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Abstract

Background: The dynamics of single-nucleotide variants (SNVs) play a critical role in understanding tumor development, yet their
influence on shaping tumor microenvironments remains largely unexplored. Spatial transcriptomics offers an opportunity to map
SNVs within the tumor context, potentially uncovering new insights into tumor microenvironment dynamics.

Results: This study developed SpatialSNV for identifying effective SNVs across tumor sections using multiple spatial transcriptomics
platforms. The analysis revealed that SNVs reflect regional tumor evolutionary traces and extend beyond RNA expression changes.
The tumor margins exhibited a distinct mutational profile, with novel SNVs diminishing in a distance-dependent manner from the
tumor boundary. These mutations were significantly linked to inflammatory and hypoxic microenvironments. Furthermore, spatially
correlated SNV groups were identified, exhibiting distinct spatial patterns and implicating specific roles in tumor-immune system
crosstalk. Among these, critical SNVs such as S100A11"% in colorectal cancer were identified as tumor region-specific mutations.
This mutation, located within exonic nonsynonymous regions, may produce neoantigens presented by HLAs, marking it as a potential
therapeutic target.

Conclusions: SpatialSNV represents a promising framework for unraveling the mechanisms underlying tumor-immune crosstalk

within the tumor microenvironment by leveraging spatial transcriptomics and SNV-based tissue domain characterization. This ap-
proach is designed to be scalable, integrative, and adaptable, making it accessible to researchers aiming to explore tumor heterogeneity

and identify therapeutic targets.
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Background

Mutation is one of the hallmarks of tumorigenesis, playing a cru-
cial role in programming tumor pathogenesis [1], which emerges
mainly in 3 forms, including single-nucleotide variant (SNV), in-
sertion and deletion (indel), and structural variation (SV). Indels
and SVs, such as copy number variants (CNVs), involve long-
range genomic alterations that are occasionally acquired during
tumorigenesis and remain relatively stable during tumor expan-
sion. SNVs are the most common type of genetic variant, occur-
ring at various loci throughout the genome [2]. Most actionable
causal mutations in diseases, including cancers and many other
genetic disorders, are SNVs [3]. Consequently, sequencing targeted
gene panels has dramatically transformed and facilitated disease
diagnosis and the customization of therapeutic strategies over the
past decade [4]. SNVs accumulate during tumorigenesis and ex-
hibit intercellular heterogeneity [5S]. Therefore, SNVs are theoreti-
cally more capable of tracing the dynamics of tumor development.
However, creating a comprehensive map of SNVs with high reso-
lution and precision remains challenging.

Single-cell sequencing allows us to investigate tumor hetero-
geneity at a single-cell resolution and has greatly extended our
knowledge about tumor evolution [6]. However, losing tissue con-

text information makes revealing intratumor clonal ecosystems
and progression difficult. It is essential to capture tumor muta-
tions in situ to address these issues. Recently, spatially resolved
sequencing technologies have become powerful tools for uncov-
ering tissue slides’ molecular and cellular landscapes, including
clonal distribution, genetic variation, and tumor cell evolution [7,
8]. The spatial structure of intratumor CNVs can be inferred us-
ing spatial transcriptome and genome sequencing [7, 9]. Probe-
based in situ sequencing has been employed toillustrate the clonal
mutation heterogeneity of tumor tissues [10]. While some stud-
ies have restored SNVs to their spatial context [7, 11-13], these
works mostly focused on the clonal evolution of tumors. There
remains a lack of integration across multiple platforms, standard-
ized data formats, and, more importantly, a comprehensive under-
standing of how spatial SNVs shape the tumor microenvironment
in situ.

Here, we developed SpatialSNV for calling and analyzing ef-
fective SNVs on tumor tissues using spatial transcriptome data.
We normalized the SNV count against the total unique molec-
ular identifier (UMI) counts per spatial spot to mitigate the im-
pact of sequencing depth. By further exploring the spatially
distinct SNVs, we demonstrated that SNV patterns are more
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suitable for tracing the spatial clonal evolution of tumors. To gain
deeper insights into tumor microenvironments, we focused on
the tumor margins, a region known for its high genetic and ex-
pressive heterogeneity [8, 14, 15]. We found that the mutational
burden in this region declined in a distance-dependent manner,
associated with the inflammatory and hypoxic conditions in the
tumor margin microenvironment. Furthermore, we used Spatial-
SNV to identify spatially correlated SNVs, termed SNV groups,
and found that SNVs within the same groups exhibited similar
spatial distributions. SNV groups may reflect the states of tumor
cells and surrounding cells in the microenvironment at the tumor
margin. We further observed that critical tumor SNVs, such as tu-
mor driver mutations, exhibit specific spatial patterns within the
tissue context. Examination of exonic nonsynonymous SNVs also
identified KRASC?P, KRASS?Y, and S100A11M0F as tumor region-
specific mutations in colorectal cancer (CRC) samples, which may
generate neoantigens presented by the human leukocyte anti-
gens (HLAs), representing the potential therapeutic target. No-
tably, single-cell RNA sequencing (RNA-seq) analysis showed that
S100A11 was highly expressed in CRC tumor cells, indicating a
potential therapeutic target of SI00A11%F, SpatialSNV integrates
spatial SNV and transcriptomic data to unveil a more comprehen-
sive genetic map of tumor tissue, enhancing our understanding of
how SNVs shape the tumor microenvironment. Moreover, effec-
tive SNVs can be used to pinpoint tumor-specific exonic nonsyn-
onymous mutations, providing potential therapeutic targets for
developing precision medicine strategies.

Analyses

SpatialSNV enables effective SNV calling on
spatial transcriptomics data

To investigate SNVs within tumors in situ, SpatialSNV utilized
Mutect2 [16] to call somatic mutations, using panel of normal
(PON) germline resource from the GATK resource bundle to filter
out potential germline mutations (Methods, Fig. 1A). At the same
time, we tested the performance of spatial SNV on multiple spa-
tial transcriptomics platforms, including Stereo-seq [15, 17, 18],
Visium [19], Slide-seq [20], and Slide-DNA-seq [9] (Supplementary
Fig. S1A). To eliminate false-positive callings caused by low se-
quencing depth, we examined the number of unique reads sup-
porting each SNV (Supplementary Fig. S1B) and only retained
those SNVs supported by more than 20 unique reads. Further-
more, we examined the spatial distribution of SNVs in represen-
tative samples, including “DCIS1,” “CRC-P19-T,” “Slide-RNA-CRC,”
and “Slide-DNA-CRC” (Fig. 1B). Corresponding spatial transcrip-
tomic profiles were also prepared to assist in the analysis of spa-
tial SNVs (Supplementary Fig. S1C). Most SNVs appeared in only
a small number of spots, likely due to technical noise. Spatial-
SNV regarded SNVs detected in multiple spots as effective SNVs,
which might indicate similar evolutionary progress in tissue. Fol-
lowing this quality control process, we found that Stereo-seq had
a relatively high number of effective SNVs, likely due to its higher
sequencing depth. We then assessed the correlation between the
number of SNV types and the number of unique reads per sample.
As anticipated, datasets with higher sequencing depths generally
resulted in more effective SNV callings (Fig. 1C, Supplementary
Fig. S1D). Notably, due to the extremely low sequencing depth,
SpatialSNV could only recover 23 effective SNVs in Slide-DNA-seq
data (Supplementary Fig. S1D, E). Therefore, Slide-DNA-seq data
were notincluded in further analysis. Subsequently, we annotated
the genomic locations of these effective SNVs and found that

