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Abstract: Approximately 90% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC).
PDAC is the fourth leading cause of cancer death world-wide. Therapies for PDAC are largely
ineffective due to the dense desmoplastic tumor microenvironment which prevents chemotherapeutic
drugs and small molecule inhibitors from exerting effective anti-cancer effects. In this review, we
will discuss the roles of TP53 and miRs on the PDAC tumor microenvironment and how loss of the
normal functions of TP53 promote tumor progression. The TP53 gene is mutated in approximately
50% of pancreatic cancers. Often, these TP53 mutations are point mutations which confer additional
functions for the TP53 proteins. These are called gain of function (GOF) mutations (mut). Another
class of TP53 mutations are deletions which result in loss of the TP53 protein; these are referred to
TP53-null mutations. We have organized this review into various components/properties of the
PDAC microenvironment and how they may be altered in the presence of mutant TP53 and loss of
certain miR expression.

Keywords: TP53; KRas; PDAC; immunotherapy; miRs; ncRNAs; tumor microenvironment; tumor
stroma; targeted therapy; PD-L1

1. Introduction-Overview of Genes Frequently Mutated in PDAC

There are multiple genes frequently mutated in PDAC. These include: TP53, KRAS,
cyclin-dependent kinase inhibitor 2A (CDKN2A encodes the p16 (INK4A) and the p14
(ARF) tumor suppressor proteins), and SMAD4 (encodes the small mothers against de-
capentaplegic homolog 4 protein, which is a transcription factor). These genes have been
determined to have mutations, deletions, amplifications or inactivations for quite some
time now. There are other genes which may be mutated or expressed abnormally in PDAC.
Some genes that are also more frequently mutated in PDAC include: cyclin-dependent
kinase inhibitor 2B (CDKN2B encodes p15INK4b tumor suppressor protein) and ARID1A
(AT-rich interactive domain-containing protein 1A, which is one component of multiple
SWItch/Sucrose Non-Fermentable (SWI/SNF) protein complexes that are involved in
chromatin remodeling). Mutations at these genes were detected by next-generation se-
quencing. The effects of the mutations and/or changes in gene expression on the PDAC
microenvironment have been recently reviewed [1].
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KRAS is mutated in >95% of PDACs. The KRAS mutations result in the constitutive
activation of a critical GTP/GDP GTPase exchange protein which is an important regulator
(on/off switch) in multiple signal transduction pathways [2]. KRAS mutations can con-
trol various aspects of the tumor microenvironment. KRAS mutations can influence the
presence of various immune cells in the inflammatory PDAC tumor microenvironment.
KRAS mutations can affect the infiltration of T cells and myeloid-derived suppressive cells
(MDSCs) during early stages of pancreatic intraepithelial neoplasia (PanIN) [3]. This can
result in changes to pancreatic stellate cells (PSC) and induce mesenchymal-derived cells to
form fibroblasts and fibrin remodeling. This results in PDAC remodeling of the microen-
vironment and progression of the PanIN and the ability of immune cells to infiltrate the
PDAC microenvironment [4]. KRAS mutations can also increase the expression many genes
associated with the immunosuppressive PDAC microenvironment such as the immune
check point regulator programmed death-ligand 1 (PD-L1) [5,6]. This can result in the
differentiation of CD4+CD25− cells into T regulatory (Treg) cells [7] and recruitment in
colorectal cancer (CRC), PDAC and other cancers [8]. In addition, KRAS mutations induce
growth factors such as interleukin-6 (IL-6) and IL-10, transforming growth factor-β (TGF-β)
and sonic hedgehog (Shh) [9].

The TP53 gene encodes a tumor suppressor protein. The TP53 gene is one of the most
frequently mutated genes in humans. The TP53 protein is a transcription factor. TP53
can also influence the PDAC or CRC microenvironment by influencing the expression of
many genes. Inactivation of wild type (WT) TP53 activity has direct effects on cell cycle
progression, apoptosis and senescence. Loss of the normal activities of TP53 changes the
immune milieu in the PDAC microenvironment and promotes inflammation which is
pro-tumorigenic. Mut-TP53 can alter immunosuppressive properties of the PDAC microen-
vironment which accelerates tumor progression and metastasis [10]. TP53 can increase
the immune response in the PDAC microenvironment by augmenting the levels of T cells,
which enhances the effects of dendritic cells (DC) [11]. This was determined by treatment
with the mouse double minute 2 homolog (MDM2) inhibitor nutlin-3a. WT TP53 suppresses
IL-6 expression while it is detected at higher levels in the PDAC microenvironment in cells
with mut-TP53. Increased IL-6 expression is associated with metastasis [12]. Mut-TP53
can also induce NF-κB activity, which in turn induces inflammatory cytokine expression,
including IL-6 and tumor necrosis factor-α (TNF-α), and promotes metastasis [13]. In colon
cancer models, mutant TP53 can induce the expression of vascular endothelial growth
factor (VEGF) which promotes angiogenesis and tumorigenesis [14]. An overview of some
of these interactions is presented in Figure 1.

CDKN2A is another gene whose expression is frequently altered in PDAC [15]. The
CDKN2A locus encodes two proteins, p16 (p16/INK4A) and p14ARF. Altered expression
(loss of function) of the CDKN2A locus can occur by many mechanisms, including promoter
methylation and gene deletion. p16/INK4A and p14ARF are normally tumor suppressor
proteins and they serve to function to inhibit cell cycle progression. p16/INK4a normally
inhibits cell cycle progression by suppressing the activity of cyclin-dependent kinase
4 (CDK4) and CDK6. The p14ARF protein induces cell cycle arrest by inhibiting the
degradation of MDM2, which results in destabilizing the TP53 protein. CDKN2A mutation
(downregulation) has been associated with decreased infiltration of T and B cells in the
PDAC microenvironment. This also increased the levels of forkhead box P3 positive (Fox3P)
Tregs and was associated with a lower level of survival in PDAC patients [16].

SMAD4 is a tumor suppressor protein. The SMAD4 gene encodes a transcription
factor, and it is downstream of TGF-β [17]. Mutation or loss of SMAD4 activity prevents the
growth suppressive effects of TGF-β. Loss of SMAD4 activity may result in tumor angio-
genesis. Loss of SMAD-4 and WT-TP53 activities were associated with S100A8. The S100A8
protein binds calcium and zinc and regulates various inflammatory and immune reactions.
It can induce neutrophil chemotaxis and adhesion [18]. S100A8 is associated with the tumor
microenvironment as it increases the secretion of pro-inflammatory cytokines [19].
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Figure 1. Sites of Interactions of Mutant Genes in PDAC and the Various Pathways which they Effect 
and also Sites of Interaction of Certain Small Molecule Inhibitors Discussed in this Review. Abbre-
viations: transforming growth factor-β (TGF-β), small mothers against decapentaplegic homolog 4 
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ers against decapentaplegic homolog 2 protein (SMAD2), Kruppel-like factor 4 (KLF4), Kruppel-like 
factor 2 (KLF2), cyclin-dependent kinase 4 (CDK4), cyclin-dependent kinase 2 (CDK2), cyclin-de-
pendent kinase inhibitor 2A encoded by CDKN2A (p16 INK4a) E2F transcription factor (E2F), cyclin-
dependent kinase inhibitor 1A encoded by CDKN1A (p21Cip1), small molecule reactivator of mu-
tant TP53 (APR-246), TP53 = tumor suppressor protein 53 KDa, 14 KDa tumor suppressor protein 
alternate reading frame protein encoded by CDKN2A (p14ARF), p53 upregulated modulator of 
apoptosis (PUMA), mouse double minute 2 E3 ubiquitin ligase (MDM2), small molecular inhibitor 
of MDM2 (nutlin-3a), micro RNA (miR), non-coding RNAs including LncRNAs and circRNAs 
(ncRNA), platelet-derived growth factor receptor (PDGFR), cancer-associated fibroblast (CAF), tu-
mor necrosis factor-α (TNFα), tumor necrosis factor receptor (TNFR), sonic hedgehog growth factor 
(Shh), Ral guanine nucleotide exchange factor (RalGEF), TANK binding kinase 1 (TBK1), inhibitor 
of NF-Kappa-B kinase-α/β/γ (IKKα/β/κ), inhibitor of NF-κB-α (IκB-α), p50 KDa subunit of nuclear 
kappa-κ B cells (p50) , p65 KDa subunit of nuclear kappa-κ B cells (p65), small molecule multi kinase 
inhibitor (Sorafenib), platelet-derived growth factor (PDGF), phosphatase and tensin homolog 
(PTEN), insulin-like growth factor-I (IGF-1), insulin-like growth factor-1 receptor-1 (IGF-1R), 
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dependent protein kinase-1 (PDK1), AKT serine/threonine kinase (AKT), (TSC1 (hamartin) and 
TSC2 (tuberin) tumor suppressor complex (TSC1/TSC2), Ras Homolog, mTORC1 binding protein 
(Rheb), mechanistic target of rapamycin kinase (mTORC1), SWItch/Sucrose Non-Fermentable com-
plex (SWI/SNF), AT-rich interactive domain-containing protein 1A (Arid1a)—MAP kinase kinase 
kinase (Raf), mitogen-activated protein kinase kinase 1 (MEK), ERK = mitogen-activated protein 
kinase (ERK). We compiled the information necessary for all the figures, designed all the figures 
and their composition was created with BioRender.com. 

