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Abstract: The effects of modified atmosphere packaging (MAP) in combination with superchilling
(−1.3 ◦C) on the physicochemical properties, flavor retention, and organoleptic evaluation of turbot
samples were investigated during 27 days storage. Results showed that high-CO2 packaging (70%
or 60% CO2) combined with superchilling could reduce the productions of off-flavor compounds,
including total volatile basic nitrogen (TVB-N) and ATP-related compounds. Twenty-four volatile
organic compounds were determined by gas chromatography–mass spectrometry (GC/MS) during
storage, including eight alcohols, 11 aldehydes, and five ketones. The relative content of off-odor
volatiles, such as 1-octen-3-ol, 1-penten-3-ol, (E)-2-octenal, octanal, and 2,3-octanedione, was also
reduced by high-CO2 packaging during superchilling storage. Further, 60% CO2/10% O2/30% N2

with superchilling (−1.3 ◦C) could retard the water migration on the basis of the water holding
capacity, low field NMR, and MRI results, and maintain the quality of turbot according to organoleptic
evaluation results during storage

Keywords: turbot; modified atmosphere packaging; superchilling; shelf life; quality

1. Introduction

Turbot (Scophthalmus maximus) is a flat fish species with high economic value and nutritional
benefits and widely cultivated in China [1]. Fish freshness is crucial for fish quality and directly
determines the consumer acceptability and ultimate commercial value of fish [2]. Traditionally,
fish freshness evaluation has been based on organoleptic, chemical, and microbiological methods.
The quality deterioration of fish after death results from microbiological spoilage and chemical reactions,
such as changes in protein and lipid fractions, and the formation of biogenic amines. Some spoilage
indicators have been used to evaluate the quality of fish including total volatile base nitrogen (TVB-N),
trimethylamine (TMA) and biogenic amine composition, which can be performed by microbiological
count and identification [3]. Turbot is extremely susceptible to endogenous enzymes and exogenous
spoilage bacteria, for example, H2S-producing bacteria, Pseudomonas spp., and Aeromonas spp [4,5].
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Considering that psychotropic microorganisms can survive and proliferate at cold temperatures,
the microbiological safety of fresh turbot should be controlled through inhibiting or delaying of
microbiological growth.

Superchilling is the process of lowering the temperature of a product just below its initial
freezing temperature, and thereby approximately 5–30% of water is preserved frozen within the
food products [6,7]. Superchilling has been used in fish processing to increase the shelf life and has
been successfully applied in the preservation of Atlantic mackerel [8], hairtail [9], olive flounder [10],
seabream [11], as well as other seafood products. Besides the temperature control, MAP could also
inhibit the growth of spoilage bacteria on fish. Zhu et al. [12] reported that superchilling (−0.7 ◦C) with
high-CO2 packaging (60% CO2/40% N2) could substantially inhibit the biochemical and microbiological
deterioration of catfish (Clarias gariepinus) muscle during storage. Parlapani et al. [13] reported that
2 ◦C combined with 60% CO2/10% O2/30% N2 could slow down the TVB-N and TMA-N increase and
extend the shelf life by about four days.

The objective of this research was to assess the potential benefits of superchilling at −1.3 ◦C
combined with different high-CO2 MAP systems by monitoring the biochemical changes, determining
the volatile compounds using GC/MS, and evaluating the organoleptic properties during storage.

2. Results and Discussion

The turbot samples were considered spoiled and no further sampling was performed when the
organoleptic evaluation results declined below 3.0. Therefore, the last sampling point for air packaging
(AP), vacuum packaging (VP), and MAP treated samples was at day 21, day 24, and day 27, respectively.

2.1. Water Holding Capacity (WHC)

As shown in Figure 1a, the WHC of all turbot samples showed a declining trend during storage.
This could be attributed to the advancement of protein denaturation that reflects a decrease in the
water-protein interactions with increasing storage time [14,15]. The initial WHC value of turbot samples
was 89.20%, and AP, VP, MAP1, MAP2, MAP3, and MAP4 treated samples reached significantly
(p < 0.05) to 81.91%, 82.57%, 84.06%, 83.90%, 82.41%, and 81.4%, at day 18, respectively. From day 0 to
15, VP treated samples had higher WHC values than other turbot samples, which indicated that turbot
samples under the VP treatments combined with superchilling have an advantage in maintaining water
content from the beginning to middle stages of storage. Decreased WHC in VP treated samples may be
related to the myosin denaturation during storage. However, MAP1 and MAP2 treated samples had
significantly higher (p < 0.05) WHC values than others after day 18 as the higher CO2 MAP treatments
were more effective in preventing the protein degradation during superchilling storage.

2.2. Total Volatile Base Nitrogen (TVB-N) Production

TVB-N mainly concerns the degradation of protein and non-protein nitrogenous components
generated by spoilage bacteria and enzymes and is extensively used as an indicator for the spoilage
degree of marine fish [16,17]. Changes in TVB-N values of turbot samples during storage are
summarized in Figure 1b. The TVB-N value of a fresh turbot sample was 8.39 mg/100 g fish muscle,
indicating a high standard of turbot samples freshness [18]. The TVB-N values in AP treated samples
increased much faster than others due to the increased bacterial activity. The MAP treated samples
could reduce the rate of formation of volatile bases as higher concentration of CO2 or lower O2 inhibited
the growth of spoilage bacteria [16,19]. In addition, TVB-N values in VP treated samples were lower
than that of MAP treated samples from day 0 to day 15. From day 18, MAP treated samples had lower
TVB-N values than VP treated samples and MAP2 presented the lowest TVB-N values. Generally,
the upper acceptable level of TVB-N for marine fish is 30 mg/100 g [17], however, all TVB-N values
remained below 30 mg/100 g in the present study at the end of storage, which reasserts the efficacy of
high CO2 and low O2 in MAP treatments with superchilling could reduce TVB-N production during
storage [12].
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2.3. Evaluation of Thiobarbituric Acid Reactive Substances (TBARS) Values