SNVs identified through spatial transcriptomics predominantly
originate from gene body regions, with a considerable proportion
in untranslated regions (UTRs) (Fig. 1D, E). Then we compared the
spatial distribution of effective SNVs derived from public data on
the Stereo-seq platform (Fig. 1F). The high consistency of SNVs
among samples from the same patient demonstrates the robust
SNV calling pipeline of SpatialSNV. Moreover, the high correla-
tion of SNVs within the same tumor and across different tumors
suggests associations with driver mutations during tumorigene-
sis. Consequently, we conducted a Gene Ontology (GO) term en-
richment analysis on genes affected by common SNVs across all
samples (Fig. 1G). These SNVs impact molecular functions such
as cadherin binding and transcription coregulator activity, which
are associated with aberrant transcriptional activity [21]. Then,
we observed a strong linear association between SNV raw count
and gene expression (Supplementary Fig. S2B). To reduce the in-
fluence of gene expression and sequencing depth on SNV quan-
tity, SpatialSNV converted the SNV count matrix to a binary ma-
trix and normalized the SNV counts against the total mRNA UMI
captured. With this correction, we obtained distinct spatial pro-
files between transcriptomics and SNVs (Supplementary Fig. S2A)
and a significant correlation decrease between RNA expression
and SNV counts (Supplementary Fig. S2B). We then observed sig-
nificant enrichment of SNV mutations on the tumor regions on
tumor sections across different spatial transcriptomics platforms
(Fig. 1H).

SpatialSNV identifies tumorigenesis-associated
SNVs

Gene mutations play a crucial role in the onset and progression
of tumors. To explore whether SpatialSNV is able to identify es-
sential SNVs in tumorigenesis, we utilized transcriptomics data
to divide the tumor section into the tumor (marked by EPCAM
and other tumor-associated markers), tumor-adjacent margins
(marked by VIM, COL1A2, PTPRC), and normal tissues (Fig. 2A,
B, Supplementary Fig. S3). Subsequently, we validated the re-
liability of RNA region clustering using the inferCNV(method)
(Supplementary Fig. S4). Using the ductal carcinoma in situ (DCIS)
section from the Visium platform and CRC section from the
Stereo-seq platform as examples, we calculated the SNV muta-
tion frequency and occurrence on each gene (Fig. 2C). We found
the B-cell receptor-related genes to be highly mutated with low
occurrence due to the somatic hypermutation progress during
the development and maturation of B cells. Mitochondrial genes
also exhibited high mutation frequency and relatively high occur-
rence, consistent with the accumulation of mitochondrial muta-
tions in tumor cells [22]. We further compared the mutated genes
with those detected in the BRCA and COAD cohorts from The Can-
cer Genome Atlas (TCGA) database and found that most mutated
genes were shared in the TCGA database (Fig. 2D). However, we
observed that tumor driver genes such as GATA3 and ESR in DCIS
[23, 24] were almost uniformly distributed spatially, but their cor-
responding SNVs were only present in the tumor. The SNVs and
gene expression exhibited different patterns (Fig. 2E). Chi-square
tests of SNVs and RNA with tumor incidence indicated that the
occurrence of SNVs is more closely associated with tumor regions
(Fig. 2F). Given the close association of SNVs and genes with tu-
morigenesis, we further examined the distribution of other driver
genes and SNVs to provide additional support for this perspective.
Despite these driver genes being widely expressed across differ-
ent spatial regions, the SNVs associated with these driver genes
were confined solely to the tumor region (Fig. 2G). Moreover, we
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Figure 1: SpatialSNV exhibits spatial distribution mutations by calling SNVs from spatial transcriptomics. (A) Schematic depicting the methodology
for detecting SNVs from spatial transcriptomics data. (B) Frequency histogram illustrating the distribution of shared SNVs among spatial spots, with
representative sections selected for each platform: CRC-P19-T (Stereo-seq), DCIS1 (Visium), and primary human colorectal cancer (Slide-RNA-seq and
Slide-DNA-seq). (C) Scatterplot showing the correlation between unique reads (excluding duplicates) from spatial transcriptomics and the number of
detected effective SNVs. (D) Stacked percentage bar chart showing genomic regions containing effective SNVs. Circular markers denote the platforms
of the samples, and square markers specify the cancer types. (E) Bar plot detailing the proportion of effective SNVs within gene body regions. (F) UpSet
plots demonstrating the intersections of effective SNVs among different sections. Yellow bar represents samples from the same patient, while brown
and purple bars correspond to samples from liver cancer or colorectal cancer, respectively. Pink bars indicate SNVs that are common in all patients.
Sample IDs are colored according to the same patient. (G) Bar plots illustrating GO Term enrichment for Molecular Function associated with effective
SNVs, as detailed in panel D. The chord diagram illustrates the genes involved in key GO pathways, highlighting their connections and functional
relevance. (H) Hematoxylin and eosin (H&E) staining (left) and spatial visualization (right) of normalized SNV counts across representative samples

from various platforms.

performed Pearson correlation analysis between normalized SNV
counts and hallmark gene sets from MSigDB [25] on tumor sam-
ples. We found that the mutation burden in both DCIS and CRC
samples was highly correlated to pathways such as MYC regu-
lation, oxidative phosphorylation, and KRAS signaling, which are

known to play critical roles in tumorigenesis [26-28] (Fig. 2H).
These findings demonstrate that spatially resolved SNVs identi-
fied by SpatialSNV can offer genetic information from an addi-
tional dimension, extending beyond the insights provided by spa-
tial transcriptomics data.
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Figure 2: Tumorgenesis-associated SNVs inferred from spatial transcriptomics data. (A) Spatial visualization of the region clustered by spatial
transcriptomics. (B) Heatmaps of the primary markers of the cluster region as shown in panel A, with expression counts normalized by z-score. (C)
Scatterplots demonstrating the mutation frequency of genes alongside the average occurrence of corresponding SNVs across spatial spots. (D) Venn
diagrams showing the overlap of mutated genes from spatial transcriptomics with those identified in related cancer types in TCGA. (E) Spatial
visualization representing the distribution of driver genes GATA3 and ESR1, along with their corresponding representative SNVs. (F) Bar plot
illustrating the correlation between GATA3 expression and its representative SNVs with the prevalence of tumor regions, with statistical significance
assessed using the chi-square test. (G) Dot plot highlighting the expression levels of driver genes GATA3 and ESR1 and their corresponding SNVs in
different regions of DCIS1. (H) Bar plots demonstrating correlations between various pathways scores and normalized SNV counts per spot. Red bars
indicate positive correlations, while blue bars denote negative correlations.