Figure 1. Sites of Interactions of Mutant Genes in PDAC and the Various Pathways which they
Effect and also Sites of Interaction of Certain Small Molecule Inhibitors Discussed in this Review.
Abbreviations: transforming growth factor-β (TGF-β), small mothers against decapentaplegic ho-
molog 4 protein (SMAD4), small mothers against decapentaplegic homolog 3 protein (SMAD3),
small mothers against decapentaplegic homolog 2 protein (SMAD2), Kruppel-like factor 4 (KLF4),
Kruppel-like factor 2 (KLF2), cyclin-dependent kinase 4 (CDK4), cyclin-dependent kinase 2 (CDK2),
cyclin-dependent kinase inhibitor 2A encoded by CDKN2A (p16 INK4a) E2F transcription factor (E2F),
cyclin-dependent kinase inhibitor 1A encoded by CDKN1A (p21Cip1), small molecule reactivator
of mutant TP53 (APR-246), TP53 = tumor suppressor protein 53 KDa, 14 KDa tumor suppressor
protein alternate reading frame protein encoded by CDKN2A (p14ARF), p53 upregulated modu-
lator of apoptosis (PUMA), mouse double minute 2 E3 ubiquitin ligase (MDM2), small molecular
inhibitor of MDM2 (nutlin-3a), micro RNA (miR), non-coding RNAs including LncRNAs and circR-
NAs (ncRNA), platelet-derived growth factor receptor (PDGFR), cancer-associated fibroblast (CAF),
tumor necrosis factor-α (TNFα), tumor necrosis factor receptor (TNFR), sonic hedgehog growth
factor (Shh), Ral guanine nucleotide exchange factor (RalGEF), TANK binding kinase 1 (TBK1),
inhibitor of NF-Kappa-B kinase-α/β/γ (IKKα/β/κ), inhibitor of NF-κB-α (IκB-α), p50 KDa subunit
of nuclear kappa-κB cells (p50), p65 KDa subunit of nuclear kappa-κB cells (p65), small molecule
multi kinase inhibitor (Sorafenib), platelet-derived growth factor (PDGF), phosphatase and tensin
homolog (PTEN), insulin-like growth factor-I (IGF-1), insulin-like growth factor-1 receptor-1 (IGF-1R),
Kirsten Ras oncogene homolog (KRas), phosphatidylinositol 3-kinase (PI3K) 3-phosphoinositide-
dependent protein kinase-1 (PDK1), AKT serine/threonine kinase (AKT), (TSC1 (hamartin) and TSC2
(tuberin) tumor suppressor complex (TSC1/TSC2), Ras Homolog, mTORC1 binding protein (Rheb),
mechanistic target of rapamycin kinase (mTORC1), SWItch/Sucrose Non-Fermentable complex
(SWI/SNF), AT-rich interactive domain-containing protein 1A (Arid1a)—MAP kinase kinase kinase
(Raf), mitogen-activated protein kinase kinase 1 (MEK), ERK = mitogen-activated protein kinase
(ERK). We compiled the information necessary for all the figures, designed all the figures and their
composition was created with BioRender.com.
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2. Interactions of TP53 with the Immune System and Fibroblasts in the
PDAC Microenvironment

The immune system is key for the prevention of bacterial infections as well as pre-
vention of abnormal growth and tumor development. Although T and B cells are some of
the best-known cells in the immune system, especially the adaptive immune response, the
innate immune response is also important in regulating tumor growth. The innate immune
system consists of macrophages, monocytes, DC, natural killer (NK) and other cells. The
PDAC microenvironment consists of tumor-infiltrating T, B and NK lymphocytes as well
as myeloid cells including macrophages, monocytes, DC, MDSC and other cells. There are
two types of suppressor/regulatory cells in the PDAC microenvironment: Treg cells and
type 2 macrophages (M2, MDSC). M2 macrophages can differentiate into tumor-associated
macrophages (TAM) cells. These cells promote tumor inflammation and immunosuppres-
sion. The extracellular matrix (ECM) and cytokines/chemokine milieu is altered in the
PDAC environment. Inflammatory stress is monitored by TP53, and in the absence of WT
TP53 this censoring is diminished.

In studies with TP53 knock-out mice (TP53-null), enhanced levels of IL-1, IL-6 and IL-
12 were observed in the macrophages. Increased levels of these proinflammatory cytokines
altered macrophage function in the PDAC microenvironment [20]. Inhibition of normal
TP53 function led to T cell differentiation into T helper Th17 cells [21]. Loss of WT-TP53
activity altered Treg differentiation and led to inflammation [22,23]. Restoration of WT-TP53
activity suppressed inflammation and autoimmunity [20].

In addition, the PDAC microenvironment has cancer-associated fibroblasts (CAF).
CAFs alter the pancreatic cancer microenvironment by the secretion of growth factors
such as C-X-C motif chemokine ligand 1 (CXCL1), CXCL12, C-C motif chemokine ligand
8 (CCL8), stromal cell-derived factor-1 (SDF-1), IL-6, IL-11, VEGF and others [24–26]. The
CAFs can have important effects on immunosuppression, angiogenesis and metastasis
in the tumor microenvironment by secreting multiple growth factors. Likewise, primary
pancreatic cancers can modulate the tumor microenvironment by secreting various factors
in exosomes which favor colonization in metastatic sites [27].

3. Interactions between Stroma and TP53 and Their Regulation of miRs, LncRNAs and
CircRNAs in the PDAC Microenvironment

PDAC is associated with a dense dysplastic stroma which results in a hypoxic envi-
ronment and impedes the effectiveness of chemotherapeutic drugs as well as immunother-
apeutic approaches. Targeting the dense dysplastic stroma has been attempted but it has
not yet proven to be effective and may be counter-productive [28].

CAFs are the main producers of stoma [29]. Hypoxia inducible factor-2α (HIF-2α) is a
protein present in the PDAC stroma. Recently, it has been shown that HIF-2α is a potential
therapeutic target for PDAC. This may occur by obstruction of the crosstalk between CAFs
and macrophages in the PDAC stroma. Belzutifan is an HIF-2α and HIF-1α inhibitor that
is approved for the treatment of renal cell carcinoma [30]. The HIF-1α and HIF-2α genes
were conditionally knocked out in CAFs that expressed α-smooth muscle actin (α-SMA). In
spontaneously arising PDAC tumors, CAFs were isolated, and it was determined that HIF-
2α inhibition prevented the crosstalk between the CAFs and macrophages and improved
the survival of the mice [31]. PT2399 is an HIF-2α inhibitor that is being examined in
pre-clinical studies.

Macrophages are classified as M1 and M2. M1 macrophages are activated and pro-
inflammatory, while M2 macrophages become activated during the resolution phase of
inflammation and are immunosuppressive in nature. Treatment of mice with PDAC tumors
with PT2399 inhibited macrophage hemotaxis and M2 polarization and improved responses
to immunotherapy as well as mouse survival [31]. HIF-2α but not HIF-1α was determined
to drive the immunosuppressive environment and result in increased levels of Tregs and
TAMs. M2 macrophages were determined to be a major source of M2-polarized TAMs, PD-
L1 and cluster of differentiation 86 (CD86), all of which are immunosuppressive molecules.
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An overview of potential approaches to target the PDAC microenvironment is presented in
Figure 2. This figure also presents some of the many cell types and growth factors present
in the PDAC microenvironment.
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Figure 2. Potential Sites of where Certain Immunotherapeutic Drugs and Inhibitors may Act in
the PDAC Microenvironment. Panels (A,B) immunotherapeutic approaches to target PDAC cells
with: (A) αPD-1 MoAb and (B) αCTLA-4 MoAb. Panels (C,D) effects of hypoxia on M2 macrophage
polarization and the PDAC microenvironment in Panel (C), where HIF-2 signaling is intact and
Panel (D), where HIF-2 signaling is suppressed after treatment with HIF inhibitors PT2399 or Belzu-
tifan. CD8+ cells = CD8 positive T cells (CD8+ cells), PDAC tumor cells (PDAC cells), monoclonal
antibody to programmed cell death protein 1 (αPD-1 MoAb), monoclonal antibody to cytotoxic T
lymphocyte antigen-4 (αCTLA-4 MoAb), hypoxia inducible factor-2α (HIF-2α), hypoxia-inducible
factor-2β (HIF-2β) small molecule HIF-2α inhibitor (PT2399, PT2977), small molecule HIF-2α in-
hibitor (Belzutifan, MK-6482).