The TBARS test measures secondary products of lipid oxidation, primarily malonaldehyde (MDA),
including unsaturated carbonyls [20]. The initial TBARS value in the turbot sample was 0.037 mg
MDA/kg. During the first 15 days of storage, the TBARS values in all turbot samples showed increasing
trends and afterwards slightly decreased due to the reaction of MDA with aldehydes and ketones [21].
The VP treated samples had the lowest TBARS values, and the values of TBARS were significantly
affected (p < 0.05) by the level of O2 in MAP treated samples. TBARS occurred rather different rates
with storage time increasing and TBARS values of the AP treated samples were significantly higher
(p < 0.05) than those of the VP and MAP treated samples at the beginning, indicating that lower O2

concentration combined with superchilling could impede the lipid oxidation [22].
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Figure 1. Changes in water holding capacity (WHC) (a), TVB-N value (b), TBA value (c) and K value (d)
of samples under different treatments during storage period (AP: air packing; VP: vacuum packing;
MAP1: 70% CO2/30% N2; MAP2: 60% CO2/10% O2/30% N2; MAP3: 50% CO2/15% O2/35% N2; MAP4:
55% CO2/5% O2/40% N2).

2.4. K Values

Inosine 5′-monophosphate (IMP) provides a sweet and meaty flavor to improve the quality
of fish, however, its transformation to inosine (HxR) and hypoxanthine (Hx) results in unpleasant
bitterness reflecting the initial stage of autolytic degradation and subsequent microbiological spoilage.
K value is strongly affected by the transformation rate of HxR and Hx and commonly used to evaluate
the freshness of fish [23]. The K value of fresh turbot samples was 5.38% and increased during
storage. The K value of AP treated samples reached 65.31%, exceeding the rejection limit of 60% at
day 15. However, the VP and MAP treatments significantly delayed the increase of K-value (p < 0.05),
which remained below the rejection limit until the end of storage (day 27). These results indicated that
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VP or high CO2 concentration combined with superchilling could suppress the degradation of ATP
and keep the quality of turbot samples at acceptable levels during storage.

2.5. Water Distribution by Low Field Nuclear Magnetic Resonance (LF-NMR) Analysis

Low field nuclear magnetic resonance (LF-NMR) is an efficient way to evaluate the freshness of
marine fish. T2 relaxation method was used to research the proton relaxation behavior and T21, T22

and T23 represent for the bound water, immobile water and free water, respectively. The pT21, pT22

and pT23 were corresponded to the three types of water. pT21 did not change significantly (p > 0.05)
during storage (Figure 2), which was due to this water entrapped within highly organized myofibril
structures [24]. pT22 diminished progressively during storage (p < 0.05) and pT23 increased constantly.
In the current study, the AP treated samples had lower immobilized water (from 98.62% at day 0 to
95.04% at day 15) than those of other samples. There was no significant difference in the content of
immobilized water in MAP1 and MAP2 treated samples (p > 0.05). Some studies also demonstrated
that water entrapped within myofibrillar released or translated to free water based on the destruction
of muscle fiber [25,26]. In addition, this process of water migration also confirmed that MAP treatments
retarded the change rates of T22.
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Figure 2. T2 relaxation time distribution curves of turbots under different treatments on the 0 (a), 15th (b)
and 27th (c) day of the storage period (T21, bound water; T22, immobilized water; T23, free water; AP:
air packing; VP: vacuum packing; MAP1:70% CO2/30% N2; MAP2: 60% CO2/10% O2/30% N2; MAP3:
50% CO2/15% O2/35% N2; MAP4: 55% CO2/5% O2/40% N2).

2.6. Analysis of Magnetic Resonance Imaging (MRI)

MRI provides visual information for turbot samples during storage. A red color represents a high
proton density and blue color stands for low proton density in the pseudo-color images. As shown in
Figure 3, the brightness of images varied obscure in the early storage and the brightness of samples
became darker and bluer during superchilling storage. At day 15, the color of AP treated samples was
bluer and darker than that of other samples, which indicates that the degradation of myofibill and
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destruction of microstructure in AP treated samples [15], while no visible difference was observed
among VP and MAP treated samples. The brightness of MAP2 treated samples is lighter compared
to other samples at day 27, which indicated that the MAP2 treatment (60% CO2/10% O2/30% N2) is
more suitable for the quality maintenance of turbot and the result was consistent with the variation of
LF-NMR transverse relaxation.
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O2/30% N2; MAP3: 50% CO2/15% O2/35% N2; MAP4: 55% CO2/5% O2/40% N2).