SpatialSNV helps to trace tumor development in
situ

SNVs can serve as imprints to trace tumor development. We
then explored a DCIS sample previously shown to have 3 sub-
clones [19]. Consistent with the original study, we observed a pro-
nounced clonal distribution from the transcriptome data (Fig. 3A,
Supplementary Fig. S5A, B). We also analyzed the CNVs using the
inferCNV algorithm, which confirmed the clonal diversity of the
3 tumor subclones (Fig. 3B). Additionally, to determine whether
SNVs could reproduce the clustering patterns, we performed di-
mensionality reduction and clustering on the spots using SNV
windows as features. This analysis revealed clustering results
similar to those observed with CNVs (Supplementary Fig. S5C).
We used SpatialSNV to perform differential analysis on SNVs and
observed different SNV profiles of 3 tumor subclones (Fig. 3C).
For example, THOP1 was evenly expressed in 3 subclones, but the
associated SNV chr19_2813592:G>A occurred more frequently in

subclone 1. Similarly, PRSS23 expressed high in subclones 0 and 1,
while the corresponding SNV chrll_86808877:T>C occurred pre-
dominantly in subclone 1 (Fig. 3D, E). The inconsistency of the spa-
tial patterns between SNVs and gene expression indicated a dy-
namic clonal development progress within the tumor tissue.

To trace the clonal development in situ of tumor cells, we em-
ployed the Mononcle2 algorithm [29] to construct the develop-
mental trajectory using the differentially distributed SNVs. We
found that subclones 1 and 2 might have differentiated from sub-
clone 0 (Fig. 3F), which is consistent with the CNV profiles of the
subclones. Subclone 2 appeared to have CNV gains on chr3 and
CNV loss on chr6 and chrl1, and subclone 1 suffered CNV gain
on chr5 (Fig. 3B). Therefore, subclones 1 and 2 would accumu-
late more mutations during clonal differentiation theoretically.
As anticipated, we identified more SNVs in subclones 1 and 2
(Fig. 3G, H). We also observed that the differential SNVs, such as
chr7_98385752:A>G and chr19_2813592:G>A, were elevated along
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Figure 3: SpatialSNV traces the mutation history of different tumor subclones. (A) Top: Spatial visualization illustrating the distribution of the tumor
subclones. Bottom: UMAP projection of the tumor subclones. (B) Heatmap generated by inferCNV displaying inferred CNA profiles for 3 tumor
subclones. (C) Heatmap showing the normalized SNV count of specific SNVs within 3 tumor subclones at the pseudo-bulk level. (D) Spatial
visualization of normalized SNV counts and gene expression. (E) Violin plot showing the expression levels of specific SNVs and genes within the tumor
subclones. (F) Spatial spot trajectory generated by SpatialSNV analysis, depicting the pseudotime and evolutionary trajectories of 3 tumor subclones.
(G) Spatial spot trajectory showing the accumulation of SNV types along the evolutionary trajectories. (H) Violin plot displaying the number of SNV
types across all spots within 3 tumor subclones. (I) Scatterplot displaying the expression variations of tumor-specific SNVs and corresponding genes
across different evolutionary branches. (J) Spatial visualization of the pseudotime of tumor subclones.



6 | GigaScience, 2025, Vol. 14

clonal differentiation trajectories (Fig. 3I), indicating their contri-
butions to the tumor clonal development. Moreover, we mapped
the predicted pseudotime to the tumor section and found that tu-
mor subclone 0 gradually differentiated into subclones 1 and 2 in
the co-occurring tumor regions (Fig. 3]). Additionally, in subclone
2-specific tumor regions, spots on the tumor margins appeared
at a later developmental stage (Fig. 3]), suggesting that subclone
2 was still undergoing rapid evolution. SpatialSNV facilitates the
analysis of regional tumor evolution traces imprinted on spatially
resolved SNVs.

SpatialSNV reveals mutational dynamics at the
tumor margins

As tumors invade, the tumor margins often exhibit a chronic in-
flammatory microenvironment [30], which may trigger more mu-
tation events. Consistently, we investigated the genetic landscape
of the tumor tissues and observed that tumor margins gained
significantly more SNVs than distant normal regions (Fig. 4A,
B, Supplementary Fig. S6A). Moreover, we found that the tumor
margins had unique mutational profiles (Fig. 4C, D). For exam-
ple, SNVs chr20_4024544:C>T and chr20_4024581:C>T occurred
more frequently in the tumor margins of the CRC-P59-T1 sam-
ple and exhibited a clear spatial preference for the tumor mar-
gins (Fig. 4D, E). When surveying their genomic loci, we found sig-
nificantly more sequencing reads covering this region in the tu-
mor margins than in tumor and normal tissues, implying that
these SNVs may alter gene expression (Fig. 4F). For instance, the
mutation chr5_151661589:G>C is located in the UTR region of
SPARC, which is highly expressed in metastatic tumors [31], poten-
tially indicating the invasiveness of the tumor margin. Similarly,
the UTR mutation chr7_23274960:A>T in GPNMB may also influ-
ence GPNMB expression, thereby promoting tumor metastasis [32]
(Supplementary Fig. S6B). We further investigated the genes asso-
ciated with SNVs predominantly present in tumor margins and
found them to be highly related to the extracellular matrix and
cell adhesion processes (Fig. 4G), suggesting that the tumor cell in
the adjacent margins may help reshape the microenvironment,
potentially contributing to tumor immune escape [33]. To verify
this, we examined the inflammatory response and hypoxia pro-
cesses, which are reported to be essential in tumor immune es-
cape [34, 35]. We found that the expression of genes related to both
pathways declined along with the normalized SNV count in the
tumor margins as the distance increased from the tumor bound-
ary (Fig. 4H, Supplementary Fig. S6C). This suggests that tumor
expansion may lead to the emergence of new tumor cells at the
margin, which could subsequently give rise to novel SNVs.