The dense fibrotic stroma present in the PDAC microenvironment impedes drug deliv-
ery to the PDAC tumor cells. Various anti-stromal therapies have not yet proven effective in
increasing the effectiveness of chemotherapeutic drugs to improve treatment outcomes [28].
The dense fibrotic stroma is complex as it normally impedes PDAC progression, while
elimination of the dense fibrotic stroma increases PDAC progression. An important miR
involved in various cancers is miR-29. Loss of miR-29 expression results in the activation
of PSCs and increased levels of extracellular matrix deposition in the PDAC stroma [32].
In contrast, experimentally induced increased levels of miR-29 expression in activated
PSCs cells inhibited stromal deposition, PDAC viability and suppressed growth in in vitro
co-culture models. TGF-β1 is growth factor that has tumor promoting as well as fibrotic
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inducing properties. It is secreted from cancer cells and injured acinar cells. It is important
in the activation of PSCs.

TGF-β1 was determined to be a negative regulator of miR-29 in PSCs. It increased
the expression of collagens, laminin and fibronectin, all components of the ECM [33].
Regulatory loops between TP53 and miR-29 exist, as TP53 can activate miR-29 expression
and miR-29 can negatively regulate MDM2 expression, resulting in increased stability of
TP53 [34]. The effects of multiple miRs, long non-coding RNAs (lncRNAs) and circular
RNAs (circRNAs) have been implicated in regulating the PDAC microenvironment and
have recently been summarized [35]. A diagram of some of the interactions between TP53
and various miRs, lncRNAs and circRNAs and their effects on the PDAC microenvironment
is presented in Figure 3. In this figure, we have indicated where the miRs, LncRNAs and
CircRNAs (ncRNAs) affect either the PDAC tumor cells or the CAFs.

1 

 

 

Figure 3. Various miRs, LncRNA and circRNAs Induced by TP53 which have Effects on: Proliferation,
EMT, Migration, Invasion, Metastasis, Desmoplasia and Drug Resistance. Programed cell death
ligand 1 (PD-L1), B-cell lymphoma-2 gene (Bcl2), AXL = AXL receptor tyrosine kinase, plasminogen
activator inhibitor-1 (serpine-1), signal transducer and activator of transcription 3 (STAT3), matrix
metallopeptidase 3 (MMP3), matrix metallopeptidase 9 (MMP9), programmed cell death 4 (PDCD4),
chemokine ligand 7 (CCL7), MyD88 = myeloid differentiation primary response protein MyD88
(MyD88), IL-6 = interleukin 6 (IL-6), Zinc finger E-box-binding homeobox 1/Zinc finger E-box-binding
homeobox 2 (ZEB1/2).

The effects of the circCUL2 RNA were examined in cells with an inflammatory CAF
phenotype in the PDAC microenvironment [36]. This occurred by a myeloid differentiation
primary response protein MyD88 (MyD88)-dependent nuclear factor-κB cell (NF-κB) sig-
naling pathway activation. circCUL2 RNA was detected in CAF phenotype but not in the
PDAC tumor cells. circCUL2 RNA was associated with a poor prognosis in PDAC patients.
Experimentally increased expression of circCUL2 in normal fibroblasts resulted in cells
with an inflammatory (iCAF) phenotype. These cells synthesized IL-6 and were able to
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stimulate PDAC progression. circCUL2 was determined to act as competing endogenous
RNAs (ceRNA). ceRNAs function by binding miRs and inhibiting their function. Circ-
CUL2 inhibited miR-203a-3a and suppressed its ability to inhibit MyD88 and downstream
NF-κB and IL-6 and subsequent signal transducer and activator of transcription 3 (STAT3)
signaling [36].

PSCs are important in PDAC. They are a subset of CAF [37]. Activated PSC promote
PDAC migration via desmoplastic interactions which lead to increased collagen, laminin
and other proteins at the extracellular matrix. This contributes to fibrosis. miR-29a has been
shown to affect PSCs and alter the regulation of the PDAC microenvironment [32]. miR-29a
modulates effectors of IGF-1/TP53 signaling in PSCs. miR-29 may hinder carcinogenesis
in PDAC. miR-29a expression is regulated by TP53, and miR-29a in turn regulates TP53
expression by regulating MDM2 [38]. This also increases the resistance to treatment with
the chemotherapeutic drug temozolomide. TP53 can induce the expression of miR-29 in
certain cancers [34,39].

CAFs are important cells during the desmoplastic reaction in PDAC [40]. Oxidative
stress is important in the PDAC tumor microenvironment. However, the origins of CAFs
are not well understood. Experimentally, oxidative stress can be induced by either H2O2
or radiation treatment. Oxidative stress stimulated monocyte-to-myofibroblast transd-
ifferentiation (MMT) of CD14+ monocytes. This resulted in increased levels of α-SMA
expression. The increased levels of α-SMA expression were dependent on p38MAPK path-
way activation. Oxidative stress in the PDAC tumor microenvironment could induce MMT
in PDAC. This increased reactive stroma and promoted both immunosuppression and
tumor progression. The MMT resulted in the generation of CAFs with reduced phagocytic
capacity. Importantly, in this model, the CAFs could promote the proliferation of PDACs.
Reducing oxidative stress has been proposed as a therapeutic regimen [41].

Tumor-associated stroma (TAS) has been implicated as playing critical roles in the
PDAC tumor microenvironment. Exosomes were determined to transfer miR-145 from
TAS to PDAC tumors. In this situation, the TAS suppressed tumor growth [42]. miR-
145 is regulated by TP53 in various cancers including pancreatic cancer [43]. miR-145
targets multiple mRNAs encoding proteins important in tumor progression. miR-145
functions as a tumor-suppressor in pancreatic cancer and inhibits the expression of the
mucin 13 (MUC13) gene [44]. MUC13 increases many events associated with malignant
transformation including proliferation, migration and invasion. MUC13 supports multiple
signaling pathways in the pancreatic tumor microenvironment. In the absence of WT-TP53,
there will be less miR-145 and more MUC13 in the tumor microenvironment. MUC13 also
has effects on glucose metabolism in PDAC, which is important for survival of the PDAC
cancer in the hostile pancreatic tumor microenvironment [45]. A diagram of these potential
interactions is presented in Figure 4.

miR-21 is also important in the PDAC microenvironment [35]. miR-21 is also induced
by TP53 and can be secreted by M2 macrophages [35]. In animal studies, loss of miR-21
promoted stromal remodeling and accelerated tumor initiation and progression. This
occurred via increased mucinous cystic neoplastic lesions. miR-21 can mediate TGF-β-
mediated EMT and stemness [46].

miR-21 has been shown to regulate CAFs activation. The relationship between miR-21
in CAF activation and chemotherapeutic drug resistance was examined in both tumor
samples from PDAC patients and tumor transplant studies. PDAC patients that were
resistant to gemcitabine had higher amounts of miR-21 and increased levels of CAFs.
Increased levels of matrix metalloproteinase-3 (MMP-3), MMP-9, PDGF and CCL-7 were
detected in CAFs with high levels of miR-21. These increases promoted invasion in PDAC
cell lines. Increased miR-21 expression also regulated programmed cell death 4 (PDCD4)
gene expression which resulted in CAF activation. PDCD4 interacts with and inhibits the
eukaryotic translation initiation factor 4A1 activity by preventing RNA binding. In the
tumor transplant model, it was determined that upregulating miR-21 in CAFs resulted in
PDAC desmoplasia and the gemcitabine-drug resistance. In contrast, suppressing miR-21
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in CAFs in the tumor transplant studies resulted in inhibition of PDAC desmoplasia and
led to sensitization to gemcitabine [47].
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miR-21 can also regulate the expression of the PTEN phosphatase which is an im-
portant tumor suppressor gene. Decreased expression of PTEN has been observed in the
PDAC stromal cells, which may be mediated by miR-21 [48]. TP53 regulates the expression
of miR-21 in some cancer types such as hepatocellular carcinoma [49].

miR-194-5p down-regulates the expression of the immunoregulatory checkpoint PD-L1
molecule and alters the PDAC microenvironment. Overexpression of miR-194-5p inhibited
the proliferation, migration and invasion of PDAC cells in vitro. In mouse orthotopic
PDAC models, miR-194-5p suppressed PDAC proliferation, stimulated the infiltration of
CD8+ T cells and augmented IFN-γ release by CD8+ lymphocytes in the PDAC tumor
microenvironment. Thus, miR-194-5p may serve as a therapeutic target in PDAC by altering
the tumor microenvironment [50].

miR-128 regulates the cluster of differentiation 47 (CD47) gene which in turn controls
the zinc finger E-box-binding homeobox 1 (ZEB1) in PDAC. miR-128 inhibited the prolifer-
ation and metastasis of PDAC by increasing the numbers of DCs, CD8+ T lymphocytes and
NKs and increased anti-tumor immunity [51].

