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Abstract

Cancer immunotherapy has revolutionised cancer treatment, with immune checkpoint blockade (ICB) therapy and adoptive
cell therapy (ACT) increasingly becoming standard of care across a growing number of cancer indications. While the
majority of cancer immunotherapies focus on harnessing the anti-tumour CD8™" cytotoxic T cell response, the potential role
of CD4" ‘helper’ T cells has largely remained in the background. In this review, we give an overview of the multifaceted
role of CD4™" T cells in the anti-tumour immune response, with an emphasis on recent evidence that CD4™ T cells play a
bigger role than previously thought. We illustrate their direct anti-tumour potency and their role in directing a sustained
immune response against tumours. We further highlight the emerging observation that CD4% T cell responses against
tumours tend to be against self-derived epitopes. These recent trends raise vital questions and considerations that will
profoundly affect the rational design of immunotherapies to leverage on the full potential of the immune system against

cancer.

Introduction

Cancer immunotherapy has advanced rapidly in the clinic in
recent years because of two main therapeutic drivers:
immune checkpoint blockade (ICB) therapy using anti-
bodies blocking inhibitory receptors of the immune system
across tumours [1-4], and adoptive cell therapy (ACT)
using T cells engineered to express chimaeric antigen
receptors (CAR T cells) targeting blood malignancies [5, 6].
These therapeutic modalities have largely focused on
boosting the quantity and quality of anti-tumour CD8"
cytotoxic T lymphocyte (CTL) responses to generate ther-
apeutic benefits. However, despite ongoing efforts to extend
the therapeutic reach and increase the safety of ICBs and
ACT [3, 4, 7-9], typically by investigating the therapeutic
potential of rationally designed combination therapies (e.g.
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tumour vaccines with ICBs, radio- and chemotherapy with
ICBs etc.) [10-13], there remain significant limitations in
the clinical efficacies of both these treatment modalities.

Recently, it has become increasingly clear that CD4*
T cells play a critical role in developing and sustaining
effective anti-tumour immunity, even in cancer immu-
notherapies specifically designed to activate a CD8" CTL
response. In this review, we discuss new developments
detailing the multifaceted involvement of CD4" T cells in
the anti-tumour immune response and revisit older para-
digms on the roles of CD4" T cells in tumour immunity.
Finally, we will highlight some novel emergent aspects of
anti-tumour CD4™ T cells and offer our perspective on
future directions to accelerate translation of this knowledge
into clinical therapies.

A brief history of trends in cancer
immunotherapy targeting CD4" T cells

CD47 T cells are highly versatile, polyfunctional cells that
constitute the second arm of adaptive T cell immunity
alongside their sister lineage of CD8" cytotoxic T cells.
CD4" T cells can differentiate into one of several diverse
functional subtypes in response to context-dependent sig-
nals (Fig. 1), which in turn allows them to provide ‘help’ to
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Fig. 1 Development of CD4 T cells and functional diversity of
CD4 subsets in immunity. CD4" T cells are T lymphocytes that
express T cell receptors (TCRs) recognising peptide antigens pre-
sented in the context of Class II major histocompatibility complex
(MHC II) molecules. CD4 " T cells express the TCR co-receptor CD4,
which binds to the P2 domain of MHC II and facilitates TCR
engagement with peptide-MHC II complexes on antigen-presenting
cells [111]. During thymic development, the cell fate of developing
thymocytes is decided by their TCR affinity for self-peptide-MHC
complexes presented by thymic epithelial cells. Thymocytes that have
little to no affinity for self-peptide do not initiate activating signals
from their TCR complexes and thus die by neglect. Conversely,
thymocytes with high self-reactivity are negatively selected and
deleted by apoptosis. Thymocytes with intermediate TCR affinities
below the negative selection threshold receive positive selection via
activating TCR signals and complete thymic maturation as naive
conventional T cells (Ty0). Some thymocytes with moderately high
affinities to self-antigen are redirected into the regulatory T cell (Treg)
developmental pathway, where they acquire immunosuppressive