The relationship between the characteristics of the tumor mar-
gin microenvironment and tumor progression remains largely un-
known. To address this, we plotted the normalized SNV counts
against the distance to the tumor boundaries. We found that SNV
accumulation was negatively correlated with the distance from
the tumor boundary (Fig. 4I), a phenomenon similar to the higher
somatic copy number alteration (SCNA) burden observed in the
tumor center [36]. Furthermore, we observed varying rates of de-
cline in the mutational dynamics at the tumor margins across tu-
mor samples and found that the rate of decline in mutational dy-
namics is highly correlated with the immune activity of the tumor
section (Fig. 4]). Tumors with higher immune activity exhibited a
slower decline in mutational dynamics, suggesting that the tumor
margin may harbor more neoantigens, leading to the accumula-
tion of immune cells.

Spatially correlated SNVs contribute to reshaping
tumor microenvironments synergistically

Subsequently, we aimed to identify specific SNVs responsible for
reshaping the microenvironment of the tumor margins. To re-
duce the sparsity of the spatial SNV matrices, SpatialSNV parti-
tioned the genome into 100,000-bp windows and aggregated SNV
events in each window for each spatial spot. We hypothesized that
SNVs occurring in close spatial proximity are genetically associ-
ated. Therefore, we calculated the spatial correlations between
SNV windows and constructed a connectivity graph of the SNV
windows for SNV cluster detection (Fig. SA). Using the Leiden al-
gorithm, we partitioned SNVs into different groups, termed SNV
groups. SNV groups exhibited more significant spatial distribu-
tion patterns than the individual SNVs they contained (Fig. 5B,
Supplementary Fig. S7A). The spatial patterns of SNV groups dif-
fered from each other (Fig. 5C), indicative of different biological
processes. Consequently, we examined the corresponding genes
of each SNV group and found them to be involved in distinct GO
terms. For example, SNV group 1 was primarily associated with
chemokine activity, while SNV group 2 mainly affected compo-
nents related to the extracellular matrix (Fig. 5D), consistent with
the specific spatial distribution of SNV group 2 at the tumor mar-
gins. Considering that the extracellular matrix is highly related to
epithelial-mesenchymal transition (EMT) [37], we speculated that
SNVs within SNV group 2 may contribute to the tumor EMT pro-
cess. We then performed gene set variation analysis (GSVA) [38]
analysis and confirmed that genes associated with SNVs within
SNV group 2 were highly enriched in the EMT pathway (Fig. SE).
Similar SNV groups were also observed across tumor samples. For
instance, SNV group 1 of the CRC-P19-T sample was distributed
at the tumor margins and was also highly enriched in the EMT
pathway (Supplementary Fig. S7B-D). These data suggested that
genes involved in similar biological processes may mutate syner-
gistically.

To reveal the potential connections between SNV groups, we
analyzed the levels of calculated connectivity between SNVs
(Fig. 5F). We found that some SNV windows had higher con-
nectivity than others. In SNV group 2, for example, chr22@328,
chr7@232, and chr19@449 were associated with TIMP3, GP-
NMB, and APOE, respectively, which are marker genes of tumor-
associated macrophages (TAMs) (Fig. 5G). This suggests that SNV
group 2 may reflect the presence of TAMs in the tumor microenvi-
ronment and the genomic alterations driven by their strong tran-
scriptional activity. Therefore, we examined the TAM signature
and observed that the TAM signal was highly colocalized with
SNV group 2 (Fig. 5H). Moreover, we found that the pleiotrophin
(PTN) signaling pathway was also highly expressed around these
regions, suggesting that SNV group 2 may be responsible for the
TAM microenvironment at the tumor margins. In the CRC-P19-T
section, SNV group 1 contained highly connected SNV windows
such as chr22@455, chr3@136, and chr16@555 (Supplementary
Fig. S7E), as well as associated with tumor metastasis-related
genes of FBLN1, FBLN2, and MMP2 [39-41], respectively. Another
highly connected SNV window, chr5@1393, is associated with
MZB1 (Supplementary Fig. S7F), an endoplasmic reticulum stress-
related genein B cells [42]. We also observed B-cell and plasma cell
marker genes such as JCHAIN and CD27 in SNV group 1 enriched
region (Supplementary Fig. S7G), suggesting high transcriptional
activity of B cells and plasma cells. These findings showed that
SpatialSNV is able to identify SNV groups composed of SNVs with
similar spatial patterns and biological functions, which contribute
to the tumor microenvironment synergistically.
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Figure 5: Spatially correlated SNVs contribute to shaping tumor microenvironments synergistically. (A) Schematic depicting the methodology for
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SpatialSNV identifies tumor region-specific of exonic mutations to predict potential neoantigen peptides
exonic nonsynonymous SNVs as potential and filtered out normally expressed peptides by searching pub-
neoantigens lic databases and protein from the human coding DNA sequence

(CDS) (Fig. 6A). In CRC samples (CRC-P59-T1, CRC-P59-T1, CRC-
P67-T), we found thousands of mutations occurring in gene exon
regions, most of which were nonsynonymous SNVs (Fig. 6B). We
observed that these nonsynonymous SNVs from different sam-
ples of the same patient overlapped significantly, while those from
other patients also shared a substantial proportion of nonsynony-

Tumorgenesis-associated SNVs may serve as therapeutic targets.
Specifically, those exonic nonsynonymous SNVs may result in
neoantigens and subsequently activate the adaptive immune sys-
tem. To identify potential neoantigens from exonic nonsynony-
mous SNVs in situ, SpatialSNV used sliding window translation
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Figure 6: SpatialSNV reveals potential neoantigens in tumors. (A) Schematic illustrating the methodology for constructing mutated peptides. (B)
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mous SNVs (Fig. 6C), indicating potential therapeutic neoantigens
for CRC.