Interactions between TAMs and pancreatic cancer cells are important in PDAC mi-
croenvironment. M2 macrophages release exosomes which contain miR-501-3p, which
controls transforming growth factor beta receptor 3 (TGFBR3) mediated signaling in PDAC
cells, which promotes tumor progression. TGFBR3 is a tumor suppressor gene. miR-501-3p
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targets TGFBR3. This resulted in activation of the TGF-β signaling pathway, which led
PDAC migration, invasion and tumor formation in mouse models [52].

miR-135 is expressed at higher levels in PDAC patient samples than in normal ad-
jacent tissues. Glutamine deprivation results in increased miR-135 expression. This was
determined to occur by reactive oxygen species (ROS)-induced activation of mut-TP53.
Mut-TP53 was determined to promote miR-135 expression. One of the targets of miR-135
is phosphofructokinase-1 (PFK1). When PFK1 is suppressed, aerobic glycolysis is also
inhibited. This results in the cells using glucose to mobilize the tricarboxylic acid (TCA)
cycle. Inhibition of miR-135 expression led to the PDAC cells becoming sensitive to glu-
tamine deprivation and suppressed tumor growth. These studies suggest a mechanism
by which PDAC cells can exist in the harsh tumor PDAC microenvironment. miR-135 and
mut-TP53 confer a loop that allows the PDAC cancer to survive in the nutrient poor PDAC
microenvironment and permits the PDAC cells to survive under metabolic stresses [53].

TAMs were determined to release exosomes containing miRs which conferred resis-
tance to the chemotherapeutic drug gemcitabine in the PDAC microenvironment. miR-365
was determined to suppress the activation of gemcitabine by increasing the triphosphonu-
cleotide pool and the enzyme cytidine deaminase. Cytidine deaminase normally inactivates
gemcitabine. Treatment with a miR-365 antagonist (antagomiRs) resulted in sensitivity to
gemcitabine [54]. In some cases, miR-365 can regulate the expression of TP53 by suppress-
ing the expression of the TP53 regulator MDM2 [55].

miRs are important in the regulation of cytokine expression in the PDAC microenvi-
ronment. Various miRs influence the expression of cytokines which inhibit migration in the
TAS. TAS is very abundant in the PDAC microenvironment. This is responsible, in large
part, to the lethal nature of PDAC [56]. Various miRs were determined to be expressed in
PDAC, namely, miR-205, miR-200a, miR-200b, miR-200c, miR-141 and miR-429. This was
consistent with an epithelial miR phenotype. In contrast, miR-145, miR-199a and miR-199b
were detected in TAS cells consistent with a stromal miR phenotype. When miR-200b,
miR200c and miR-205 were over expressed in TAS cells, increased granulocyte macrophage
colony stimulating factor (GM-CSF) and interferon gamma-induced protein 10 (IP10) were
secreted at higher levels and migration was inhibited [56]. TP53 can regulate the expression
of miR-205 [57]. TP53 can also modulate the expression of miR-200, which in turn regulates
the expression of transcription factors such as ZEB1 and ZEB2 which promote EMT in cer-
tain cell types such as hepatocellular carcinoma [58]. The TP53/miR-200 axis is important
in PDAC [59]. The levels of TP53/miR-200 are critical to preventing EMT in PDAC. In
the presence of low levels of TP53/miR-200, nuclear factor of activated T cells 1/SRY-box
transcription factor 2 (NFATc/Sox2) promote EMT and the “stemness” of pancreatic cancer
cells. The NFATc/Sox2 complex promotes the transcription of “stemness”-associated genes
such as Snail family transcriptional repressor 1 (SNAI1) and ZEB2. miR-200c normally
suppresses Sox2 expression as well as certain EMT-associated molecules such as Snail1
and ZEB2. Inactivation of the TP53/miR200 pathways was shown to be essential for the
dedifferentiation of PDAC cells.

The expression of miR-141, miR-149 and mi-429 are regulated by TP53 in some cancers
such as gastrointestinal cancers including PDAC [60,61]. In summary, many miRs play key
roles in the PDAC microenvironment.

4. Altered Expression of Growth Factors, Their Receptors and Downstream Signaling
Pathways in the PDAC Microenvironment

TP53 is a member of a multigene family which includes TP53, TP63 and TP73. Mem-
bers of this gene family have different functions and various effects on cellular growth.
TP53 GOF mutations can alter the tumor microenvironment in PDAC by allowing the
production of growth factors leading to increased proliferation. GOF TP53 mutations can
bind and suppress the pro-apoptotic functions of p73 and p63 [62].

GOF-TP53 mutants can repress the formation of the TP73/nuclear factor Y (NF-Y)
transcription factor complex on the platelet-derived growth factor receptor-β (PDGFR-β)
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promoter region. This allows NF-Y to bind the promoter region of the PDGFR-β gene
and stimulate transcription. Autocrine PDGF is produced in the tumor cells; it binds the
PDGFR-β and drives PDAC metastasis. In PDAC cells which have deleted TP53 (TP53-
null), TP73 is still able to bind NF-Y, which suppresses PDGFR-β expression. In contrast,
in the presence of GOF-TP53, there is increased PDGFR-β expression which results in
increased fibrosis and reduced infiltration of cytotoxic CD8+ lymphocytes and contributes
to metastasis. GOF-TP53 mutations result in a fibrotic tumor microenvironment [63]. This
tumor microenvironment suppresses the ability of the immune system to eliminate the
PDAC and results in a poor PDAC prognosis [64]. A diagram of these interactions between
mut-TP53 and PDGFR-β expression and metastasis is presented in Figure 5.
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Autocrine production of PDGF has been observed in various tumor types. Deregulated
PDGF/PDGFR-β expression may provide a target for certain PDACs [65,66]. There are
already approved small molecule inhibitors such as Imatinib which target the PDGFR-β
kinase. In mouse studies, targeting the vascular endothelial growth factor receptor (VEGFR)
and PDGFR with dovitinib revealed promising results [67].

Signal transduction pathways are altered in pancreatic cancers and affect various
properties of the tumor microenvironment [68]. The abnormal activation of various sig-
nal transduction pathways contributes to the pancreatic cancer growth, progression and
drug resistance.

Various cytokines, chemokines and growth factors are detected at elevated levels in
pancreatic cancer cells. The elevation in expression is often mediated by mutations in KRAS,
epithelial growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K, PIK3CA) and
TP53 [69]. These mutations can contribute to elevated levels of the NF-κB signaling which
regulates expression of many inflammatory cytokines, including IL-6, IL-8 and IL-18 [70].
The induction of these cytokines leads to an autoregulatory loop which perpetrates NF-κB
activation/signaling. The expression of these cytokines contributes to pancreatic cancer
progression and metastasis [71]. NF-κB signaling activates the expression of CXCL12 in
PSCs. This promotes PDAC tumor growth and inhibits the infiltration of cytotoxic T cells
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which cannot eliminate the PDAC tumor [72]. A diagram of these interactions is presented
in Figure 6.
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The TP53 and NF-κB pathways interact and cross-regulate each other. Some of the
interactions are altered in PDAC which have mutations at TP53. NF-κB and TP53 may
compete for the transcription coactivator p300 and the cyclic AMP response element binding
protein1 (CREB1) [73,74]. TP53 can bind the NF-κB promoter region of the p65 subunit.
This suppresses p65 expression. In addition, TP53 can suppress the activity of the IκBα
kinase (IKKα) [75]. In TP53-null mice, hyperactivation of NF-κB signaling occurs in T cells,
macrophages and intestinal epithelium [76].

The JAK/STAT pathway is also activated by cytokines and interferons (IFN). The
JAK/STAT pathway has been shown to play critical roles in pancreatic cancer. Elevated
expression of the JAK/STAT pathway is associated with a poor prognosis in PDAC [77].
STAT3 hyperactivity is essential for the development of myeloid-suppressor cells. This
is important in inflammation and tumorigenesis [78]. TP53 inactivation results in STAT3
hyperactivation in a TP53-null mouse model [79]. Elevated STAT1 expression was observed
in the macrophages of TP53-null mice. This resulted in elevated levels of inflammatory
cytokines [20]. Loss of WT TP53 activity has different effects on various STAT isoforms.
Loss of WT TP53 allows STAT3 to induce the differentiation of Th17 cells. In contrast, WT
TP53 can induce STAT5, which can prevent the differentiation of Th17 cells [22].
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High JAK2 expression is associated with a poor prognosis in PDAC [80]. IFNα, IFNβ

and IFNγ can increase the expression of PD-L1 in pancreatic cancer [81]. Chronic JAK/STAT
signaling inhibits the infiltration of cytotoxic T lymphocytes (CTLs) and results in chronic
inflammation. Suppression of JAK/STAT signaling by treatment with the JAK inhibitor
ruxolitinib increased CTL infiltration in the PDAC microenvironment [82].