2.7. Analysis of Free Amino Acids (FAAs)

FAAs are precursors of volatile flavor compounds and biogenic amines [27]. In the present study,
the contents of Asp, Thr, Glu, Ala, Met, Ile, Leu, Tyr, Phe, His, Arg, Pro, and total FAAs increased at the
beginning and afterwards gradually decreased (Table 1). The MAP treatments retarded the changes of
some special FAAs, including Val, Met, Ile, Leu, Phe, Lys, and His. At the same time, Ala and Gly
were the most abundant FAAs in turbot samples at day 15 and the AP treated samples had a higher
concentration than that of VP and MAP treated samples. His increased from initial value of 1.91 mg/100
g to 9.65, 8.23, 7.45, 4.98, 6.14, and 6.24 mg/100 g at day 15 for AP, VP, MAP1, MAP2, MAP3, and MAP4,
respectively. Then His decreased at the end of storage as the precursor of VOCs [28]. Good acceptance
of MAP2 treated samples can be explained by its higher Glu and Asp concentrations than others except
day 15 during storage and the two FAAs are responsible for stronger umami taste [29]. The MAP
treatments could select different predominate bacteria and affect their growth rate and metabolic
activity, which can illuminate the difference on FAAs with different treated turbot samples during
storage. Overall, the above results demonstrated that flavor deterioration was associated with the
decrease of special flavor-enhancing amino acids and accumulation of flavor-detracting amino acids,
and MAP combined with superchilling could effectively slow down the process and maintain a good
edible value of turbot samples during storage.

2.8. Volatile Organic Chemicals (VOCs) Profile

The changes of the main 24 VOCs in turbot samples during storage are presented in
Table 1. The major VOCs were C6-C10 alcohols and aldehydes, such as 2-octen-1-ol, 1-octen-3-ol,
1-hexanol, 1-heptanol, 2-ethyl-2-hexen-1-ol, (E)-2-octen-1-ol, hexanal, (Z)-4-heptenal, heptanal,
(E,E)-2,4-heptadienal, octanal, (E)-2-octenal, nonanal, (E,Z)-2,6-nonadienal, and decanal (Table 2).
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Table 1. Changes in FAA content (mg/100g) of turbot with different treatments during storage period.

Storage Time Samples
FAAs

Asp Thr Ser Glu Gly Ala Val Met

Day 0 4.98 ± 0.12 8.92 ± 0.67 17.08 ± 1.51 9.23 ± 1.16 30.22 ± 0.14 30.2 ± 1.86 27.78 ± 4.24 2.68 ± 0.58

Day 15

AP 13.33 ± 1.14 ab 10.82 ± 0.26 a 16.86 ± 1.04 a 16.76 ± 0.22 cd 35.27 ± 0.96 a 34.92 ± 0.66 a 28.01 ± 0.27 a 4.68 ± 0.23 cd
VP 10.09 ± 0.39 cd 10.26 ± 1.59 a 11.02 ± 0.45 c 20.59 ± 0.41 a 24.42 ± 0.55 d 26.85 ± 0.36 c 17.81 ± 0.24 b 7.11 ± 0.74 a

MAP1 13.25 ± 1.04 ab 8.71 ± 0.18 ab 11.13 ± 0.75 c 16.78 ± 0.29 cd 24.91 ± 0.02 d 26.16 ± 0.35 cd 12.06 ± 0.49 d 4.95 ± 0.1 c
MAP2 11.23 ± 0.85 c 10.73 ± 0.23 a 13.78 ± 1.29 b 20.88 ± 0.7 a 26.24 ± 0.04 b 23.13 ± 0.3 f 10.58 ± 0.61 e 3.91 ± 0.19 e
MAP3 16.24 ± 2.06 a 9.03 ± 2.18 ab 8.10 ± 0.36 e 19.36 ± 0.29 b 22.82 ± 0.42 e 25.21 ± 0.63 cde 8.91 ± 0.22 f 6.08 ± 0.09 b
MAP4 14.18 ± 2.03 ab 10.65 ± 2.19 a 9.4 ± 0.16 d 17.11 ± 0.32 e 25.01 ± 0.01 c 27.74 ± 0.29 b 14.36 ± 0.11 c 6.54 ± 0.15 a

Day 27

MAP1 3.17 ± 0.36 b 9.58 ± 0.05 b 13.08 ± 0.12 b 12.46 ± 0.12 bc 16.46 ± 0.03 b 15.38 ± 0.28 d 23.51 ± 2.11 a 2.99 ± 0.53 a
MAP2 5.1 ± 0.13 a 12.26 ± 0.12 a 14.14 ± 0.07 a 18.86 ± 0.13 a 20.42 ± 0.18 a 18.84 ± 0.39 c 15.45 ± 1.03 b 2.34 ± 0.16 ab
MAP3 2.73 ± 0.18 bc 9.55 ± 0.08 b 9.56 ± 0.26 c 12.70 ± 1.15b c 10.20 ± 0.16 d 21.41 ± 1.25 ab 8.75 ± 0.11 d 2.67 ± 0.16 a
MAP4 1.79 ± 0.08 d 6.18 ± 0.15 c 5.34 ± 0.23 d 14.02 ± 0.35 b 13.23 ± 0.42 c 22.96 ± 0.32 a 11.18 ± 1.35 c 1.12 ± 0.13 c

Ile Leu Tyr Phe Lys His Arg Pro Total

Day 0 2.51 ± 0.41 4.52 ± 0.02 1.54 ± 0.68 4.09 ± 0.43 8±3.51 1.91 ± 0.55 2.99 ± 0.25 6.23 ± 0.15 162.88 ± 8.58

Day 15

AP 4.54 ± 0.5 e 5.79 ± 0.13 e 3.5 ± 0.6 d 6.88 ± 1.12 b 2.87 ± 0.16 e 9.65 ± 0.32 a 6.07 ± 0.43b c 9.8 ± 0.35 a 209.75 ± 5.39 a
VP 7.35 ± 0.19 a 10.66 ± 0.05 a 6.83 ± 0.93 ab 10.06 ± 0.19 a 3.96 ± 0.37 c 8.23 ± 0.16 b 9.49 ± 0.86 a 8.14 ± 0.15 e 192.87 ± 3.99 b