To identify potential therapeutic neoantigens from the nonsyn-
onymous SNVs, we used the HLA Ligand Atlas database [43] and
protein CDS to exclude epitopes presented in healthy individuals.
Subsequently, we searched the IEDB [44], MHC Motif Atlas [45],and
dbPepNeo [46] to find known peptides presented by HLAs (Fig. 6D).
We identified 64 potential neoantigens from the 3 CRC samples
(Fig. 6D, Supplementary Table S1). We then examined the corre-
sponding genes of these neoantigens and found that mutated pep-
tides from KRAS, SRP9, MUC3A, and S100A11 appeared in multiple
samples (Fig. 6E). KRAS mutations appeared in approximately 40%
of patients with CRC, predominantly KRASS1?P and KRAS®'?Y mu-
tations [47]. T cells targeting KRAS®'?P and KRAS®™?Y have been
proven to control tumors efficiently [48, 49]. MUC3A can promote
the progression of colorectal cancer through the PI3K/Akt/mTOR
pathway [50] and has been predicted to be a potential chimeric
antigen receptor (CAR) T-cell therapy target [51]. We traced the
spatial distribution of these nonsynonymous mutations and ob-
served that although KRAS and S100A11 were expressed in various
regions, the mutated gene form was mainly restricted in the tu-
mor regions (Fig. 6F, Supplementary Fig. S8A), suggesting potential
neoantigens.

Mutated peptides should be presented by the HLA molecules
to serve as neoantigens. We determined the HLA types of the pa-
tients from the spatial transcriptomics data using T1K [52] and
found both patients to be HLA-A%11:01 and HLA-Cx07:02 allele
types (Supplementary Table S2). We then performed HLA affin-
ity prediction of the mutated peptides using TransPHLA [53]. We
found that mutated KRASS™P and KRASC™V peptides were pre-
dicted to have strong affinity with HLA-A+11:01, with a KRAS1?V
peptide also predicted to be presented by HLA-Cx07:02 (Fig. 6G).
Considering that HLA-A%11:01 is one of the most abundant HLA
alleles, especially in East Asia [54], these mutated KRAS peptides
can potentially be good T cell receptor (TCR) T-cell therapy targets.
Besides mutated KRAS peptides, we also found a peptide “LSK-
TEFPSF” derived from S100A114% to have a strong affinity with
HLA-Cx07:02 (Fig. 6G). To verify whether SI00A11 is expressed
in CRC tumor cells, we explored the CNV profile of the spots
with S100A11"% mutation and found them to have significant
genome alterations (Fig. 6H, Supplementary Fig. S8B). Moreover,
we examined the S100A11 expression in published CRC single-
cell sequencing data [55] and confirmed that SI00A11 is highly
expressed in CRC tumor cells (Fig. 61-K, Supplementary Fig. S8C).
These data suggested that S100A11% can serve as a potential
therapeutic target for precision medicine design.

Discussion

In this study, we developed SpatialSNV for calling and analyz-
ing effective SNVs from spatial transcriptomics data. Incorporat-
ing spatial mutation information provides a more comprehensive
tissue context of tumors. We observed significant platform bias
when calling SNVs from spatial transcriptomics data generated by
different techniques, likely attributed to the varying RNA capture
efficiency and sequencing depth among the platforms. Notably,
Stereo-seq data tend to have higher total UMI counts, enhancing
effective SNV calling [56]. Although SpatialSNV was developed on
spatial transcriptomics data, calling SNVs from transcriptomics
data still has limitations: a relatively higher false-positive rate [6,
57] and high correlation with gene expression, compared to DNA-
seq data. We selected SNVs supported by multiple unique reads
and observed across several spots to reduce the false-positive er-

ror rate. Furthermore, we normalized the SNV counts against the
sequencing depth (total UMI count) at each spot, which has been
proved to reduce the influence of gene expression on SNV quanti-
ties efficiently. Thus, our study provides a relatively robust method
to recover SNV information from spatial transcriptomics data.
Moreover, SpatialSNV can also be modified for spatial DNA se-
quencing data such as Slide-DNA-seq. Due to the poor sequencing
depth, we could not recover enough SNVs for subsequent analy-
sis, demonstrating that calling SNVs from spatial DNA-seq data
remains a big challenge. More precise spatial SNV analyzing will
need a further developed spatial DNA-seq technology with higher
data quality and deeper sequencing depth. It is also important
to note that platforms such as Visium, Stereo-seq, and Slide-seq
are poly(T) capturing-based sequencing methods, which may in-
troduce a strong bias toward SNVs near the 3’ end. Recent spa-
tial techniques, such as Patho-DBIiT [58], could provide a relatively
even gene body coverage. This experimental advancement may
help to improve the efficiency in capturing variations across the
gene body.

Many cancer cells at solid tumor margins exhibit reversible in-
vasiveness, coordinated by a developmental regulatory program
known as EMT [59]. Specific conditions, such as hypoxia and fac-
tors such as cytokines secreted by stromal cells, can induce EMT,
thereby promoting invasiveness [27]. EMT regions are associated
with tumor progression and often coexist with immune responses.
A high degree of immune infiltration is closely linked to EMT, sug-
gesting that EMT progress closely interacts with the immune sys-
tem. Our data showed that the mutational dynamics of the tu-
mor margins are involved in hypoxic and immune regulatory pro-
cesses, which are essential in shaping the tumor microenviron-
ment and promoting tumor expansion [60]. We recognized that
mutations at the tumor margins may originate from newly pro-
liferating tumor cells, which may influence the tumor microen-
vironment in the peripheral regions. However, it is important to
note that somatic mutation frequencies are also high in normal
nonblood tissues [61]. Therefore, when examining the mutational
landscape of the tumor microenvironment, the extent of the influ-
ence of tumor cells on this landscape remains unclear. Although
the tumor center in clear cell renal cell carcinoma (ccRCC) has
been characterized by proliferation, necrosis, and hypoxia [36], the
tumor margin exhibits significant collagen deposition, leading to
increased ECM density and stiffness, which further reduces oxy-
gen supply and creates a hypoxic environment [62]. By integrating
SNVs with the spatial context, we identified spatially correlated
SNVs, termed SNV groups. We found that SNVs within the same
group tend to be involved in similar biological processes. Moreover,
we noticed that specific SNV groups are associated for the EMT
process of the tumor margin regions, which are conserved across
different tumor samples, indicating that these SNV groups may be
critical factors in regulating the tumor margin environment. We
observed these intriguing phenomena in the collected samples,
but the potential role of SNV groups in EMT requires more data
to support, as does the role of SNVs at the tumor margin. More-
over, the biological significance of SNV groups may require further
investigation. We hypothesize that SNVs appearing in other cells
may indicate high transcriptional activity in these cells within the
tumor microenvironment, leading to certain genetic mutations.
Since SNVs are essential sources of tumor-specific neoantigens,
these SNVs can potentially be used as therapeutic biomarkers tar-
geting tumor margin regions.

