the platform = “affymetrix” parameter. 

alculation of SNV spatial correlations and 

onstruction of SNV groups 

ue to the abundance of SNV features and the proximity of
ome SNVs on the genome, we implemented a sliding window ap-
r oac h to a ggr egate SNVs. SNVs wer e consolidated into windows
f 100,000 bp each. We hypothesized that the co-occurrence of
NVs in space may indicate alterations in certain biological pro-
esses . T his phenomenon of co-occurrence makes UMI normal-
zation less crucial; ther efor e, we utilized unique counts of SNVs
o r epr esent the expr ession le v els of SNV windows. On the r esult-
ng SNV windows counts matrix, distances between spots were
omputed using the K-nearest neighbors (KNN) method. Addition-
ll y, to r efine the SNV windo ws matrix, w e applied a Gaussian
eighting scheme to attenuate the influence of distant neighbors,
nhancing the accuracy and relevance of the spatial genomic
ata, 

M w = W × M 

W i j = exp 

( 

−
D 

2 
i j 

2 α2 

) 

her e M r epr esents the SNV windows count matrix, and W is a
atrix of weights applied to adjust these counts based on spatial

roximity between spots. Each weight W i j is calculated using a
aussian function of the squared distances between spots, mod-
rated by a scaling parameter α. M w represents the adjusted SNV
indows matrix. 
Due to the high sparsity in the SNV windo ws matrix, w e fo-

used on spots r epr esenting the top 50% of expression levels for
ach window. This approach allo w ed us to calculate correlations
pecifically among these more informative spots, thereby optimiz-
ng our analysis efficiency, 

W corr = M 

T 
w × M w 

her e W corr r epr esents the spatial corr elation between SNV win-
ows, and M w r epr esents the transposed matrix of adjusted SNV
indows. 
After isolating the top 50% of the most correlated windows for

ach SNV windo w, w e r efined the corr elation matrix using Gaus-
ian decay. A directed graph was then constructed, with nodes rep-
esenting the SNV windows and edge weights derived from the
djusted correlations . T hen, we applied the Leiden algorithm to
luster SNVs, setting the r esolution par ameter at a ppr oximatel y 5
o ensure distinct SNV groups were identified. This approach was
hosen to preserve groups of SNVs with strong internal correla-
ions. Finally, the UMI count for each spot is used to normalize the
NV group counts to eliminate the effects of sequencing depth. 

https://scicrunch.org/resolver/RRID:SCR_016339
https://scicrunch.org/resolver/RRID:SCR_016884
https://scicrunch.org/resolver/RRID:SCR_025803
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Identification of representati v e genes in SNV 

windows 

Since SNV windows are generated by integrating SNVs, extract- 
ing r epr esentativ e genes fr om SNV windo ws inv olves focusing on 

the gene locations of all SNVs within these windows. We disregard 

those SNV windows that contain onl y inter genic SNVs. When all 
SNVs in a window are located within the same gene, that gene 
is designated as the r epr esentativ e gene. If an SNV window en- 
compasses multiple genes, we select the gene whose expression 

pattern aligns with that of the entire SNV window as the r epr e- 
sentative gene. 

Calculation of Moran’s I 
Moran’s I was calculated using Squidpy’s ( RRID:SCR _ 026157 ) [ 83 ] 
spatial_neighbors and spatial_autocorr functions to assess the 
spatial autocorrelation of SNV groups and individual SNVs. 

TAM signature 

To calculate the spatial signature of TAMs, we selected CD68 ,
CD14 , MMP2 , MMP9 , VTCN1 , CD163 , and MRC1 as the gene set for 
TAMs . T he scor es wer e computed using the sc.tl.scor e_genes func- 
tion in Scanpy. 

Cell communication in spatial transcriptomics 

COMMOT [ 84 ] was utilized to analyze and visualize cell commu- 
nication within spatial transcriptomics data. Initially, the human- 
specific cell communication database from CellChat was selected 

using the ligand_receptor_database function. Potential ligand–
receptor pairs were filtered using the filter_lr_database function 

with a minimum cell percentage threshold set at 0.01. Subsequent 
analysis of spatial cell communication was conducted through 

the spatial_communication function, applying parameters such 

as dis_thr = 500 for the distance thr eshold, heter omeric = True to 
consider heteromeric complexes, and pathway_sum = True to ag- 
gregate signals by pathway. 

Neoantigen prediction 

We extr acted nonsynon ymous SNVs annotated by ANNO- 
VAR to construct a potential mutant peptide database. Uti- 
lizing amino acid mutation annotations provided by ANNO- 
VAR, we extracted 15 amino acids surr ounding eac h m utated 

site from the CDS reference matching the reference genome 
(GCF_000001405.38_GRCh38.p12). A sliding window a ppr oac h 

generated potential mutant peptides ranging from 8 to 15 amino 
acids. Using a Python script, we obtained all peptides of 8–15 
amino acids in length from the reference CDS and peptides from 

the HLA Ligand Atlas database [ 43 ] to filter epitopes derived from 

normal pr oteins. Concurr entl y, w e emplo y ed IEDB [ 44 ], MHC Mo- 
tif Atlas [ 45 ], and dbPepNeo [ 46 ] to identify known peptides pre- 
sented by HLAs. Additionally, the affinity between neoantigens 
and HLA is predicted using T1K with default parameters. 