MAP1 5.27 ± 0.17 cd 6.5 ± 0.58 d 4.64 ± 0.24 c 4.73 ± 0.08 c 3.66 ± 0.24 cd 7.45 ± 0.11 c 6.21 ± 0.11b c 8.7 ± 0.16 c 165.11 ± 2.35 e
MAP2 5.63 ± 0.33 c 3.54 ± 0.13 f 2.03 ± 0.28 e 3.98 ± 0.36 d 5.9 ± 0.07 b 4.98 ± 0.04 e 6.34 ± 0.14 b 9.23 ± 0.02 b 162.11 ± 3.13 ef
MAP3 6.74 ± 0.7 ab 7.71 ± 0.31 bc 7.54 ± 0.25 a 7.14 ± 0.26 b 5.46 ± 0.51 b 6.14 ± 0.13 d 9.55 ± 0.26 a 8.42 ± 0.03 d 174.45 ± 5.2 d
MAP4 7.2 ± 0.05 a 8.05 ± 0.13 b 6.54 ± 0.02 ab 6.83 ± 0.37 b 8.14 ± 0.13 a 6.24 ± 0.23 d 9.19 ± 0.03 a 8.64 ± 0.11 c 185.82 ± 3.47 bc

Day 27

MAP1 3.6 ± 0.26 a 5.4 ± 0.16 a 2.27 ± 0.13 bc 3.27 ± 0.41 a 1.6 ± 0.11 a 2.7 ± 0.2 a 4.18 ± 0.3 c 4.1 ± 0.26 cd 123.75 ± 5.43 b
MAP2 2.67 ± 0.15 c 4.01 ± 0.12 c 3.87 ± 0.12 a 2.67 ± 0.38 ab 1.31 ± 0.09 b 2.02 ± 0.09 b 6.66 ± 0.27 ab 4.49 ± 0.32 c 135.11 ± 3.42 a
MAP3 3.15 ± 0.23 ab 5.11 ± 0.52 ab 4.10 ± 0.38 a 1.93 ± 0.18 c 0.40 ± 0.09 d 1.92 ± 0.29 b 6.91 ± 0.36 a 7.11 ± 0.56 ab 108.2 ± 5.26 c
MAP4 2.40 ± 0.13 cd 2.09 ± 0.28 d 2.70 ± 0.38 b 1.50 ± 0.32 cd 0.82 ± 0.15 c 1.20 ± 0.08 c 2.11 ± 0.16 d 8.40 ± 1.18 a 97.04 ± 3.38 d

Different lower case letters in different groups from the same day indicate significant differences (p < 0.05).
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Table 2. Identification and semiquantification of main volatile compounds (peak area × 10−6) in turbot after 0, 15 and 27 days of the storage.

Compounds 0 d
15 d 27 d

Odor Description References
AP VP MAP1 MAP2 MAP3 MAP4 MAP1 MAP2 MAP3 MAP4

Alcohols

1-Penten-3-ol 4.06 ± 0.32A 7.59 ± 0.18
a,B

5.35 ± 0.3
b,B

5.84 ± 0.08
b,B

5.65 ± 0.17
b,B

6.03 ± 0.21
c,B

6.24 ± 0.13
d,B

10.63 ± 0.37
a, C

12.17 ± 0.14
b,C

15.26 ± 0.42
c,C

16.42 ± 0.28
d, C Burnt, meaty, grassy-green [30,31]

1-Octen-3-ol 4.7 ± 0.35A 7.06 ± 0.16
a,B

3.83 ± 0.46
b,B

6.39 ± 0.62
c,B

5.62 ± 0.27
d,B

5.69 ± 0.36
d,B

6.60 ± 0.57
e,B

13.63 ± 1.11
a, C

11.23 ± 0.3
b,C

17.45 ± 1.32
c,C

19.38 ± 1.63
d, C Mushroom [30,32]

2-Octyn-1-ol 8.67 ± 0.83A ND 1.88 ± 0.16
a,B

1.05 ± 0.13
b,B

1.01 ± 0.06
b,B

1.21 ± 0.04
c,B

2.70 ± 0.32
d,B ND ND 1.82 ± 0.18

a,C
1.25 ± 0.15

b, C Mushroom [33]

(Z)-2-Penten-1-ol ND 0.85 ± 0.13
a,A

0.73 ± 0.08
b,A ND 0.93 ± 0.18

c,A
1.15 ± 0.36

d,A
1.28 ± 0.28

e,A
0.83 ± 0.15

a, B
1.32 ± 0.33

b,B
1.87 ± 0.19

c,B
1.68 ± 0.31

d, B Green, plastic [31,34]

1-Hexanol 2.63 ± 0.47A 0.46 ± 0.13
a,B

1.92 ± 0.27
b,B

2.38 ± 0.16
c,B

2.74 ± 0.38
d,B

1.85 ± 0.43
e,B

1.74 ± 0.2
ef,B

1.23 ± 0.18
a, C

1.52 ± 0.36
b,C

0.56 ± 0.16
c,C

0.47 ± 0.12
c,C Grassy, woody, fatty [31,35]

1-Heptanol ND 1.49 ± 0.25
a,A

2.03 ± 0.3
b,A

1.86 ± 0.43
c,A

2.72 ± 0.56
d,A

1.56 ± 0.24
e,A

1.39 ± 0.37
f,A ND ND ND ND Fresh, light green, nutty [30,31]

2-ethyl-2-Hexen-1-ol ND ND 0.86 ± 0.23
a,A

0.61 ± 0.15
ab,A ND 0.84 ± 0.17

b,A
1.36 ± 0.26

c,A
0.73 ± 0.19

a, B ND ND 0.61 ± 0.08
a,B Citrus, floral, sweet [35]