The Hippo pathway is very important in the microenvironment of pancreatic cancer.
The Hippo pathway is critical in controlling cell growth and organ size. It is a multi-kinase
signaling cascade. The Yes-associated protein 1 (YAP) and the transcriptional coactivator
with PDZ-binding motif (TAZ) are the main effector molecules in the Hippo pathway. YAP
has been shown to promote keys events in KRas-mediated pancreatic cancer tumorigenesis,
namely: growth, drug resistance, metabolic reprogramming, differentiation, EMT and
metastasis [83,84]. The behavior of PSC can be altered by YAP and TAZ. This alters the
recruitment of TAMs and myeloid-derived macrophages in the PDAC microenvironment.
This results in the expression of multiple cytokines and chemokines which alter the dif-
ferentiation and presence of MDSCs in the PDAC microenvironment [85,86]. The YAP
and TP53 pathways interact and serve to cross-regulate each other. Aberrant TP53 activity
serves to drive YAP-mediated tumorigenesis [87]. YAP can induce the reprogramming of
cancer cells into cancer stem cells in some models [88].

The Wnt/β-catenin signaling pathway is important in the PDAC microenvironment as
it stimulates EMT and stem-like phenotype, tumor progression and drug resistance [89,90].
TP53 can modulate Wnt signaling via miR-34 [91].

Mut-KRas and mut-TP53 interact to alter the differentiation of PDAC cells, which is
mediated in part by Wnt-β-catenin signaling. Mut-KRas activates both the Raf/MEK/ERK
and PI3K/Akt signaling pathways, in turn activating CREB1 transcription factor. CREB1
then interacts with mut-TP53 to induce forkhead box O1 (FOXO1) which in turn stabilizes
β-catenin signaling and promotes EMT which drives PDAC metastasis. This study also
suggests additional targets for PDAC including MEK1, Akt and CREB1 [92]. For some of the
molecules, small molecule inhibitors have been developed and evaluated in clinical trials.

In the hypoxic PDAC microenvironment, HIF-2α induces Wnt signaling via β-catenin
and SMAD4 and increases tumor progression [93]. Axin2 is a protein which normally inhibits
Wnt/β-catenin signaling. The long intergenic non-protein coding RNA 1133 (LINC01133)
lncRNA was shown to affect PDAC EMT by suppressing Axin2 expression. LINC01133
was detected in exosomes of advanced PDAC patients and correlated with a poor overall
survival [94].

The HOXA transcript at the distal tip (HOTTIP) lncRNA has been shown to stimulate
the Wnt/β-catenin pathway in pancreatic cancer stem cells. Increased levels of HOTTIP
lncRNAs were detected in PDAC patients and was associated with a poor prognosis
and lower levels of survival. The HOTTIP lncRNA interacts by attaching to WD repeat-
containing protein 5 (WDR5) which binds to homeobox A9 (HOXA9) locus and induces
its expression, which in turn increases the activity of the Wnt/β-catenin signaling. The
transcription factor HOXA9 induces the expression of many genes which are associated
with stemness and EMT. WDR5 is a component of the histone H3K4 methyltransferase
complex and modulates the expression of HOXA9 [95].

5. Roles of Hypoxia in the Induction of HIFs, TP53, miRs and LncRNAs in the
PDAC Microenvironment

The PDAC microenvironment is hypoxic. In PDAC tumor samples, a positive asso-
ciation was observed between HIF-1α and miR-212 expression. HIF-1α was determined
to bind an HIF-1α responsive element in the miR-212 gene by a chromatin immunopre-
cipitation assay and induced its expression, which in turn increased PDAC growth and
metastasis. Knock-down of miR-212 expression suppressed PDAC cell growth in in vitro
studies [96]. HIF-1 interacts with the TP53 pathway. Loss of HIF-1α led to increased
levels of protein phosphatase 1 regulatory inhibitor subunit 1B (PPRIR1B) and resulted in
degradation of TP53, invasion, and metastasis [97].
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The pancreatic microenvironment is created by a desmoplastic reaction that results in
a dense microenvironment that creates hypoxia and EMT. The microenvironment promotes
invasion and metastasis. One LncRNA that is upregulated by hypoxia is the non-coding
RNA activated by DNA damage, (NORAD) lncRNA. The expression of NORAD was
examined in thirty-three paired cancerous and noncancerous PDAC patient samples by
RT-PCR. NORAD was determined to be expressed at high levels in pancreatic cancer
tissues and was correlated with shorter overall survival. Increased levels of NORAD
promoted migration and invasion, while inhibiting NORAD expression decreased EMT
and metastasis both in vitro and in vivo in a mouse orthotopic PDAC model. NORAD may
act as a ceRNA to regulate the expression of the small GTP binding protein Ras homolog
family member A (RhoA) by competition for hsa-miR-125a-3p which normally inhibits
RhoA. This contributes to hypoxia-induced EMT in PDAC [98]. hsa-miR-125a-3p can
regulate TP53 activity by inhibiting MDM2 expression, which results in stabilization of
TP53 [99].

In experiments with non-small cell lung cancer cells and patient samples, HIF-1α
was demonstrated to bind GOF mut-TP53 proteins and regulate the transcription of many
genes that were associated with the extracellular matrix. This altered expression of genes
promoted tumor progression. GOF mut-TP53 proteins bind HIF-1α, the GOF mut-TP53
affects the transcriptional ability of HIF-1α, and HIF-1α is redirected to other regions of
the chromatin. GOF mut-TP53/HIF-1α complex bind the SWI/SNF chromatin remodeling
complex. Two prominent ECM components that are affected by this interaction are type
VIIa1 collagen and laminin-γ2, which promote tumor progression [100].

GOF mut-TP53 was also shown to affect the chromatin structure in pancreatic cancer
cells. This resulted in increased resistance to the chemotherapeutic drug gemcitabine. GOF
mut-TP53 induced chromatin remodeling by altering the activity of SWI/SNF chromatin re-
modeling complex [101]. Assay for transposase-accessible chromatin with high-throughput
sequencing (ATAC-seq) resulted in the identification of approximately 500 chromatin sites
which were responsible for the changes in gene accessibility. Some of the genes encode
proteins known to interact with the TP53 pathway. GOF mut-TP53 induced the expression
of macrophage-stimulating protein 1 receptor (MST1r), which is involved in gemcitabine
resistance and is sometimes mutated in various cancers. MST1r is the receptor for the
macrophage-stimulating protein 1 (MSP1) and is a tyrosine kinase. The promoter region of
the MST1r gene contains binding sites for p63, ETS proto-oncogene 2, transcription factor
(ETS2), NY-F and sterol regulatory element-binding transcription factor (Srebp) transcrip-
tion factors. The proteins encoded by these genes interact with TP53. In summary, GOF
mut-TP53 regulates gene expression by finely controlling chromatin accessibility.

TP53 and hypoxia have opposing effects on cancer stem cells. HIF-2 will induce the
expression of genes which have roles in stem cell function. Octamer-binding transcription
factor 4 (Oct-4) is a transcription factor that has been observed to be induced in cancer
cells under hypoxic conditions [102,103]. In contrast, TP53 can induce both p21Cip-1 and
miR-34, and this results in suppression of certain markers associated with stemness such as
the transcription factors Oct-4, SRY (sex determining region Y)-box 2 (Sox-2) and Nanog
homeobox (Nanog) [104,105].

Hypoxia will also increase the levels of GOF mut-TP53. As stated previously, GOF
mut-TP53 has unique properties which have different effects on tumor progression. MCF-7
breast cancer cells are normally WT at TP53. MCF-7 cells transfected with GOF mut-TP53
have increased basal levels of HIF-1α than cells with WT-TP53 [106]. The presence of
the GOF mut-TP53 in MCF-7 cells blocks the ability of MDM2 to bind HIF-1α and this
results in the stabilization of HIF-1α. GOF mut-TP53 induces the expression of multiple
genes and Lnc-RNAs which are important for survival of the cancer cell in the hypoxic
microenvironment. TP53 and hypoxia-induced signaling pathways have many interactions
which have been reviewed recently [107].
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6. TP53 as a Regulator of Metabolism in the PDAC Microenvironment

TP53 plays many diverse roles in the regulation of metabolism [108]. Many of bio-
chemical processes are essential for survival of the PDAC cells in the hypoxic tumor
microenvironment. Metabolic reprogramming occurs in the PDAC microenvironment
which is crucial for PDAC tumorigenesis [109]. In the hypoxic PDAC microenvironment,
HIF-1α is stabilized and induces the expression of many genes which are involved in glycol-
ysis such as glucose transporter-1 (GLUT-1) [110]. HIF-1α is overexpressed in PDAC [111].
HIF-1α expression is detected frequently in pancreatic cancers and is associated with their
angiogenesis and progression [112].