Although SNVs are the most prevalent type of mutation at the
genomic level in tumor cells [63], CNVs involving tumor driver
genes are generally regarded as the characteristics of many can-
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cers [64, 65]. Analyzing SNVs and CNVs at the single-cell level
allows for the reconstruction of tumor evolutionary pathways
(66, 67], aiding in identifying tumor driver genes. Notably, tumor-
specific neoantigens, resulting from mutations in tumor cells,
present promising targets for cancer immunotherapy [63]. Al-
though neoantigens can arise from structural variations such as
CNVs [68], most tumor neoantigens are derived from SNVs [69,
70]. In our study, we used SpatialSNV to identify tumor region-
specific SNVs in CRC samples. By focusing on the nonsynonymous
SNVs in exonic regions of protein-coding genes, we found poten-
tial neoantigens of the tumors and predicted their HLA affini-
ties. With this approach, we identified KRASS'?P, KRASC™?Y and
S100A11M% mutations as potential therapeutic targets. KRASS1?P
and KRASG'?Y are common mutations used as targets for univer-
sal therapy strategies, while S100A11"% is more likely an indi-
vidually expressed mutation, which can be targeted in person-
alized therapies. We provided a neoantigen prediction guidance
in this study, but did not perform experimental validations. How-
ever, the KRAS associated neoantigens, which have been widely
documented in the literature to be genuinely present in colorec-
tal cancer, could demonstrate the reliability of our methodology
to some extent. Therefore, spatially resolved SNVs are useful in
finding therapeutic targets for precision medicine design.

Methods

Spatial transcriptomics data processing

For Visium (RRID:SCR_023571) spatial transcriptomics, we em-
ployed Space Ranger version 1.3.1 (RRID:SCR_025848) to gener-
ate binary alignment map (BAM) files, utilizing the hg38 reference
genome (GRCh38-2020-A provided by 10x Genomics). For the anal-
ysis of Stereo-seq data, we utilized the Stereo-seq Analysis Work-
flow [71] (SAW V4.0, RRID:SCR_025001), with default parameters
to align sequences against the hg38 reference genome, using the
GRCh38.p12 GTF file for gene annotations. Slide-DNA-seq was per-
formed in accordance with the established protocols. For Slide-
RNA-seq, we implemented the Drop-seq tools integrated within
the Slide-seq Tools suite, aligning to the hg38 reference genome,
consistent with the reference used for Visium analyses.

Analysis and visualization of spatial transcriptomics data were
conducted using Scanpy [72] (RRID:SCR_018139). For the Stereo-
seq platform, gene counts were aggregated within 100 x 100 spot
blocks to construct the bin100 gene count matrix. Spots contain-
ing fewer than 100-200 genes and genes present in fewer than 10
spots were excluded to ensure data quality. Additional spot fil-
tering was applied based on metrics such as n_genes_by_counts
and pct_counts_mt, which were tailored to the specific character-
istics of each sample. Counts were normalized using the normal-
ize_total function in Scanpy, followed by dimensionality reduction
through principal component analysis (PCA). The top 15 princi-
pal components were selected to construct neighbor graphs with
a parameter setting of 15 neighbors. Clustering of spatial spots
was performed using the Leiden algorithm to identify potential
clusters. Spatial domains within the tissue, such as tumor region,
adjacent margins, and normal region, were preliminarily catego-
rized using marker genes, including MKI67, TP53, EPCAM, VIM, and
PTPRC.

Inferred copy number variation (inferCNV)
analysis

To validate the effectiveness of tumor regions identified from
spatial transcriptomics, we used inferCNV to verify copy num-

ber variations in different areas further to determine the ac-
curacy of the region segmentation. The gene matrix was used
as input for inferCNV (inferCNV of the Trinity CTAT Project,
RRID:SCR_025804). Simultaneously, chromosomal positions for all
genes are annotated by searching the GTF file, which also serves
as input for inferCNV. The cnv.tlinfercnv function was set with
the following parameters: lfc_clip = 3, window_size = 250, and
exclude_chromosomes=(“chrX,”chrY”). The normal region was
selected as a reference for inferCNV analysis.

Expression track visualization

The BigWig files are created from BAMtype files using the program
bamCoverage from deepTools (RRID:SCR_016366) [73] with pa-
rameters “-binSize 1,” “-normalizeUsing RPKM,” “ —exactScaling,”
and “~minMappingQuality 10.” All BigWig data were stored in Cy-
Verse (RRID:SCR_014531) [74] for uploading to the UCSC genome
browser (RRID:SCR_005780) [75] for visualization.

Somatic mutation calling with mutect2

Aligned SAM files were converted to BAM files and sorted by co-
ordinate using Samtools (RRID:SCR_002105) [76] (version 1.11). To
remove duplicated reads on spatial transcriptomics data, we uti-
lized a custom Python script to combine UMI and barcode tags.
The MarkDuplicate function of Picard (RRID:SCR_006525) was ap-
plied to remove duplicated reads from each BAM file.

GATK’s Mutect2 [16] (RRID:SCR_026692, version 4.2.6.1) was
used to call mutations according to their somatic pipeline. We first
used addOrReplaceReadGroups to add group information to the
BAM file, which facilitates the recognition of tumor files by Mu-
tect2. Following GATK’s recommendations for calling mutations
on transcriptomes, we proceeded with splitNCigarReads and Ap-
plyBQSR to process the BAM files, where ApplyBQSR’s ~known-
sites parameter used dbsnp_151.hg38.vcf.gz from the GATK re-
source bundle. Mutect2’s tumor-only mode was employed for mu-
tation calling in spatial transcriptomics with default parameters,
where the germline resource and Panel of Normals were af-only-
gnomad.hg38.vcf.gz and 1000g_pon.hg38.vct.gz respectively, from
the GATK resource bundle. Although Mutect2 is not the optimal
choice for calling mutations from DNA, we utilized Mutect2 with-
out the splitNCigarReads option for SNV calling in Slide-DNA-seq.

Following SNV calling, we employed FilterMutectCalls to fil-
ter the SNVs, excluding those annotated with tags such as
weak_evidence, germline, strand_bias, slippage, contamination,
and panel_of normals in the VCF file. We then traced the reads
aligned to each SNV locus, extracting the coordinates of reads that
contained the alternative base. These coordinates were used to
construct a binary matrix, indicating the occurrence of specific
SNV events at each spot. Specifically, on the Stereo-seq platform,
SNV counts were aggregated within blocks of 100 x 100 spots to
form the bin100 SNV count matrix. For an SNV to be considered
effective, it was required to be supported by at least 20 unique
reads and appear in at least 5 spots. Effective SNVs were anno-
tated using ANNOVAR (RRID:SCR_012821) [77].