Availability of Source Code and 

Requirements 

Project name: SpatialSNV 

Pr oject homepa ge: https:// github.com/ YoungLi88/ SpatialSNV 

Operating system(s): Linux 
Pr ogr amming langua ge: Python 

Other r equir ements: Python 3.8 or higher 
License: MIT License 
RRID:SCR _ 026221 
dditional Files 

upplementary Fig. S1. The quality control of spatial RNA and
NV data acr oss v arious sections. (A) Table pr esenting the data
ources for each sample. (B) Bar plot displaying the number of
nique reads supporting SNVs for each section. (C) Violin plot il-

ustrating the distribution of basic quality control metrics for spa-
ial transcriptomics data across all sections, including the number 
f genes by counts (n_gene_by_counts), total counts, and percent- 
ge of mitochondrial counts (pct_count_mt). (D) Bar plot showing 
he quantity of clean reads across different platforms, with error 
ars indicating variability among sections. (E) Bar plot depicting 
he number of effective reads for all section. 
upplementary Fig. S2. Relationship between spatial transcrip- 
omics and spatial SNVs. (A) Spatial visualization illustrating 
he total RNA UMI counts (left), SNV counts (mid), and normal-
zed SNV per UMI (Normalized SNV Count) (right). (B) Scatter- 
lots correlating SNV count and normalized SNV count with 

MI count per spot, including the Pearson correlation coefficient 
 R 

2 ). 
upplementary Fig. S3. The definition of spatial region. (A) Spatial
isualization of region clustered by spatial transcriptomics and 

he dot plot showing the main marker of each cluster region. 
upplementary Fig. S4. The inferCNV results of each section. (A)
eatma p gener ated by inferCNV displaying inferr ed CNA pr ofiles

or each region clustered by spatial transcriptomics. 
upplementary Fig. S5. Tr anscriptional c har acteristics of tumor
ubclones in the DCIS1 section. (A) Heatmap of the top 10 differ-
ntial genes of 3 subclones. (B) Spatial visualization of main dif-
erential genes of 3 subclones. (C) Spatial visualization of SNV and
NA clustering for tumor subclones. 
upplementary Fig. S6. Characteristics of SNVs at tumor mar- 
ins. (A) Violin plot illustrating the distribution differences of SNV
ypes across cluster regions in various sections. (B) Spatial visual-
zation of SPARC and GPNMB gene expression and the distribution
f corresponding re presentati ve SNVs. (C) Scatterplot showing the
orrelation between GSVA scores for inflammatory response and 

ypoxia with normalized SNV counts on spatial spots, including
he Pearson correlation coefficient ( R ). 
upplementary Fig. S7. SNV gr oup r e v eals the tumor micr oen-
ironment. (A) Spatial visualization of SNV group 0, including the
op 8 SNVs ranked by Moran’s index. (B) Spatial visualization high-
ighting SNV group associated with tumor-adjacent regions in the 
RC-P19-T. (C) GO term analysis of genes within the SNV windows
f SNV group 1 in CRC-P19-T. (D) Gene set variation analysis illus-
r ating the enric hed pathways for genes within all SNV windows
f SNV group 1 of CRC-P19-T. (E) Network gr a ph showing the con-
ectivity among SNV windows in SNV group 1 of CRC-P19-T, with
oints r epr esenting SNV windows and line lengths indicating the
egr ee of corr elation. (F) Spatial visualization of the spatial distri-
ution of highly connected SNV windows (top) and the r epr esen-
ative genes contained within these windows (bottom). (G) Spatial 
isualization of markers associated with B cells in the CRC-P19-T
ection. 
upplementary Fig. S8. Predicting neoantigens from spatial SNVs.

A) Sank e y dia gr am illustr ating the differ ences in m utated and
 efer ence base occurrences across various cluster regions. (B)
eatma p gener ated by inferCNV displaying inferr ed CNA pr ofiles

or mutated and nonmutated spots of S100A11 in the CRC-P59-
2 sample. (C) Single-cell RNA-seq analysis from GSE200997. Top: 
MAP projection showing different clusters and epithelial cell dis- 

ributions. Bottom: Both UMAP projection and violin plot high- 
ighting the specific expression of S100A11 in tumor cells. 

https://scicrunch.org/resolver/RRID:SCR_026157
https://github.com/YoungLi88/SpatialSNV
https://scicrunch.org/resolver/RRID:SCR_026221
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upplementary Table S1. Potential neoantigens from the 3 CRC
amples. 
upplementary Table S2. HLA genotyping prediction. 

bbreviations 

NVs: copy number variants; COAD: colon adenocarcinoma; CRC:
olorectal cancer; DCIS: ductal carcinoma in situ; GO: Gene Ontol-
gy; HLAs: human leukocyte antigens; LIHC: liver hepatocellular
arcinoma; SNVs: single-nucleotide variants; SV: structural varia-
ion; UMI: unique molecular identifiers; UTR: untranslated region.
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