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CpG‑adjuvanted stable 
prefusion SARS‑CoV‑2 spike 
protein protected hamsters 
from SARS‑CoV‑2 challenge
Chia‑En Lien1, Yi‑Jiun Lin1, Charles Chen1,2, Wei‑Cheng Lian1, Tsun‑Yung Kuo1,3, 
John D. Campbell4, Paula Traquina4, Meei‑Yun Lin1, Luke Tzu‑Chi Liu1, Ya‑Shan Chuang1, 
Hui‑Ying Ko5, Chun‑Che Liao5, Yen‑Hui Chen5, Jia‑Tsrong Jan6, Hsiu‑Hua Ma6, Cheng‑Pu Sun5, 
Yin‑Shiou Lin5, Ping‑Yi Wu5, Yu‑Chiuan Wang5, Mi‑Hua Tao5,7* & Yi‑Ling Lin5,7*

The COVID‑19 pandemic presents an unprecedented challenge to global public health. Rapid 
development and deployment of safe and effective vaccines are imperative to control the pandemic. 
In the current study, we applied our adjuvanted stable prefusion SARS‑CoV‑2 spike (S‑2P)‑based 
vaccine, MVC‑COV1901, to hamster models to demonstrate immunogenicity and protection from 
virus challenge. Golden Syrian hamsters immunized intramuscularly with two injections of 1 µg or 5 µg 
of S‑2P adjuvanted with CpG 1018 and aluminum hydroxide (alum) were challenged intranasally with 
SARS‑CoV‑2. Prior to virus challenge, the vaccine induced high levels of neutralizing antibodies with 
10,000‑fold higher IgG level and an average of 50‑fold higher pseudovirus neutralizing titers in either 
dose groups than vehicle or adjuvant control groups. Six days after infection, vaccinated hamsters did 
not display any weight loss associated with infection and had significantly reduced lung pathology 
and most importantly, lung viral load levels were reduced to lower than detection limit compared to 
unvaccinated animals. Vaccination with either 1 μg or 5 μg of adjuvanted S‑2P produced comparable 
immunogenicity and protection from infection. This study builds upon our previous results to support 
the clinical development of MVC‑COV1901 as a safe, highly immunogenic, and protective COVID‑19 
vaccine.

With over 80 million cases and more than 1.8 million deaths worldwide as of the end of 2020, the COVID-19 
pandemic continues to ravage the world one year after its first report in December  20191,2. The pandemic also 
spurred a hitherto unheard of rate of research and vaccine development with 172 vaccines in preclinical devel-
opment and 61 vaccines in clinical development according to the WHO in December  20203. The rapid progress 
of COVID-19 vaccine developed is tracked, for example, by the New York Times’s COVID-19 Vaccine Tracker, 
which continuously track and update progress of vaccine development and  approval4. Clearly, the monumental 
task of controlling this pandemic on a global scale and immunizing a population over 7 billion will require more 
than a few types of vaccines.

The vast majority of COVID-19 vaccines use the full length or the receptor binding domain of spike (S) 
protein on the surface of the virus as the antigen, as this binds to human angiotensin converting enzyme 2 
(hACE2) for cellular entry and is the major neutralizing antibody inducing  antigen5. Various modifications 
including modification of two prolines and inactivation of the furin site have been made to the S protein to lock 
in its prefusion form to enhance its stability and immunogenicity, and this has been applied to current vaccine 
 development6–9. We have previously reported preclinical immunogenicity and safety results of prefusion stabilized 
S protein, S-2P, adjuvanted with CpG 1018 and aluminum hydroxide (alum) in rodent  models10. The adjuvanted 
S-2P (MVC-COV1901) was highly immunogenic and promoted a Th1-biased immune response in mice and 
no serious adverse effects were observed in toxicology studies in  rats10. Based on these results, we have carried 
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out the current study in order to investigate the in vivo efficacy of MVC-COV1901 in an animal model which is 
permissive to SARS-CoV-2 and displays symptoms of infection.

Although non-human primates have been used for challenge studies involving SARS-CoV-2 due to similar-
ity of ACE2 receptors and relative closeness to human, the limited availability and high cost are increasingly 
 prohibitive11. Small rodent models provide a more economical means of studying the virus; however, mouse 
ACE2 receptors do not allow permissive infection of SARS-CoV-2 and genetic modification of mice to express 
human ACE2 (hACE2) or transient transduction using adenovirus-associated virus (AAV) of hACE2 are labo-
rious and  costly12. Golden Syrian hamsters were found to have the closest homologue of hACE2 and can be 
infected in lower respiratory tract presenting with symptoms such as weight loss, respiratory distress and lung 
injury, thus making them an attractive small animal model with which to study SARS-CoV-2 challenge and 
vaccine  development12–14.