Gene mutation frequency

We quantified the number of effective SNV sites per gene to assess
gene mutation frequency and normalized these figures by gene
length. A higher gene mutation frequency suggests an increased
mutational pressure on that gene.


https://scicrunch.org/resolver/RRID:SCR_023571
https://scicrunch.org/resolver/RRID:SCR_025848
https://scicrunch.org/resolver/RRID:SCR_025001
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https://scicrunch.org/resolver/RRID:SCR_025804
https://scicrunch.org/resolver/RRID:SCR_016366
https://scicrunch.org/resolver/RRID:SCR_014531
https://scicrunch.org/resolver/RRID:SCR_005780
https://scicrunch.org/resolver/RRID:SCR_002105
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https://scicrunch.org/resolver/RRID:SCR_026692
https://scicrunch.org/resolver/RRID:SCR_012821

12 | GigaScience, 2025, Vol. 14

Normalization of SNV counts

For the calculation of the normalized SNV cont, in order to elimi-
nate the impact of sequencing depth on SNV counts, we used the
UMI counts of each spot to normalize the expression of SNVs.

Si
Norm SNV; = log (ZH " + 1)
j=14j

where 1 is the ith SNV, s; represents the SNV count number, u;
represents the UMI count number, and n is the total number of
genes.

Identification of tumor subclones and
pseudotime analysis

The expression matrix from spots designated as tumor regions
was extracted. This matrix was then normalized and subjected to
dimensionality reduction clustering via Scanpy, consistent with
the methods described in the “Spatial Transcriptomics Data Pro-
cessing.”

Next, normalized SNV count matrices were extracted from
spots designated as tumor regions. Analytical objects were cre-
ated using Monocle2’s GaussianFF model (RRID:SCR_016339) [29].
SNVs for inferring spot pseudotime were identified by Scanpy
as differential SNVs (log-fold change > 1, P < 0.5). Pseudotime
ordering of different spots was determined using reduceDimen-
sion with norm_method=none and orderCells function. Visualiza-
tion of SNVs across evolutionary branches was facilitated using
Python.

Correlation between normalized SNV counts and
distance

The KDTree function in the Python package scipy was used for
nearest-neighbor search (NNS). The average distance and feature
expression of the 5 (k = 5) nearest tumor region spots around
each adjacent margins spot were calculated. We employed the
scipy.stats.linregress function to fit a linear model between the
logarithm of normalized SNV count and the logarithm of average
distances from the tumor for each spot. The correlation between
these was quantified using the coefficient of determination (R?),
derived from the squared Pearson correlation coefficient provided
by the regression.

Enrichment analysis

For GO analysis and visualization, we utilized the R package clus-
terProfiler (RRID:SCR_016884) [78]. GO enrichment analysis was
conducted using the enrichGO function, targeting specific gene
sets with the following key parameters: pAdjustMethod was set
to “BH” for multiple testing correction, and gvalueCutoff was es-
tablished at 0.01 to filter significant terms.

The Gene Matrix Transposed File Format (GMT) file,
h.all.v2023.1.Hs.symbols.gmt, was sourced from the MSigDB
[79] database to facilitate these analyses. For GSVA analysis
and visualization, we employed the Python package gseapy
(RRID:SCR_025803) [80]. The gp.prerank function was utilized for
GSVA analysis on specified gene sets, with parameters configured
as min_size =5, max_size = 1,000, and permutation_num = 1,000
to ensure robust statistical interpretation.

For GSEA analysis and subsequent visualization, the raw ex-
pression matrix from spatial transcriptomics data was first con-
verted into a Seurat [81] object. Normalization was performed us-
ing the NormalizeData function. Subsequent GSEA analysis was
conducted using the gsva function from the GSVA [38] R package,

with kcdf set to “Gaussian” to assess the enrichment of gene sets
in the context of our spatial transcriptomics data.

Assessment of immune scoring in spatial
transcriptomics

To evaluate the proportion of immune cells in each section, we
utilized the R package estimate [82]. Initially, gene count matri-
ces for each section were aggregated to create pseudobulk data.
These pseudobulk data were normalized using counts per million
(CPM) normalization followed by log transformation. Immune cell
proportions were then assessed using the estimateScore function,
specifying the platform="affymetrix” parameter.

Calculation of SNV spatial correlations and
construction of SNV groups

Due to the abundance of SNV features and the proximity of
some SNVs on the genome, we implemented a sliding window ap-
proach to aggregate SNVs. SNVs were consolidated into windows
of 100,000 bp each. We hypothesized that the co-occurrence of
SNVs in space may indicate alterations in certain biological pro-
cesses. This phenomenon of co-occurrence makes UMI normal-
ization less crucial; therefore, we utilized unique counts of SNVs
to represent the expression levels of SNV windows. On the result-
ing SNV windows counts matrix, distances between spots were
computed using the K-nearest neighbors (KNN) method. Addition-
ally, to refine the SNV windows matrix, we applied a Gaussian
weighting scheme to attenuate the influence of distant neighbors,
enhancing the accuracy and relevance of the spatial genomic
data,

My =W x M
o;
Wi)-=exp 720[2

where M represents the SNV windows count matrix, and W is a
matrix of weights applied to adjust these counts based on spatial
proximity between spots. Each weight W;; is calculated using a
Gaussian function of the squared distances between spots, mod-
erated by a scaling parameter «. M,, represents the adjusted SNV
windows matrix.

Due to the high sparsity in the SNV windows matrix, we fo-
cused on spots representing the top 50% of expression levels for
each window. This approach allowed us to calculate correlations
specifically among these more informative spots, thereby optimiz-
ing our analysis efficiency,

Weorr = ME; x My

where W,y represents the spatial correlation between SNV win-
dows, and M,, represents the transposed matrix of adjusted SNV
windows.

After isolating the top 50% of the most correlated windows for
each SNV window, we refined the correlation matrix using Gaus-
sian decay. A directed graph was then constructed, with nodes rep-
resenting the SNV windows and edge weights derived from the
adjusted correlations. Then, we applied the Leiden algorithm to
cluster SNVs, setting the resolution parameter at approximately 5
to ensure distinct SNV groups were identified. This approach was
chosen to preserve groups of SNVs with strong internal correla-
tions. Finally, the UMI count for each spot is used to normalize the
SNV group counts to eliminate the effects of sequencing depth.


https://scicrunch.org/resolver/RRID:SCR_016339
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Identification of representative genes in SNV
windows

Since SNV windows are generated by integrating SNVs, extract-
ing representative genes from SNV windows involves focusing on
the gene locations of all SNVs within these windows. We disregard
those SNV windows that contain only intergenic SNVs. When all
SNVs in a window are located within the same gene, that gene
is designated as the representative gene. If an SNV window en-
compasses multiple genes, we select the gene whose expression
pattern aligns with that of the entire SNV window as the repre-
sentative gene.