Hypoxic conditions will induce the expression of two negative regulators of TP53,
namely MDM2 and MDM4 in some cell types [113,114]. Hypoxia inhibits TP53 activity by
blocking the phosphorylation of the regulatory S15 and S293 on the TP53 protein [115,116].

TP53 can also regulate HIF-1α. TP53 can induce PARKIN gene expression which
affects glucose metabolism and inhibits breast cancer progression [117,118]. Parkin is
an E3 ubiquitin ligase. Parkin ubiquitinates HIF-1α which results in its proteasomal
degradation [119].

HIF-1β is a constitutively-expressed molecule which forms a heterodimer with HIF-1α.
The expression of HIF-1β is not regulated by hypoxia, but it can be regulated by TP53.
TP53 can induce the expression of miR-107 which inhibits HIF-1β expression. This will
prevent the formation of HIF-1α/HIF-1β heterodimers and suppresses angiogenesis of
colorectal cancer [120]. TP53 and hypoxia have opposite effects on angiogenesis. TP53
normally acts to inhibit angiogenesis while HIF-1α promotes angiogenesis. HIF-1α can
induce VEGF and PDGF, two critical growth factors involved in angiogenesis in various
cancer types [121–123].

A well characterized phenomenon in cancer is the Warburg effect. The Warburg effect
results in increased glucose uptake, enhanced glycolysis and lactate production. This
occurs by increased expression of glucose transporters, and glycolytic enzyme including
enolase 1, hexokinase 1/2 phosphoglycerate mutase and pyruvate kinase [124–126]. Mut-
TP53 can increase the expression of GLUT-1 by inducing its translocation to the plasma
membrane [127]. HIF-1α also increases GLUT-1 levels [128] as well the expression of
glycolysis-related genes [129]. PDAC cells can survive in the hostile microenvironment by
undergoing metabolic reprogramming. This results in altering their energy metabolism.

Interestingly, topotecan is a chemotherapeutic drug that is used to treat certain types
of cancer patients such as ovarian cancer patients. Topotecan treatment decreased HIF-1α
levels in ovarian cancer patients which have GOF mut-TP53 [130]. While many cancer
patients have mut-TP53, there are mutant TP53 reactivators that will restore some of the
activities of WT-TP53. Some mutant TP53 reactivators have been examined in clinical trials
and are employed in the treatment of certain cancer types such as adult acute myeloid
leukemia (AML) and myelodysplastic syndromes (MDS) with mut-TP53. It could be
relevant to examine the effectiveness of combining topotecan and mutant TP53 reactivators
on the treatment of PDAC cells and patients. It would be interesting to determine if
topotecan and mutant TP53 reactivators prevent the development of the hostile tumor
microenvironment in PDAC models.

TP53 regulates the expression of many genes involved in glycolysis. TP53 can of-
ten regulate these genes via miR-34a. Some of these genes include hexokinase 1 (HK1),
hexokinase 2 (HK2), glucose-6-phosphate isomerase (GPI), and lactate dehydrogenase a
(LDHA) [131,132]. As TP53 is frequently mutated in PDAC and low levels of miR-34a
are associated with a poor prognosis [133]. As mentioned previously, miR-143/miR-145
can regulate the expression of TP53 by targeting MDM2 which results in the stabilization
of TP53 (WT and GOF mut-TP53). miR-143/miR-145 can also target many genes impor-
tant in glycolysis including HK2 [134]. Oncogenic KRas, which is present in virtually all
PDACs, represses miR-143/miR-155 expression and this could contribute to the PDAC
tumor microenvironment [135]. Thus, the expression of these genes in glycolysis could be
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altered by mutations present in TP53 and KRAS. This could contribute to the metabolic
reprogramming in the PDAC tumor microenvironment.

GOF mut-TP53 proteins have been associated with increased expression of the meval-
onate (MVA) pathway in some cancers such as breast cancer [136]. The mevalonate pathway
is required for the synthesis of cholesterol and nonsterol isoprenoids. WT-TP53 has been
shown to suppress the MVA pathway in mouse models of liver cancer [137]. In cells
with WT-T53, the activation of the master transcription activator of the MVA pathway,
sterol regulatory element-binding protein-2 (SREBP-2) is blocked by TP53 inducing the
ATP-binding cassette transporter (ABCA1) cholesterol transporter gene. In this scenario,
ABCA1 is acting as a tumor suppressor protein. In mouse cells lacking WT-TP53, this tumor
suppression is lost and there is more activated SREBP-2 and transcription of genes such as
3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), lanosterol synthase, (LSS), squalene
monooxygenase (SQLE) and mevalonate metabolites such as mevalonate 5-phosphate
(MVAP), geranylgeranyl pyrophosphate (GGPP), and cholesterol are elevated. This in-
creases the activity of the MVA pathway, and tumors develop. Statins serve to block the
effects of activation of the MVA pathway. Both WT-TP53 and GOF mut-TP53 interact with
SREBP-2, they have different effects as WT-TP53 represses the mevalonate pathway, while
GOF mut-TP53 stimulates the MVA pathway.

The MVA pathway is altered in many cancer types including pancreatic cancer. In-
creased MVA pathway activity is associated with increased protein prenylation which
is linked with a malignant cell phenotype. This results in increased invasion and cell
survival. When the MVA pathway is at elevated levels, stabilization of the GOF mut-TP53
protein occurs which promotes protein prenylation and enhances cancer progression [138].
The MVA pathway is important in colon cancer cells which lack WT-TP53 by increasing
ubiquinone synthesis essential for maintaining mitochondrial electron transport. This is
required in metabolically comprised environment such as colon spheroid cultures and
colon tumor organoids for respiration and pyrimidine synthesis [139].

TP53 can regulate ferroptosis which is important in the PDAC microenvironment.
TP53 can induce or suppress ferroptosis depending on the cell context [140]. The small
molecule inhibitor MMRi62 was initially characterized as a molecule which disrupted
the activity of MDM2 and MDM4 and could induce apoptosis in a TP53-independent
fashion in PDAC both in vitro and in vivo [141]. MMRi62 induced cell death in PDAC
by increased autophagy, reactive oxygen species and lysosomal degradation of nuclear
receptor coactivator 4 (NCOA4) and ferritin heavy chain (FTH1) which is characteristic
of ferroptosis. MMRi62-induced proteasomal degradation of mutant TP53 occurred in
PDAC cells with mut-KRas and either double or single mutated TP53. MMRi62 prevented
metastasis of PDAC in orthotopic mouse models by the induction of ferroptosis which
inhibited cell migration and invasion [141]. The small molecule mutant TP53 reactivator
APR-246 can also induce ferroptosis in acute myeloid leukemia cells which have mutant
TP53 [142].

Autophagy is a macrometabolic process. Autophagy plays important roles in pan-
creatic cancer and the PDAC microenvironment [143]. The TP53 gene status was shown
to have a critical role in autophagy in PDAC [144]. In a humanized genetically-modified
mouse model of PDAC, the TP53 gene status was shown to play a pivotal role in tumor
development [144]. Mice that contained an activated KRAS gene mutation develop pre-
cancerous PanIN lesions, some of which turn into PDAC. Mice which also lacked the
autophagy-related gene 5 (ATG5) or ATG7 genes accumulated PanIN but did not progress
to high-grade PanIN and PDAC. In mice lacking WT-TP53 but containing mutant KRAS,
loss of autophagy did not block tumor growth but accelerated tumor onset by increasing
glucose uptake and anabolic pathways which accelerated tumor growth. Treatment of
mice containing mutant KRAS and lacking WT-TP53 with the autophagy inhibitor hydrox-
ychloroquine accelerated tumor growth. Autophagy-induced metabolic cross talk in the
PDAC microenvironment between non-cancer cells and cancer cells [144]. Various miRs
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and LncRNAs are involved in the regulation of autophagy; these include miR-506 [145],
miR-372 [146] and LncRNA PVT1 [147].

The mut-KRas protein can be released during autophagy-dependent ferroptosis. This
induced uptake of mut-KRas proteins by TAMs and results in the conversion of the TAMs
into M2-macrophages. This phenotype was associated with a poor prognosis in PDAC
patients [148].

7. Interactions between TP53 and the Stress-Inducible NUPR1 Oncoprotein

Various types of cellular stress including oxidative, endoplasmic reticulum (ER)
and metabolic stress will activate the helix-loop-helix nuclear protein 1 (NUPR1) and
TP53 [149–152]. The NUPR1 and TP53 proteins play critical roles in cancer [153].