appropriate effector immune cells in their primary role as
central co-ordinators of the immune response. CD4" T cells
primarily mediate anti-tumour immunity by providing help
for CD8" CTL and antibody responses, as well as via
secretion of effector cytokines such as interferon-y (IFNy)
and tumour necrosis factor-oa (TNFa), and, under specific
contexts, via direct cytotoxicity against tumour cells
(Fig. 2). The earliest efforts to induce CD4" T cell
responses against tumours were attempts to generate Tyl-
polarised CD4" T cells by vaccination with peptide epi-
topes (Table 1). These peptides were typically derived from
highly immunogenic tumour-associated antigens [14, 15]
including members of the cancer testis antigen family such
as NY-ESOI1 [16, 17] or melanoma-associated antigens
such as MAGE-A3 [18]. In particular, these studies focused
on boosting CD4" T cell-derived secretion of Tyl-
characteristic tumoricidal cytokines (e.g. IFNy) as a read-
out of increased anti-tumour CD4" responses. Other var-
iations of this strategy were attempts to isolate and expand
tumour-reactive CD4" T cells from patient tumour-
infiltrating lymphocytes (TILs) using tumour-derived anti-
gens with major histocompatibility complex (MHC) II-
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function to regulate tissue homoeostasis and resolution of immune
responses [53, 112]. Upon receiving cues from the cytokine milieu
together with TCR activation, naive CD4" T cells upregulate
expression of key transcription factors regulating subset differentia-
tion, which in turn drive the expression of major effector cytokines
associated with each particular subtype [113, 114]. Key transcription
factors and cytokines involved are indicated for individual subtypes.
CD4* T cells augment the development of the CTL response [21, 24]
and are required for the development of CD8" T cell immunity
(reviewed extensively here [115]) in their role as central co-ordinators
of adaptive immunity. Unlike CD8" T cells, whose primary function
is to mediate cell contact-dependent cytotoxicity of infected or
malignant cells, CD4" T cells exhibit a diverse repertoire of effector
functions and exhibit considerable phenotypic plasticity and hetero-
geneity depending on local context and microenvironment [113, 114].
CD4" T cells activated in the periphery can also differentiate into
induced Tregs (iTregs), which are able to mediate immunosuppres-
sion similar to thymic Tregs (tTregs).

restricted epitopes and then re-infusing them as a form of
ACT [19, 20], or more recently, by engineering autologous
CD4" T cells from cancer patients to express synthetic
chimaeric antigen receptors that recognise antigenic epi-
topes on tumour cells.

In contrast, although the development and -effector
functions of distinct subsets of CD4" T cells has been
recognised and described (Fig. 1), the interplay between
polyfunctional CD4™ T cells and other immune cell lineages
within the context of tumour immunity is less well under-
stood. This is despite the fact that the critical role for CD4*
T cells in supporting the effector function and differentia-
tion of CD8" T cells had been described as early as the
1980s [21] and was already well-established by the late
1990s [22-25]. The first major turning point began in the
mid-2000s when mouse models of cancer demonstrated that
CD4" T cells were necessary to maintain and sustain anti-
tumour CD8" CTL responses [26, 27] (Fig. 2). This is also
validated by observations from clinical studies, most com-
monly in the context of cancer vaccines [28-30].

Parallel to this revival of interest in CD4" T cells, there
has also been significant research directed at producing a
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Fig. 2 Multifaceted roles of CD4" T cells in anti-tumour immunity.
CD4" T cells play key roles in tumour immunity through several
different mechanisms. a A major role of CD4" T cells is the provision
of help for anti-tumour CTLs through both direct and indirect
mechanisms (discussed in-depth here [116]). Activated CD4" T cells
secrete interleukin (IL)-2, which directly activates CD8" CTLs
expressing the high-affinity IL-2 receptor a subunit (CD25) by driving
their effector function, differentiation, and proliferation. CD4" T cells
also indirectly provide help for the anti-tumour CD8" CTL response
by supporting and maintaining pro-inflammatory cross-presenting
dendritic cells (DCs) [101], which in turn provide the three activating
signals for CD8" CTLs [115, 117]. This is primarily mediated by the
upregulation of CD40 ligand (CD154) [22, 23, 118] on activated CD4
* T cells, which engages its cognate receptor CD40 on DCs to induce
and maintain the type I profile of DCs (expression of B7 family
ligands, CD70, and secretion of IL-12) [116]. These signals strongly
induce anti-tumour effector functions in CD8% CTLs such as the
acquisition of cytotoxicity and the secretion of tumoricidal cytokines
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such as interferon-y (IFNy), and also stimulate the -effector
[117, 119, 120] and memory [121-124] phenotype differentiation of
CD8" T cells. b CD4" T cells also produce effector cytokines such as
IFNy and tumour necrosis factor-a (TNFa), which have direct anti-
tumour activity, following activation and polarisation into the Tyl
phenotype [125] in response to signals from DCs, particularly IL-12.
In addition, CD4" T cells can mediate direct cytotoxicity against
tumour cells in a similar manner to their CD8" T cell counterparts
under specific conditions in both preclinical mouse tumour models
[45, 46, 126] and in patient-derived CD4" T cells [127]. ¢ CD4*
T cells are also indispensable for the induction of humoral responses
against tumour antigens by providing help via CDA40 ligand signalling
to CD40 on B cells to drive their differentiation and maturation into
affinity-matured, class-switched plasma cells. Their activity correlates
with the presence of serum antibodies specific to tumour antigens
[17, 128], and they likely play a role in driving local antibody
responses in tertiary lymphoid structures [129] adjacent to solid
tumours.

Table 1 Examples of tumour-
associated antigens with MHC
II-restricted epitopes cited in this

review.