Calculation of Moran’s I

Moran'’s I was calculated using Squidpy’s (RRID:SCR_026157) [83]
spatial neighbors and spatial_autocorr functions to assess the
spatial autocorrelation of SNV groups and individual SNVs.

TAM signature

To calculate the spatial signature of TAMs, we selected CD68,
CD14, MMP2, MMP9, VTCN1, CD163, and MRC1 as the gene set for
TAMs. The scores were computed using the sc.tl.score_genes func-
tion in Scanpy.

Cell communication in spatial transcriptomics

COMMOT [84] was utilized to analyze and visualize cell commu-
nication within spatial transcriptomics data. Initially, the human-
specific cell communication database from CellChat was selected
using the ligand_receptor_database function. Potential ligand-
receptor pairs were filtered using the filter_Ir_database function
with a minimum cell percentage threshold setat 0.01. Subsequent
analysis of spatial cell communication was conducted through
the spatial_communication function, applying parameters such
as dis_thr=>500 for the distance threshold, heteromeric=True to
consider heteromeric complexes, and pathway_sum=True to ag-
gregate signals by pathway.

Neoantigen prediction

We extracted nonsynonymous SNVs annotated by ANNO-
VAR to construct a potential mutant peptide database. Uti-
lizing amino acid mutation annotations provided by ANNO-
VAR, we extracted 15 amino acids surrounding each mutated
site from the CDS reference matching the reference genome
(GCF_000001405.38_GRCh38.p12). A sliding window approach
generated potential mutant peptides ranging from 8 to 15 amino
acids. Using a Python script, we obtained all peptides of 8-15
amino acids in length from the reference CDS and peptides from
the HLA Ligand Atlas database [43] to filter epitopes derived from
normal proteins. Concurrently, we employed IEDB [44], MHC Mo-
tif Atlas [45], and dbPepNeo [46] to identify known peptides pre-
sented by HLAs. Additionally, the affinity between neoantigens
and HLA is predicted using T1K with default parameters.

Availability of Source Code and
Requirements

Project name: SpatialSNV
Project homepage: https://github.com/YoungLi88/Spatial SNV
Operating system(s): Linux
Programming language: Python
Other requirements: Python 3.8 or higher
License: MIT License
RRID:SCR_026221

Additional Files

Supplementary Fig. S1. The quality control of spatial RNA and
SNV data across various sections. (A) Table presenting the data
sources for each sample. (B) Bar plot displaying the number of
unique reads supporting SNVs for each section. (C) Violin plot il-
lustrating the distribution of basic quality control metrics for spa-
tial transcriptomics data across all sections, including the number
of genes by counts (n_gene_by_counts), total counts, and percent-
age of mitochondrial counts (pct_count_mt). (D) Bar plot showing
the quantity of clean reads across different platforms, with error
bars indicating variability among sections. (E) Bar plot depicting
the number of effective reads for all section.

Supplementary Fig. S2. Relationship between spatial transcrip-
tomics and spatial SNVs. (A) Spatial visualization illustrating
the total RNA UMI counts (left), SNV counts (mid), and normal-
ized SNV per UMI (Normalized SNV Count) (right). (B) Scatter-
plots correlating SNV count and normalized SNV count with
UMI count per spot, including the Pearson correlation coefficient
(R?).

Supplementary Fig. S3. The definition of spatial region. (A) Spatial
visualization of region clustered by spatial transcriptomics and
the dot plot showing the main marker of each cluster region.
Supplementary Fig. S4. The inferCNV results of each section. (A)
Heatmap generated by inferCNV displaying inferred CNA profiles
for each region clustered by spatial transcriptomics.
Supplementary Fig. S5. Transcriptional characteristics of tumor
subclones in the DCIS1 section. (A) Heatmap of the top 10 differ-
ential genes of 3 subclones. (B) Spatial visualization of main dif-
ferential genes of 3 subclones. (C) Spatial visualization of SNV and
RNA clustering for tumor subclones.

Supplementary Fig. S6. Characteristics of SNVs at tumor mar-
gins. (A) Violin plot illustrating the distribution differences of SNV
types across cluster regions in various sections. (B) Spatial visual-
ization of SPARC and GPNMB gene expression and the distribution
of corresponding representative SNVs. (C) Scatterplot showing the
correlation between GSVA scores for inflammatory response and
hypoxia with normalized SNV counts on spatial spots, including
the Pearson correlation coefficient (R).

Supplementary Fig. S7. SNV group reveals the tumor microen-
vironment. (A) Spatial visualization of SNV group 0, including the
top 8 SNVs ranked by Moran’s index. (B) Spatial visualization high-
lighting SNV group associated with tumor-adjacent regions in the
CRC-P19-T. (C) GO term analysis of genes within the SNV windows
of SNV group 1 in CRC-P19-T. (D) Gene set variation analysis illus-
trating the enriched pathways for genes within all SNV windows
of SNV group 1 of CRC-P19-T. (E) Network graph showing the con-
nectivity among SNV windows in SNV group 1 of CRC-P19-T, with
points representing SNV windows and line lengths indicating the
degree of correlation. (F) Spatial visualization of the spatial distri-
bution of highly connected SNV windows (top) and the represen-
tative genes contained within these windows (bottom). (G) Spatial
visualization of markers associated with B cells in the CRC-P19-T
section.

Supplementary Fig. S8. Predicting neoantigens from spatial SNVs.
(A) Sankey diagram illustrating the differences in mutated and
reference base occurrences across various cluster regions. (B)
Heatmap generated by inferCNV displaying inferred CNA profiles
for mutated and nonmutated spots of S100A11 in the CRC-P59-
T2 sample. (C) Single-cell RNA-seq analysis from GSE200997. Top:
UMAP projection showing different clusters and epithelial cell dis-
tributions. Bottom: Both UMAP projection and violin plot high-
lighting the specific expression of S100A11 in tumor cells.
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Supplementary Table S1. Potential neoantigens from the 3 CRC
samples.
Supplementary Table S2. HLA genotyping prediction.

Abbreviations

CNVs: copy number variants; COAD: colon adenocarcinoma; CRC:
colorectal cancer; DCIS: ductal carcinoma in situ; GO: Gene Ontol-
ogy; HLAs: human leukocyte antigens; LIHC: liver hepatocellular
carcinoma; SNVs: single-nucleotide variants; SV: structural varia-
tion; UMI: unique molecular identifiers; UTR: untranslated region.
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