The NUPR1 protein can interact with TP53 in immortalized breast epithelial cells [154].
One of the targets of the interaction between NUPR1 and TP53 was the transcriptional
upregulation of p21Cip-1. The chemotherapeutic drug doxorubicin upregulated the expres-
sion of TP53, p21Cip-1 and NUPR1 in MCF-10A immortalized breast epithelial cells. In
MCF-10A cells, NUPR1 was determined to bind the p21Cip-1 promoter in cells transfected
with NUPR1; in contrast, when the cells were transfected with a dominant negative TP53
construct, the binding to the p21Cip-1 protein was suppressed. NUPR1 bound and coim-
munoprecipitated with the TP53 protein. These interactions resulted in the prevention of
genotoxic stress induced by doxorubicin in immortalized breast epithelial cells. MCF-10A
cells expressing NUPR1 were also more resistant to the chemotherapeutic drug taxol than
MCF-10A not expressing NUPR1.

The expression of NUPR1 was determined to be upregulated in acute pancreatitis
and, at even higher levels in pancreatic adenocarcinoma [155], NUPR1 can also interact
with mut-KRas signaling in pancreatic cancer and other cells. Genetic studies indicated
that in the absence of NUPR1 in a mouse model, mut-KRAS (G12D) did not result in the
development of PanIns, which is a precursor of the high lethal PDAC [155,156]. NUPR1
protected the pancreatic cancer cells from apoptosis by a RelB-mediated non-canonical
NF-κβ pathway which interacted with immediate early response 3 (IRE3) protein. Sub-
sequently, it was determined that NUPR1 interacted with mut-KRas in the induction of
senescence-associated gene networks [157]. NUPR1 was determined to regulate DNA
methyltransferase 1 (DNMT1) expression and genome DNA methylation and mut-KRas-
induced senescence. The DNA methylation inhibitor 5-aza-2’-deoxycytydine could reverse
mut-KRas-induced PanIN progression by inducing senescence [158]. An overview of the
interactions between TP53 and NUPR1 is presented in Figure 6.

IRE3 was determined to be responsible for an activation of ERK1/ERK2 by inhibiting
protein phosphatase 2A (PP2A) dephosphorylation, which resulted in proliferation and
PDAC development [159]. The PDAC tumors which developed in the NUPR1 knock-out
mice expressed higher levels of various markers associated with stemness such as aldehyde
dehydrogenase 1 (ALDH1), Sox2 and Oct-4 than in mice containing WT-NUPR1 [160].

An important event which happens in chronic pancreatitis and pancreatic cancer is
pancreatic fibrosis. Fibrosis is due to the deposition of the ECM and collagen fibers. This
occurs due to the necrosis which develops as an attempt to repair the damaged pancreas
tissue. Fibrosis is believed to be a critically important driver in promoting the transition of
chronic pancreatitis into pancreatic cancer. NUPR1 may be a critical transcription factor
which is induced in response to the cellular stress and could be a therapeutic target in
pancreatic cancer progression [161].

Recently, NUPR1 has been determined to play critical roles in ferroptosis in PDCA [162].
NUPR1 was determined to have effects on lipocalin-2 (LCN2) expression, and this blocked
ferroptosis by decreasing iron accumulation and oxidative damage. Depletion of LNC2 in
LNC2-conditional knock-out mice had similar effects as NUPR1 depletion. Interestingly,
restoration of LNC2 conferred resistance to ferroptosis induced by erastin. Thus, NUPR1
is an important regulator of iron metabolism and the induction of ferroptosis which is
important in the PDAC microenvironment.
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ZZW-115 is a NUPR1 inhibitor which induces necroptosis [163,164]. Suppression of
NUPR1 or LNC2 by either sh-RNA or ZZW-115 increased the sensitivity to the ferroptosis
inducer erastin. Suppression of NUPR1 or LNC2 worsened pancreatitis in mouse models.

ZZW-115 has been examined for its effects on PDAC. ZZW-115 treatment of mice
bearing pancreatic tumor xenografts resulted in a dose-dependent decrease in tumor size.
NUPR1 was determined to bind importins, a group of proteins involved in the transport
of proteins containing a nuclear localization signal (NLS) into the nucleus. ZZW-115
was determined to inhibit the cytoplasmic to nuclear translocation of NUPR1. ZZW-
115 competes with the binding of importins to NUPR1 and thus NUPR1 remains in the
cytoplasm. ZZW-115 bound the NLS region of NUPR1 [164].

Further studies demonstrated that ZZW-115 could sensitize PDAC cells to genotoxic
agents including chemotherapeutic drugs 5-fluorouracil, oxaliplatin and gemcitabine as
well as γ-radiation both in vitro and in vivo. ZZW-115 treatment was determined to
suppress the SUMOylation of several key proteins involved in the DNA damage response
(DDR). Further studies indicated that recombinant NUPR1 protein could enhance the
SUMOylation in a cell free system. Thus, NUPR1 may serve to stimulate SUMOylation of
key proteins involved in the DDR, and ZZW-115 inhibits this SUMOylation [165].

There is also a NUPR1-related gene which is called NUPR1L. NUPR1L is a member of
the high-mobility group (HMG) family of proteins which can translocate into the nucleus
and bind DNA. A function of NUPR1L is to bind and downregulate the activity of NUPR1
promoter, suppress NUPR1 expression and inhibit cell proliferation. The expression of
NUPR1L is regulated by TP53 as there are two TP53-responsive elements in the NUPR1L
gene. Chemotherapeutic drugs such as oxaliplatin can induce TP53 as well as NUPR1L
expression [166].

There is a miR which targets NUPR1L. miR-2277-3p targets NUPR1L, and when
NUPR1L is suppressed, proliferation, migration, and invasion of SW620 CRC cells oc-
curred [167].

The role of NUPR1 has also been examined in hepatocellular carcinoma (HCC) [168,169].
The levels of NUPR1 are very low in healthy liver tissue. Higher levels of NUPR1 are
observed in later stages of HCC progression. The effects of ZZW-115 on two HCC cell
lines (HepG2 and Hep3B) were examined by both in vitro and xenograft models. ZZW-115
was determined to induce cell death by both apoptotic and necroptotic mechanism. This
treatment resulted in lower ATP production and mitochondrial metabolism failure [170].

The effects of knock down (KD) of NUPR1 were examined in HCC cell lines [168,170,171].
Normally, sorafenib treatment of HCC cells results in activation of autophagic flux. KD
of NUPR1 was associated with increased ubiquitin-binding protein p62 (sequestosome-
1) expression and decreased autophagic flux and increased sensitivity to sorafenib. In
NUPR1 KD cells, increased levels of the TP53 family member p73 were detected as well
as downstream targets including PUMA, NOXA and p21Cip-1. When both NUPR1 and
p73 were silenced, increased resistance to sorafenib was observed in comparison to when
only one of the two was inhibited. NSC59984 is a p73 activator. When p73 was activated
by NSC59984 and combined with sorafenib, a synergistic inhibition of tumor growth was
observed in HCC xenograft models. These results suggest a potential novel approach to
treat HCC patients [171].

8. Possibility of Treatment of PDAC with Small Molecule Signal
Transduction Inhibitors

Although preclinic studies with various signal transduction inhibitors have yielded
interesting results, clinical trials have not yet indicated enhanced efficacy in PDAC patients.
Some of the kinase inhibitors examined affect the activities of more than one kinase, which
may make the therapy difficult to interpret. In addition, it may be necessary to also target
more than one mutant protein in the PDAC.

KRAS is mutated in >90% of PDAC patients, so multiple attempts to develop KRas
inhibitors were undertaken. However, there were problems with the specificity of the initial
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Ras inhibitors. Today, better mutant KRas inhibitors have been isolated that are clinically
used [172–174]. LUMAKRAS™ (Sotorasib, AMG510) has been approved by the FDA and
used to treat patients with non-small cell lung cancer (NSCLC) who have the G12C KRAS
mutation. Adagrasib (MRTX849) is also approved by the FDA to treat patients with NSCLC
who have the G12C KRAS mutation.

Sorafenib is a multi-kinase inhibitor and one of its targets is PDGFR. It is approved by
the FDA to treat many diseases such as hepatocellular carcinoma [175]. Clearly, elucidation
of the effects of combining the novel KRas inhibitors and inhibitors which target PDGFR
such as sorafenib could yield promising results in PDAC therapy, especially with regards
to the tumor microenvironment.

Using a conditional oncogenic KRas mouse model, it was demonstrated that extinction
of oncogenic KRas signaling resulted in KRas-independent escaper populations. In the
escaper population, a Smarchb-Myc network resulted in mesenchymal reprogramming
and independence from Raf/MEK/ERK (MAPK) signaling. The SMARCB1 gene encodes
the SNF5 subunit of the SWI/SNF chromatin remodeler complex that can inhibit Myc.
Depletion of Smarcb1 activated the Myc network which resulted in an anabolic shift which
resulted in increased protein metabolism and activation of ER stress and unfolded protein
response [176]. These results indicate that combining inhibitors which suppress ER stress
with chemotherapy might be an effective approach to treat PDAC.