(E)-2-Octen-1-ol ND ND 0.85 ± 0.26
a,A

0.73 ± 0.17
b,A

0.68 ± 0.02
b,A

0.90 ± 0.32
c,A

0.63 ± 0.18
d,A

0.48 ± 0.12
a, B

0.53 ± 0.14
ab,B

0.36 ± 0.08
b,B ND Green [36]

Aldehydes

Hexanal 32.91 ± 3.23A 35.68 ± 2.8
a,B

28.2 ± 1.54
b,B

33.73 ± 3.62
c,B

30.54 ± 1.1
d,B

37.38 ± 2.38
e,B

36.87 ± 6.3
f,B

43.6 ± 3.85
a, C

39.69 ± 2.78
b,C

52.49 ± 4.83
c,C

55.38 ± 3.78
d,C Fishy, grass [30,32]

(Z)-4-Heptenal 0.68 ± 0.13 A 3.64 ± 0.83
a,B

2.18 ± 0.36
b,B

2.69 ± 0.28
c,B

2.35 ± 0.63
d,B

3.12 ± 0.35
e,B

3.08 ± 0.6
e,B

4.32 ± 0.78
a, C

5.59 ± 1.86
b,C

7.13 ± 2.03
c,C

6.83 ± 1.41
cd,C Boiled potato, biscuit-like [30,31]

2-methyl-butanal 4.63 ± 1.3 A 2.38 ± 0.58
a,B

3.12 ± 0.75
b,B

3.91 ± 1.25
c,B

3.62 ± 0.3
d,B

2.73 ± 0.47
e,B

2.54 ± 0.82
f,B

1.32 ± 0.38
a, C

0.87 ± 0.15
b,C ND ND Green, almond, strong burnt, [30,31]

Heptanal 6.59 ± 1.68 A 7.32 ± 1.36
a,B

5.87 ± 0.8
b,B

6.32 ± 0.75
c,B

6.79 ± 1.2
d,B

7.41 ± 1.56
e,B

7.63 ± 0.85
ef, B

8.78 ± 1.35
a, C

7.36 ± 0.99
b,C

9.33 ± 1.86
c,C

10.21 ± 2.38
d,C Dry fish green, fatty, rancid [30,32]

Benzaldehyde 5.72 ± 1.08 A 2.14 ± 0.49
a,B

5.36 ± 1.27
b,B

4.69 ± 1.56
c,B

5.87 ± 0.95
d,B

6.19 ± 1.61
e,B

5.08 ± 1.36
f,B

2.55 ± 0.68
a, C

2.73 ± 0.67
ab,C

2.38 ± 0.17
b,C

1.84 ± 0.37
c,C Bitter almond, burnt sugar, woody [30,32]

(E,E)-2,4-Heptadienal 5.54 ± 1.35 A 6.39 ± 2.3
a,B ND 5.03 ± 0.47

b,B
4.72 ± 1.32

bc,B
5.78 ± 0.56

c,B
6.18 ± 1.78

d,B
5.69 ± 0.96

a, C
4.56 ± 1.32

b,C
7.03 ± 1.75

c,C
7.37 ± 1.68

d,C Fatty, fishy, oxidized oil-like [30,32]

Octanal 5.43 ± 1.3 A 10.73 ± 2.46
a,B

7.18 ± 1.83
b,B

7.47 ± 1.86
c,B

6.85 ± 0.85
d,B

8.03 ± 2.3
e,B

7.96 ± 1.76
f,B

13.60 ± 3.2
a, C

12.05 ± 1.86
b,C

16.72 ± 2.78
c,C

18.36 ± 3.36
d,C Grassy, rancid, soapy, citrus [30,32]

(E)-2-Octenal 1.22 ± 0.53 A 4.68 ± 1.12
a,B

2.38 ± 0.68
b,B

2.68 ± 0.79
bc,B

3.03 ± 1.02
c,B

4.19 ± 1.36
d,B

3.87 ± 0.88
e,B

6.95 ± 1.35
a, C

6.43 ± 2.13
b,C

8.18 ± 2.56
c,C

8.72 ± 2.78
d,C Aromatic, oxidized oil-like [30,32]

Nonanal 9.82 ± 2.36 A 2.03 ± 0.63
a,B

2.29 ± 1.02
b,B

1.63 ± 0.23
c,B

2.03 ± 0.22
d,B

2.81 ± 1.08
e,B

1.61 ± 0.02
f,B

1.56 ± 0.06
a,C

1.05 ± 0.32
b,C

0.72 ± 0.04
c,C

0.92 ± 0.31
d,C

Gravy, green, floral, waxy, soapy,
fatty, citrus fruit [30,32]

(E,Z)-2,6-Nonadienal 0.52 ± 0.13 A 1.78 ± 0.58
a,B

0.63 ± 0.23
b,B

0.42 ± 0.08
c,B

0.86 ± 0.19
d,B

1.36 ± 0.36
e,B

1.52 ± 0.72
f,B ND ND 1.53 ± 0.2

a,C
1.68 ± 0.62

ab,C Cucumber-like, fatty, green [31,37]

Decanal 1.47 ± 0.35 A 0.38 ± 0.17
a,B

0.43 ± 0.18
b,B

0.54 ± 0.13
c,B

0.43 ± 0.2
cd,B

0.53 ± 0.18
d,B

0.38 ± 0.12
de,B ND ND ND ND Citrussy [37]