In this study, we present data from a hamster challenge study to test MVC-COV1901 using CpG 1018 and 
alum adjuvanted S-2P. Potent immunogenicity was induced and hamsters were protected from SARS-CoV-2 
infection as demonstrated by the findings that (a) no decreases in body weight were observed in hamsters immu-
nized with both low and high dosage of the vaccine candidate antigen; (b) virus was undetectable in the lungs 
of immunized hamsters at 3 days after infection by fifty-percent tissue culture infective dose  (TCID50); and (c) 
immunized hamsters were protected from lung injury at 6 days after challenge, precluding potential vaccine-
associated enhanced respiratory disease (VAERD). These results provide additional evidence for the advancement 
of our clinical development of MVC-COV1901, of which a phase II trial is current underway (NCT04695652).

Results
Hamsters as SARS‑CoV‑2 virus challenge model for MVC‑COV1901. To develop a SARS-CoV-2 
virus challenge model in hamsters for MVC-COV1901, an initial study was conducted to determine the optimal 
dose of virus for the challenge experiments. Unvaccinated hamsters were inoculated with  103,  104, or  105 PFU of 
SARS-CoV-2 and euthanized on Day 3 or 6 after infection for tissue sampling (Figure S1). Following infection 
of  103 to  105 PFU of SARS-CoV-2, the hamsters exhibited dose-dependent weight loss. Hamsters infected with 
 103 PFU gained weight while  104 and  105 PFU-infected hamsters experienced progressively severe weight loss at 
6 days post-infection (d.p.i.) (Figure S2). However, there were no significant differences between levels of viral 
genome RNA (Figure S3a) and viral titer (Figure S3b) measured in  103 to  105 PFU of SARS-CoV-2-infected 
hamsters at 3 and 6 d.p.i. All dosages of virus resulted in elevated lung pathology (Figure S4), even at  103 PFU 
where the animals did not experience weight loss (Figure S2). There was also no virus inoculation dose-depend-
ent effect on lung pathology scores and lung viral load (Figures S3, S4). Therefore  104 PFU of virus was used for 
virus challenge studies as it provides an adequate balance between clinical signs and virus titer for inoculation.

Administration of S‑2P adjuvanted with CpG 1018 and aluminum hydroxide to hamsters 
induced high levels of neutralizing antibodies. The main study is outlined as in Fig. 1: Hamsters were 
divided into four groups receiving two immunizations at 21 days apart of either vehicle control (PBS only), adju-
vant alone, low dose (LD) or high dose (HD) of MVC-COV1901. No differences in body weight changes were 
observed after vaccination among the four groups (Figure S5). Fourteen days after the second immunization, 
high level of neutralizing antibody titers were found in both LD and HD groups with ninety-percent inhibition 
dilution  (ID90) geometric mean titer (GMT) of 2,226 and 1,783, respectively (Fig. 2a). Anti-S IgG antibody levels 
were high enough that several individual samples reached the upper threshold of detection, with GMTs of LD 
and HD groups of 1,492,959 and 1,198,315, respectively (Fig. 2b). In general, even at low dose, MVC-COV1901 
induced potent levels of immunogenicity in hamsters.

Adjuvanted S‑2P protected hamsters from clinical signs and viral load after SARS‑CoV‑2 chal‑
lenge. Four weeks after the second immunization, hamsters were challenged with  104 PFU of SARS-CoV-2 