Basal-like mesenchymal PDAC represents a class of PDAC which is advanced and
difficult to treat. Recently, it was shown treating this class of PDAC with a MEK (trametinib)
inhibitor and the multi-kinase (nintedanib) inhibitor which inhibits mutant KRas signaling
allowed the infiltration of cytotoxic and effector T cells, and the cells became sensitive to
the immune checkpoint inhibitor PD-L1. The combined inhibitor treatment resulted in cell
cycle arrest and cell death, remodeled the immunosuppressive cancer cell secretome, and
sensitized the PDAC to immune checkpoint therapy [177].

Autophagy is upregulated in mut-KRas PDAC. PDAC growth and metastasis is
dependent on blockade of autophagy. Autophagy can be inhibited by the anti-malarial
drug chloroquine. Recently, it was shown that combining chloroquine with a MEK inhibitor
was very effective in suppressing PDAC growth [178]. This synergistic interaction was
demonstrated both by in vitro studies and patient-derived xenograft (PDX)/PDAC models.

Further studies by this same group indicated that suppression of both insulin-like
growth factor-1 receptor (IGF-1R) and ERK signaling synergized with autophagy inhibitors
to inhibit the growth of PDAC [179]. By performing a CRISPR-Cas9 knock out screen, IGF-
1R was determined to be upregulated in response to treatment with autophagy inhibitors.
Knock out of IGF-1R augmented autophagic flux and sensitivity to autophagy inhibitors.
Downstream of IGF-1R is the KRas/Raf/MEK/ERK/p90Rsk cascade. However, most
PDAC cells have activating mutations in KRAS, so suppression of IGF-1R by itself is not
optimal to inhibit growth with autophagy inhibitors. Thus, combining chloroquine with
small molecule IGF-1R (BMS-754807) and ERK (SCH772984) increased the growth inhibition
of PDAC cell lines and organoids.

Various approaches to increasing TP53 activity have been examined. Nutlin-3a is an
MDM2 inhibitor. It has fewer effects on MDM4. MDM2 and MDM4 both inhibit TP53.
In some cells, they are expressed at different levels [180]. They can work independently
or in concert to inhibit TP53. MDM2 will add a solo ubiquitin moiety (monoubiquiti-
nation) to the TP53 protein. MDM2 can heterodimerize with MDM4. When MDM2 is
heterodimerized with MDM4, polyubiquitination of TP53 occurs [181]. NSC207895 (XI-006)
is an MDM4 inhibitor. MDM2/MDM4 are ubiquitin ligases. The peptide ATSP-7041 is
a dual MDM2/MDM4 inhibitor. MDM2/MDM4 normally targets TP53 for proteasomal
degradation. Inhibition of MDM2/MDM4 results in stabilization of TP53. The effects of
nutlin-3a on PDAC have been examined. Various MDM2/MDM4 inhibitors and their
presence in clinical trials have been summarized [182]. Certain MDM-2 inhibitors (e.g.,
PXN822) will synergize with topoisomerase inhibitors (etoposide) to induce cell death in
PDAC cells in a TP53-independent fashion [183].
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Introduction of a WT-TP53 gene into PDAC cells which have either GOF mut-TP53
or were TP53-null will increase their sensitivity to many chemotherapeutic drugs, signal
transduction inhibitors and natural products [184,185]. A suboptimal concentration of
nutlin-3a or BBR can increase the sensitivity to many of the chemotherapeutic drugs,
targeted therapeutics and nutraceuticals in many cancer types [186,187].

Certain commonly prescribed drugs can affect TP53 activity. The anti-type 2 diabetes
drug metformin will induce AMP-activated protein kinase (AMPK), which has effects on
TP53 activity in some cells [188]. Metformin can influence the expression of the TP53/miR-
34a axis via activation of NAD-dependent deacetylase sirtuin-1 (SIRT1) [189]. In some
experiment systems, metformin can interact with TP53 and have protective effects on
lung endothelial cells [190]. Metformin can affect the sensitivity of ovarian cancer cells
which are either mut-TP53 or TP53-null to the poly (ADP-ribose) polymerase (PARP)
inhibitor, olaparib [191]. Decreased levels of AMPK activation (P-AMPK) were detected
in PDAC samples as compared to normal tissues. The decreased levels of P-AMPK were
associated with a poor prognosis and dense stromal reaction. The dense stromal reaction is a
characteristic of PDAC; it consists of increased growth of dense fibrous tissue surrounding
the tumor. Metformin treatment was determined to decrease the levels of fibrogenic
cytokines produced by PDACs. The cytokines were determined to suppress paracrine-
mediated PSC activation. In a PDAC xenograft model, metformin prevented tumor growth.
Moreover, metformin treatment increased the effectiveness of gemcitabine. This resulted in
inhibition of the desmoplastic reaction [192].

Metformin can also influence the sensitivity of PDACs cells to gemcitabine and alter
tumorigenesis by altering the PSCs in the tumor microenvironment. This was determined
in a genetically-modified mouse model, LSL-KrasG12D/+; Trp53fl/+; Pdx1-Cre (KPC).
Combined metformin and gemcitabine treatment reduced Shh expression and altered the
recruitment of tumor supportive PSCs, which reduced angiogenesis [193]. Metformin can
also affect the invasive abilities of PDAC cells by blocking TGF-β signaling in the tumor
microenvironment [194].

Metformin treatment of three different PDAC cell lines did not inhibit proliferation
significantly with concentrations up to 1000 nM [195]. However, addition of lower doses
of metformin did lower the concentrations of many chemotherapeutic drugs, signal trans-
duction inhibitors and natural products, indicating that metformin lowered the inhibitory
concentration 50 (IC50) of these compounds (concentrations necessary to inhibit cellular
proliferation by 50%) [195].

In addition, a low dose of metformin could interact with chemically-modified berber-
ines (NAX compounds) and lower the concentrations of berberine (BBR) and certain NAX
compounds required to reach the IC50, indicating that metformin could increase drug
sensitivity in terms of proliferation [196].

Recently, it was demonstrated that the peroxisome proliferator activated receptor-delta
(PPARδ) is upregulated in PanIN. Activation of PPARδ by either a high fat diet or a highly-
selective synthetic PPARδ ligand accelerated PDAC development in KRASG12D mutant
mice [197]. Activation of PPARδ resulted in the secretion of C-C motif chemokine ligand
2 (CCL2) from KRASG12 cells and led to the recruitment of myeloid-derived suppressor
cells into the pancreatic tumor microenvironment via CCL2 and C-C motif chemokine
receptor 2 (CCR2) [197]. This drove PanIN progression into PDAC. These results indicated
that PPARδ maybe be a novel target for PDAC treatment

Various natural products can activate TP53. BBR is a nutraceutical that has been used
in traditional medicine for hundreds of years. It is an isoquinoline quaternary alkaloid
(a 5,6-dihydrodibenzo[a,g]quinolizinium) derivative [198]. The effects of BBRs and NAX
compounds on PDAC have been recently described [199,200]. Furthermore, the effects of
nutlin-3 can be enhanced in PDAC cells by low doses of certain NAX compounds [201].

APR-246 is a mut-TP53 reactivator which has been examined in clinical trials. It
has been approved by the FDA for the treatment of myelodysplastic syndrome (MDS)
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patients who have mut-TP53 in combination with azacitidine, a nucleoside analog which
has previously been used to treat MDS patients [202].

Low doses of APR-246 reduced the IC50 concentrations of chemotherapeutic drugs,
signal transduction inhibitors, BBR, or certain NAX compounds [203,204]. The ability of
APR-246 to lower the IC50s of chemotherapeutic drugs, signal transduction inhibitors, BBR
and modified NAX compounds was dependent on the presence of WT-TP53 or GOF mut-
TP53 as APR-246 did not lower the IC50s of chemotherapeutic drugs, signal transduction
inhibitors, berberine or certain NAX compounds in PDAC cells which were TP53-null.

9. Summary

In this review, the importance of TP53, KRas and miRs on various important pro-
cesses and cells of the PDAC microenvironment has been summarized. Clearly, PDAC
development is dependent on more than a single mutation and also more than just PDAC
tumor cells in the PDAC microenvironment. Other cell types including immune effector,
regulatory T cells, macrophage cells, fibroblastic cells and tumor-associated stroma are
involved in regulating PDAC progression and the sensitivity to therapeutic approaches.
Moreover, multiple signaling pathways and miRs are aberrantly regulated in PDAC. In
addition, fundamental biochemical processes such as metabolism are re-wired in the PDAC
tumor environment which makes the PDAC tumor able to survive in the hypoxic envi-
ronment. The more we learn about the PDAC microenvironment, the more we discover
how complicated it is and reasons why it has been so difficult to effectively treat this
deadly cancer.
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