2,3-Octanedione 2.58 ± 1.36 A 8.62 ± 2.11
a,B

3.86 ± 1.23
b,B

4.78 ± 1.26
c,B

5.03 ± 1.38
d,B

6.83 ± 1.82
e,B

6.61 ± 1.37
ef,B

8.63 ± 2.32
a,C

10.39 ± 1.78
a,C

14.27 ± 2.85
a,C

13.69 ± 3.3
a,C Oxidized fat [38]

(E,E)-3,5-Octadien-2-one 4.42 ± 1.37 A 1.75 ± 0.29
a,B

1.25 ± 0.26
b,B ND 0.97 ± 0.23

c,B
1.36 ± 0.47

d,B
0.83 ± 0.35

bc,B ND 0.63 ± 0.17
a,C

1.08 ± 0.28
b,C ND Fruity, grassy, mushroom [31,39]

2-Undecanone 1.39 ± 0.48 A 1.89 ± 0.79
a,B

1.37 ± 0.28
b,B

1.63 ± 0.74
c,B

1.47 ± 0.05
cd,B

1.58 ± 0.38
cd,B

1.46 ± 0.52
cd,B

0.78 ± 0.3
a,C

0.53 ± 0.18
b,C

0.73 ± 0.23
ab,C

0.85 ± 0.35
c,C Fruity-rosy, orange-like [31,39]

2,3-Pentanedione ND 1.65 ± 0.26
a,A

0.45 ± 0.17
b,A

0.84 ± 0.23
c,A

1.05 ± 0.18
d,A

1.48 ± 0.36
a,A

1.26 ± 0.25
dA ND ND 1.84 ± 0.73

a,B
0.76 ± 0.11

b,B Butter scotch, almond, fruity [31]

3-Pentanone ND 2.54 ± 0.6
a,A ND 1.68 ± 0.15

b,A
2.32 ± 0.38

a,A
3.15 ± 1.37

c,A
2.78 ± 0.86

d,A
2.63 ± 1.02

a,B
2.08 ± 0.77

b,B
5.74 ± 2.3

c,B ND Irritant, acetone [32]

ND: Not detected. Different uppercase letters in the same group from different day indicate a significant difference (p < 0.05). Different lowercase letters in different groups from the same
day indicate a significant difference (p < 0.05).
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Aldehyde has low threshold values and the abundance of aldehyde increased in all turbot samples
during storage. Some aldehyde generated from lipid oxidation, especially for the unsaturated fatty
acids. Therefore, VOCs generated from the process of lipid oxidation are generally recognized as
one of the leading causes of quality deterioration in aquatic products [40]. Hexanal, (Z)-4-heptenal,
heptanal, (E,E)-2,4-heptadienal, octanal and (E)-2-octenal showed tendencies to increase gradually,
while 2-methyl-butanal, nonanal and decanal showed downward trends of turbot samples during
storage. Hexanal was generated from the oxidation of linoleic acid and presented in much higher
concentrations in the all turbot samples during storage [41]. Further, heptanal, octanal and nonanal
might impart a characteristic fishy flavor; however, 2-methyl-butanal renders turbot samples
nutty/malty nuances [42]. Benzaldehyde plays a positive effect on fish odor, and a higher relative
abundance appeared at the beginning, which was in agreement with Tan et al. [43].

Unsaturated alcohols, such as 1-octen-3-ol, 1-penten-3-ol, 2-octyn-1-ol, (Z)-2-penten-1-ol and
(E)-2-octen-1-ol, have much lower threshold than the saturated alcohols [42]. The most abundant
alcohol were 1-penten-3-ol and 1-octen-3-ol with odor like fishy and grassy [44], which are the products
of lipoxygenases onω-3 PUFA [45], and they both significantly increased during storage, especially
for the AP treated samples. 1-Octen-3-ol was basically perceived as off-flavor due to the low odor
threshold and usually classified as an oxidative spoilage marker [46]. 2-Octen-1-ol imparts a green
flavor note and was the product of 12-lipoxygenase activity on ω-6PUFA in turbot samples during
storage [47]. The nonbranched alcohols (1-heptanol and 1-hexanol), resulting in a grassy or woody
flavor, decreased during storage and 1-heptanol was not detected in MAP treated samples at the end
of storage.

Ketones are mainly generated from lipid-autoxidation and/or amino acid degradation, and are
related with the unpleasant odor in fish [48]. The main ketone is 2, 3-octanedione, which is produced
from linolenate oxidative degradation increased during storage, especially for the AP treated samples,
and contributed to the development of oxidized fat-odors [49].

2.9. Microbiological Analysis

It is known that the quality deterioration of fish is mainly caused by microbiological activity,
and the total viable count (TVC) variations are well correlated with the changes of sensorial quality
score, TVB-N, and K value. Figure 4 shows the data corresponding to the TVC growth of turbot samples
at −1.3 ◦C during storage. The initial population of mesophiles was 2.85 logCFU/g, indicating a good
quality of the starting turbot samples with the proposed upper limit of 5 × 105 logCFU/g for fresh
fish [30]. The TVC counts increased during storage and the mesophile number of AP treated samples
quickly increased to 6.18 log CFU/g at day 21, which exceeded the upper acceptability limit (6 logCFU/g)
for marine fish, whereas the MAP1 samples were significantly lower than others during the entire
storage. A higher CO2 and lower O2 concentration could inhibit the microbiological growth [31],
which corroborates our microbiological results. Moreover, all the MAP treated samples did not exceed
the allowed maximum limit because of the remarkable inhibitory effect of MAP treatments combined
with superchilling (−1.3 ◦C). Some studies have also showed similar results and demonstrated that
MAP treatments and superchilling could slow down the microbiological growth [32,33].
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2.10. Organoleptic Evaluation