Figure 1.  Study design of the hamster challenge study. Hamsters were immunized twice at 3 weeks apart and 
2 weeks after the second immunization, serum samples were taken for immunogenicity assays. Four weeks 
after the second immunization, hamsters were challenged with  104 PFU of SARS-CoV-2. Body weights were 
tracked for 3–6 days after infection and the animals were euthanized on the third or sixth day after infection for 
necropsy and tissue sampling.
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virus and body weights were tracked up to 3 or 6 days post infection (d.p.i.). Groups of animals were sacrificed 
on 3 or 6 d.p.i. for viral load and histopathology analyses (Fig. 1). LD and HD vaccinated groups did not show 
weight loss up to 3 or 6 days after virus challenge and instead gained 5 and 3.8 g of mean weight at 6 d.p.i., 
respectively (Fig. 3). The protective effect was most significant at 6 d.p.i. in both vaccinated groups, while vehicle 
control and adjuvant only groups experience significant weight loss (Fig. 3). Lung viral load measured by viral 
RNA and  TCID50 assays showed that both viral RNA and viral titer decreased significantly at 3 d.p.i. in vacci-
nated hamsters and dropped to below the lower limit of detection at 6 d.p.i. (Fig. 4). Note that viral load, espe-
cially viral titer measured by  TCID50 dropped noticeably at 6 d.p.i. in control and adjuvant only groups due to 
hamsters’ natural immune response (Fig. 4). Lung sections were analyzed and pathology scoring was tabulated 
(Fig. 5). There were no differences at 3 d.p.i. between control and experimental groups; however, at 6 d.p.i., the 
vehicle control and adjuvant only groups had significantly increased lung pathology including extensive immune 
cell infiltration and diffuse alveolar damage, compared to the HD antigen/adjuvant immunized groups (Fig. 5; 
Fig. S6). These results showed that MVC-COV1901-induced robust immunity was able to suppress viral load in 
lungs and prevent weight loss and lung pathology in infected hamsters.

Figure 2.  Neutralizing antibody titers with pseudovirus assay in hamsters 2 weeks after second immunization. 
Hamsters (N = 10 per group) were immunized twice at 3 weeks apart with vehicle control (PBS), 1 µg (LD) or 
5 µg (HD) of S-2P adjuvanted with 150 µg CpG 1018 and 75 µg aluminum hydroxide, or with adjuvant alone. 
The antisera were harvested at 2 weeks after the second injection and subjected to (a) neutralization assay with 
pseudovirus expressing SARS-CoV-2 spike protein to determine the  ID90 titers of neutralization antibodies 
and (b) total anti-S IgG antibody titers with ELISA. Results are presented as geometric mean with error bars 
representing 95% confidence interval and statistical significance calculated with Kruskal–Wallis with corrected 
Dunn’s multiple comparisons test. Dotted lines represent lower and upper limits of detection (40 and 5120 in 
 ID90, 100 and 1,638,400 in IgG ELISA).

Figure 3.  Change in body weight in hamsters after infection with SARS-CoV-2. Hamsters immunized in Fig. 2 
were challenged with  104 PFU virus. The body weights of individual hamsters were tracked daily up to the time 
of euthanizing at 3 d.p.i. (n = 5 per group) and 6 d.p.i. (n = 5 per group). Results are presented as mean with error 
bars representing standard error and statistical significance calculated with Two-way ANOVA with Tukey’s 
multiple comparison test at 3 d.p.i. (left) or 6 d.p.i. (right). 
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Discussion
This report contains the first in vivo study that evaluates the preclinical efficacy of MVC-COV1901. A prelimi-
nary study helped identify the optimal timing for the observation of change of viral load as measured by viral 
RNA and infectious virus dose  (TCID50), which was 3 d.p.i., and 6 d.p.i., respectively. The assays established by 
Academia Sinica allowed for the observation of a wide window of viral load using both RT-qPCR or  TCID50. 
No infectious virus was detected after 3 d.p.i. in hamsters immunized with low dose or high dose of MVC-
COV1901, while the low dose arm showed positive for viral RNA at 3 d.p.i.. The discrepancy could be a result 
of any remaining inoculated virus or virus inactivated by the antibodies. The measurement of sub-genomic 
RNA (sgRNA) could have helped distinguish the amplifying virus from inactivated  virus15. All of the hamsters 
in the MVC-COV1901-immunized groups were protected with significantly reduced lung pathology (generally 
graded minimal to mild, with a mean score of 1.72 in LD and HD groups), in contrast to diffuse alveolar dam-
age (graded moderate to severe, with a mean score of 4.09 in vehicle and adjuvant control groups) caused by the 
virus in the lungs of hamsters, in the control groups at 6 d.p.i.. The significance of this study lies not only in the 
demonstration of in vivo efficacy, but also in safety. The viral challenge study allowed for the assessment of risk 
of disease enhancement with the vaccine candidate. The histopathology scores of the immunized groups have 
not differed from the non-challenged animals; no evidence of vaccine enhancement was found. Following the 
consensus made by CEPI and Brighton Collaboration in March 2020, the animal study was run in parallel while 
Phase I study was cautiously proceeding with careful review of safety  data16. The vaccines used in this study are 
from the same batch as the ones used in our Phase I  study17. The result of this study provides more data that 
supports progression of the vaccine candidate’s clinical development. There are a few limitations of this study. 
Firstly, the hamsters were challenged with SARS-CoV-2 at 29 days after the second immunization, a relatively 
short time that did not allow for the evaluation of the durability of protective antibodies. Secondly, none of the 

Figure 4.  Viral load in hamsters 3 or 6 days post infection with SARS-CoV-2. The hamsters were euthanized 
at 3 or 6 d.p.i. and lung tissue samples were collected for viral load determination by (a). quantitative PCR of 
viral genome RNA, and (b).  TCID50 assay for virus titer. Results are presented as geometric mean with error bars 
representing 95% confidence interval and statistical significance calculated with Kruskal–Wallis with corrected 
Dunn’s multiple comparisons test. Dotted lines represent lower and limit of detection (100).

Figure 5.  Lung pathology scoring in hamsters 3 or 6 days post infection with SARS-CoV-2. The hamsters were 
euthanized at 3 or 6 d.p.i. and lung tissue samples were collected for sectioning and staining. The histopathology 
sections were scored as outlined in the methods and the results tabulated. Results are presented as mean of lung 
pathology scores with error bars representing standard error and statistical significance calculated with one-way 
ANOVA with Tukey’s multiple comparisons test.
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animals died in the pre-test or challenge study within the observation time. Thus, the model is not suitable for 
the evaluation of severe disease or mortality prevention but, rather, is appropriate for evaluation of the effects 
of immunization on viral challenge-induced moderate disease. Thirdly, nasal swab was not conducted, thus 
the study did not evaluate the vaccine’s ability to block viral entry or prevent upper respiratory tract infection. 
Further studies are needed to evaluate the durability of the protective antibody, the capacity of MVC-COV1901 
to prevent severe disease, mortality, or viral entry.

Methods
Production of S‑2P protein ectodomains from ExpiCHO‑S cells. SARS-CoV-2 (Wuhan-Hu-1 
strain, GenBank: MN908947) S-2P proteins containing residues 1–1208 with a C-terminal T4 fibritin trimeriza-
tion domain, an HRV3C cleavage site, an 8 × His-tag and a Twin-Strep-tag were produced in ExpiCHO-S cells 
(ThermoFisher) as described  previously10.

Pseudovirus‑based neutralization assay and IgG ELISA. Lentivirus expressing the Wuhan-Hu-1 
strain SARS-CoV-2 spike protein was constructed and the neutralization assay performed as previously 
 described10. Briefly, HEK293-hACE2 cells were seeded in 96-well white isoplates and incubated overnight. Sera 
from vaccinated and unvaccinated hamsters were heat-inactivated and diluted in MEM supplemented with 2% 
FBS at an initial dilution factor of 20, and then twofold serial dilutions were carried out for a total of 8 dilution 
steps to a final dilution of 1:5120. The diluted sera were mixed with an equal volume of pseudovirus (1,000 TU) 
and incubated at 37 °C for 1 h before adding to the plates with cells. Cells were lysed at 72 h post-infection and 
relative luciferase units (RLU) was measured. The 50% and 90% inhibition dilution titers  (ID50 and  ID90) were 
calculated referencing uninfected cells as 100% neutralization and cells transduced with only virus as 0% neu-
tralization. Total serum anti-S IgG titers were detected with direct ELISA using custom 96-well plates coated 
with S-2P antigen.

Animals and ethical statements. Female golden Syrian hamsters aged 6–9 weeks old on study initia-
tion were obtained from the National Laboratory Animal Center (Taipei, Taiwan). Animal immunizations were 
conducted in the Testing Facility for Biological Safety, TFBS Bioscience Inc., Taiwan. At 3 weeks after the second 
immunization, the animals were transferred to Academia Sinica, Taiwan for SARS-CoV-2 challenge. All proce-
dures in this study involving animals were conducted in a manner to avoid or minimize discomfort, distress, or 
pain to the animals and were carried out in compliance with the ARRIVE guidelines (https:// arriv eguid elines. 
org/). All animal work in the current study was reviewed and approved by the Institutional Animal Care and 
Use Committee (IACUC) with animal study protocol approval number TFBS2020-019 and Academia Sinica 
(approval number: 20-10-1526).