The acceptability of turbot samples during superchilling storage depends upon the changes in their
organoleptic characteristics. Figure 5 displays organoleptic evaluation results for the turbot samples
including odor, color, mucus, elasticity and tissue morphology during superchilling storage. At the
beginning, all turbot samples had high organoleptic scores and they were of excellent quality, and then
a significant quality loss in all turbot samples was observed (p < 0.05) during storage. However,
MAP treated samples had significantly higher organoleptic scores than those of the AP and VP treated
samples (p < 0.05). The AP, VP, MAP3, and MAP4 treated samples were considered unacceptable by
the panelist at day 18, day 21, day 25 and day 23, respectively, due to off-odor and loose elasticity.
No significant difference (p > 0.05) was detected between MAP3 and MAP4. The best organoleptic
evaluations were reported in MAP1 and MAP2, however the mucus and odor qualities of MAP1 were
unacceptable at day 27. The organoleptic evaluation results were also supported by TVC growth,
TVB-N and K values, which were also certified in some researches [34].
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3. Materials and Methods

3.1. Preparation and Treatment of Turbot Samples

A total of 134 live turbot (Scophthalmus maximus) fish with an average weight of 500 ± 50 g and
length of 30 ± 2 cm were supplied by a local aquatic product market in Luchao Port town (Shanghai,
China). They were slaughtered by immersion in ice cold water for 15 min and the gills and viscera
of turbot were removed. Then, they were thoroughly washed with sterilized 1% NaCl solutions and
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2 random turbot samples were taken to determine the basic quality profiles at initial sampling point
(day 0). The remaining turbot samples were divided into six batches (22 fish per packaging condition)
for AP, VP, and MAP (70% CO2/30% N2: MAP1; 60% CO2/10% O2/30% N2: MAP2; 50% CO2/15%
O2/35% N2: MAP3; 55% CO2/5% O2/40% N2: MAP4), respectively. For MAP, turbot samples (1 turbot
per package) were packaged in polystyrene trays (30 cm × 40 cm × 5 cm) with a gas mixture using a
MAP machine (MAP-JY600A, Jiyi Machinery Co., Ltd., Shanghai, China). For AP, 1 turbot in each tray
was overwrapped with polyvinylchloride film. Finally, for VP, 1 turbot in each tray was packaged in
polyethylene bag and performed at a pressure of –1 bar using a VP machine (DZ-260, Jiahe Packaging
Machinery Co., Ltd., Shanghai, China). Then the packaged turbot samples were placed on plastic trays
and introduced a freezing tunnel previously cooled to −30 ± 2 ◦C by air convection. They were kept
for 20 min to reach −1.0 ◦C in the center of the turbot samples. After that, the turbot samples were
transferred to a refrigerator (BPS-250CB, Yiheng Thermostatic Chamber, Shanghai, China) and kept at
−1.3 ± 0.1 ◦C. A quality evaluation of turbot samples was performed at 3-day intervals during storage
until they were considered spoiled based on the offensive odors by organoleptic evaluation. Three
fish were taken out at the sampling point for biochemical changes, VOCs, and organoleptic properties
during storage.

3.2. Determination of WHC

WHC was determined according to Zang et al. [50]. Then, 3g (m1) turbot samples were wrapped
in filter paper and then centrifuged at 3000 × g for 10 min. After the surface water was drained,
the sample was weighed again (m2). The WHC was calculated as follows:

WHC(%) =

(
1−

m1 −m2

m1

)
× 100%

where m1 is the initial weight (g) of the sample and m2 is the sample weight (g) after centrifugation.

3.3. Determination of TVB-N

For TVB-N determinations, the distillation method of a deproteinized sample as recommended
by Djamal et al. [35] was used. Then, 15 g turbot muscle was homogenized in 30 mL of 7.5% TCA
solution, centrifuged at 11,620 × g for 20 min at 4 ◦C and the supernatants filtered with Whatman
No. 3 qualitative filter paper. Steam distillation was performed with a Kjeldahl nitrogen-determination
apparatus (Kjeltec8400, Foss, Denmark) and TVB-N was expressed as mg N/100g.

3.4. Determination of TBARS

Lipid oxidation in turbot samples was determined using the evaluation of TBARS test according
to Cheng et al. [36] with some modifications. Thereby, 5 g turbot muscle was homogenized in 20 mL
of 20 % TBA solution and 20 mL of distilled water, centrifuged at 11,620× g for 10 min at 4 ◦C and
the supernatants filtered with Whatman No. 3 qualitative filter paper. The filtrate was diluted with
distilled water to 50 mL. 10 mL diluent and 10 mL TBA solution was mixed and heated at 95 ◦C
for 15 min and then cooled with running water. The absorbance of the supernatant was measured
at 532 nm using a spectrophotometer (Evolution 220, Thermo, Thermo Fisher Scientific, MA, USA).
A standard curve was prepared using 1,1,3,3-tetramethoxypropane at a concentration ranging from 0
to 10 ppm, and the amounts of TBA-RS were expressed as mg of MDA/kg of sample.