Immunization and challenge of hamsters. The hamsters were randomized from different litters into 
four groups (n = 10 for each group): hamsters were vaccinated intramuscularly with 2 injections of vehicle con-
trol (PBS), 1 or 5 µg of S-2P protein adjuvanted with 150 µg CpG 1018 and 75 µg aluminum hydroxide (alum), or 
adjuvant alone at 3 weeks apart. The hamsters were bled at 2 weeks after the second immunization via subman-
dibular vein to confirm presence of neutralizing antibodies. Hamsters were challenged at 4 weeks after the sec-
ond immunization with 1 ×  104 PFU of SARS-CoV-2 TCDC#4 (hCoV-19/Taiwan/4/2020, GISAID accession ID: 
EPI_ISL_411927) intranasally in a volume of 100 µL per hamster. The hamsters were divided into two cohorts 
to be euthanized on 3 and 6 days after challenge for necropsy and tissue sampling. Body weight and survival rate 
for each hamster were recorded daily after infection. On days 3 and 6 after challenge, hamsters were euthanized 
by carbon dioxide. The right lung was collected for viral load determination (RNA titer and  TCID50 assay). The 
left lung was fixed in 4% paraformaldehyde for histopathological examination.

Quantification of viral titer in lung tissue by cell culture infectious assay  (TCID50). The middle, 
inferior, and post-caval lung lobes of hamsters were homogenized in 600 µl of DMEM with 2% FBS and 1% peni-
cillin/streptomycin using a homogenizer. Tissue homogenate was centrifuged at 15,000 rpm for 5 min and the 
supernatant was collected for live virus titration. Briefly, tenfold serial dilutions of each sample were added onto 
Vero E6 cell monolayer in quadruplicate and incubated for 4 days. Cells were then fixed with 10% formaldehyde 
and stained with 0.5% crystal violet for 20 min. The plates were washed with tap water and scored for infection. 
The fifty-percent tissue culture infectious dose  (TCID50)/mL was calculated by the Reed and Muench  method18.

Real‑time RT‑PCR for SARS‑CoV‑2 RNA quantification. To measure the RNA levels of SARS-CoV-2, 
specific primers targeting 26,141 to 26,253 region of the envelope (E) gene of SARS-CoV-2 genome were used 
by TaqMan real-time RT-PCR method described in the previous  study19. Forward primer E-Sarbeco-F1 (5′-
ACA GGT ACG TTA ATA GTT AAT AGC GT-3′) and the reverse primer E-Sarbeco-R2 (5′-ATA TTG CAG CAG 
TAC GCA CACA-3′), in addition to the probe E-Sarbeco-P1 (5′-FAM-ACA CTA GCC ATC CTT ACT GCG CTT 
CG-BBQ-3′) were used. A total of 30 μL RNA solution was collected from each lung sample using RNeasy Mini 
Kit (QIAGEN, Germany) according to the manufacturer’s instructions. Five μL of RNA sample was added into 
a total 25 μL mixture of the Superscript III one-step RT-PCR system with Platinum Taq Polymerase (Thermo 
Fisher Scientific, USA). The final reaction mix contained 400 nM forward and reverse primers, 200 nM probe, 
1.6 mM of deoxy-ribonucleoside triphosphate (dNTP), 4 mM magnesium sulfate, 50 nM ROX reference dye, 
and 1 μL of enzyme mixture. Cycling conditions were performed using a one-step PCR protocol: 55  °C for 
10 min for first-strand cDNA synthesis, followed by 3 min at 94 °C and 45 amplification cycles at 94 °C for 

https://arriveguidelines.org/
https://arriveguidelines.org/
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15 s and 58 °C for 30 s. Data was collected and calculated by Applied Biosystems 7500 Real-Time PCR System 
(Thermo Fisher Scientific, USA). A synthetic 113-bp oligonucleotide fragment was used as a qPCR standard to 
estimate copy numbers of the viral genome. The oligonucleotides were synthesized by Genomics BioSci and Tech 
Co. Ltd. (Taipei, Taiwan).

Histopathology. The left lung of hamsters was isolated and fixed in 4% paraformaldehyde. After fixation 
with 4% paraformaldehyde for one week, the lung was trimmed, processed, embedded, sectioned, and stained 
with Hematoxylin and Eosin (H&E), followed by microscopic examination. The lung section was evaluated with 
a lung histopathological scoring system described  below20,21:

Lung section is divided into 9 areas and numbered as in the example below:

Lung tissue of every area is scored using the following scoring system in the Table 1.
The average of scores of these 9 areas is used to represent the score of the animal.

Statistical analysis. The analysis package in Prism 6.01 (GraphPad) was used for statistical analysis. One-
way and two-way ANOVA with Tukey’s multiple comparison test and Kruskal–Wallis with corrected Dunn’s 
multiple comparisons test were used to calculate significance as noted in respective figure descriptions. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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