3.5. Determination of K Value

Adenosine triphosphate (ATP) and its degradation products (adenosine diphosphate (ADP),
adenosine monophosphate (AMP), IMP, HxR and Hx) in turbot samples were determined by a
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RP-HPLC procedure proposed by Li et al. [37]. After obtaining all of the ATP metabolites from HPLC,
the freshness index K value was calculated as follows:

K value (%) =
HxR + Hx

ATP + ADP + AMP + IMP + HxR + Hx
× 100 (1)

3.6. LF-NMR Analysis

The proton relaxation experiments were performed proposed by Li et al. [25] to evaluate the water
distribution and migration in turbot samples using a LF-NMR analyzer (MesoMR23-060H.I, Niumag
Instrument, Suzhou, China) with a proton resonance frequency of 20 MHz, corresponding to the pulse
sequence of Carr-Purcell-Meiboom-Gill (CPMG). The samples from the dorsal part of turbot samples
were cut into small squares (1 × 1 × 1 cm) and sealed with polyethylene films. 16 scans were performed
with 3000 echoes for each measurement; the relative content of three types of water components
was obtained from the iterative inversion with analytical software of T2 transverse relaxation time.
Acquisition parameters were as follows: slice width = 3 mm, time repetition (TR) = 2000, and time
echo (TE) = 15 ms.

MRI experiments were performed to get proton density weighted images and the echo time,
repetition time and slice width were 18.2 ms, 850 ms, and 2 mm, respectively.

3.7. Headspace SPME-GC/MS Analysis

The VOCs of turbot samples were determined using the method portrayed by Li et al. [38].
Thereby, 3 g minced muscle samples and 6 mL saturated NaCl solution were transferred into a 20-mL
sample vial. A 65 µm PDMS/DVB fiber (Supelco, PA, USA) was exposed to the headspace of the vial at
50 ◦C for 25 min. After extraction, the fiber was directly desorbed into the injection port of the GC
at 250 ◦C. The analytes were determined by GC/MS (GC, Agilent 7890B; MS, Agilent 5977A, Agilent,
CA, USA) equipped with a methyl polysiloxane capillary column (HP-5MS, Agilent; 30 m × 0.25 mm
× 0.25 µm film thickness). The carrier gas was helium at 1.0 mL/min. The GC column temperature
procedure was set as follows: kept at 40 ◦C for 10 min, increased to 240 ◦C at 5 ◦C/min, increased to
280 ◦C at 20 ◦C/min, and held for 8 min. The MS operated in electron impact (EI) mode with EI energy
of 70 eV; and collected data at a rate of 0.7 scans/s over a range of m/z 40–650. The VOCs were tentatively
identified by the comparison of actual mass spectra with the published authentic spectra database in
the GC/MS libraries (NIST2011), and the compounds with MS match index over 800 were reported.

3.8. FAAs Analysis

FAAs were determined according to Zhou et al. [39] with some modifications. Thereby, 5 g
mashed turbot sample and 15 mL of 15% cold trichloroacetic acid were mixed and homogenized at
11,620 g for 5 min at 4 ◦C. After standing at 4 ◦C for 2 h, the homogenate was centrifuged at 5810× g
for 15 min at 4 ◦C. Then, 5 mL supernatant was immediately neutralized to pH 2.0 and diluted with
ultrapure water to 10 mL. The mixture was filtered through a 0.22 µm filter and analyzed by an amino
acid analyzer (Hitachi L-8800, Tokyo, Japan). Peak identification and quantification were accomplished
by determining the retention times and peak areas from the instrument software in comparison to FAA
standards (Sigma, St. Louis, MO, USA).

3.9. Total Viable Count (TVC) Analysis

Representative 10 g minced muscle was aseptically homogenized with 90 mL of sterilized saline
solution (0.85% NaCl) and then subjected to serial dilutions. TVC on nutrient agar medium (Hopebio,
Qingdao, China) with 0.4 mg/mL nystatin (Aladdin, Shanghai, China) were incubated at 28 ◦C for 48 h.
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3.10. Organoleptic Evaluation

The organoleptic properties of turbot samples were evaluated according to Li et al. [51].
Ten experienced judges (5 men and 5 women between 25 and 40 years old) participated in the
organoleptic evaluation during each session. The panel was trained using turbot of different quality
levels in each session. The panel trains involved training in the detection and recognition of odor,
color, mucus, elasticity, and tissue morphology using a five-point scale. Thereby, 5 corresponded to
‘most liked’ and 1 to ‘most disliked’. In preparation for the organoleptic evaluation, two equal turbot
portions (approximately 10 g per piece) were cut from the centre part of each turbot and placed in
aluminium boxes coded with random three-digit numbers. Organoleptic analysis was conducted
independently in a well-ventilated room with 20 ± 1 ◦C and 55 ± 2% relative humidity. The turbot
samples were defined to have reached its maximum shelf-life when a rancid flavor or odor value <3
was obtained. At that value, most panelists detected the attribute at an intensity level that would deem
the turbot unacceptable.

3.11. Statistical Analysis

Experimental data were analyzed using SPSS 22.0 (IBM Corporation, New York, NY, USA).
The one-way ANOVA procedure followed by Duncan’s multiple range tests was adopted to determine
the significant difference (p < 0.05) between treatment means, and the results were expressed as means
± SD of three independent experiments.

4. Conclusions

The MAP in combination with superchilling (−1.3 ◦C) treated turbot samples showed a potential
in slowing down the rate of turbot spoilage. The MAP1 and MAP2 treatments maintained better
physicochemical results, flavor quality, and organoleptic evaluation results during superchilling
storage, which is mainly due to high CO2 MAP effectively inhibiting the growth of spoilage
microorganisms. VP treatments combined with superchilling was also proven to be effective in
controlling the microbiological growth. However, exudation and acid production render such
packaging undesirable. MAP1 and MAP2 treatments had similar effects in slowing down turbot
samples spoilage. According to organoleptic evaluation, MAP2 treatments led to a longer shelf life than
MAP1 treatments for turbot samples during superchilling storage. Therefore, MAP2 (60% CO2/10%
O2/30% N2) combined with superchilling (−1.3 ◦C) is suitable for maintaining the freshness of turbot
samples where an extended storage period may be necessary.
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