Tumour-associated antigen(s) with MHC II-restricted Species References cited in this study
epitopes
MUCI, Mucin 1 Human [14, 28]
Cancer embryonic antigen (CEA) family Human [15, 28]
NY-ESOI cancer testis antigen Human [16, 17]
Melanoma antigen gene-A (MAGE-A) family Human [18, 28]
TYR, Tyrosinase Human [29]
PMEL, Premelanosome protein (gp100) Mouse [26], [26, 29]
Human [29]
ERBB2IP, Erbb2 interacting protein Human [20]
HER2/neu, Human epidermal growth factor receptor 2 Human [28, 30]
BIRCS, Survivin Human [28, 31-33]
TERT, Telomerase reverse transcriptase Human [28, 34-36]

universal cancer vaccine based on promiscuous class II
epitopes from self-molecules such as survivin [31-33] (an
inhibitor of apoptosis) and telomerase reverse transcriptase
(TERT) [34-36] (Table 1). Even at this rudimentary stage, it
was already recognised that spontaneous CD4" T cell
responses towards self-antigens could be harnessed to boost
anti-tumour immunity.

(Re)discovery of the importance of cD4+
T cells in driving and sustaining anti-tumour
immune response

Despite these encouraging early findings, the fundamental

role of CD4™" T cells in orchestrating anti-tumour responses
was until recently eclipsed by the clinical success of CD8"
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T cell-based immunotherapies. This greater attention to
CDS8™ T cells was partly due to greater availability of tools
such as tetramers that could be used to monitor CD8"
responses, and also partly because CD8" T cell numbers
and function were the most proximal readouts of anti-
tumour immunity. However, the last 5 years have seen
many reports recognising the critical role of CD4™ T cells in
driving anti-tumour immunity and in supporting anti-
tumour CD8™ T cell responses.

In 2015, Linnemann et al. found that human melanomas
frequently contained mutant neoepitopes recognised by
CD4" cells [37]. This was quickly followed by a report
from the lab of Ozlem Tiireci and Ugur Sahin, which
demonstrated that immunogenic tumour mutations in the
‘mutanomes’ of three separate preclinical mouse tumour
models largely induced a CD4" T cell response [38], not a
CD8" T-cell response as had been expected. Two years
later, the same group and Catherine Wu’s group published
back-to-back reports reporting clinical findings showing
that personalised neoantigen vaccines for melanoma
patients primarily induced tumour-specific responses in
CD4™" rather than CD8" T cells [39, 40]. In both cases,
synthetic long peptides (SLPs) were used as the mode of
vaccination. These findings serendipitously validated find-
ings from 10 years prior that immunisation with longer
peptides induced a sustained CD8" T cell response [41],
likely due to CD4" T cell help, whereas immunisation with
exact-length MHC I-restricted peptides (specifically target-
ing only CD8™ T cells) only gave rise to a fleeting CD8" T
cell response. Ott et al. further theorised that the unexpected
preponderance of CD4" over CD8" T cell responses could
have been due to (1) a relative paucity of the cross-
presenting dendritic cell subset within tumours, which led to
more efficient priming of CD4™" relative to CD8" T cells,
and (2) the relatively higher promiscuity of MHC II-
restricted epitopes due to more relaxed binding require-
ments compared with MHC I-restricted epitopes [39].

Concurrently, findings from preclinical mouse models
also highlight a larger, more fundamental role for CD4™"
T cells in anti-tumour immunity than was previously
thought. In 2017, Spitzer et al. reported that a unique Ty1-
like CD4" subset was expanded in non-tumour peripheral
tissues during an active anti-tumour response to adjuvant
therapy [42], in a study conducted in the Py-MMTYV mouse
model of spontaneous mammary tumours. They further
demonstrated that this population of CD44" CD69"
CD62L~ CD27° T-bet" CD4" T cells conferred a protec-
tive benefit when transferred into treatment-naive tumour
hosts. In addition, this group also found an analogous
population of CD4" T cells in the peripheral blood of
melanoma patients who had received ipilimumab (a-
CTLA-4 blocking antibody) combined with granulocyte-
macrophage colony-stimulating factor (GM-CSF) therapy.
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In 2019, two separate preclinical studies independently
highlighted the role of CD4™ T cells in enhancing the anti-
tumour CD8" T-cell response. Zander and colleagues
identified a critical role for CD4" T cell-derived interleukin
(IL)-21 in driving the differentiation of a CX3CR1" cyto-
toxic effector CD8™ T cell subtype with enhanced anti-viral
and anti-tumour activity against murine BI6F10 melanoma
tumours (an immunologically-cold, aggressive tumour that
is refractory to ICB therapy) [43]. Similarly, Alspach et al.
found that poorly immunogenic tumours engineered to
express MHC Il-restricted antigens could induce Tyl-
polarised anti-tumour CD4% T cell responses. These
antigen-specific CD4 " T cells enhanced the efficacy of anti-
tumour CD8" T cell responses, and mediated long-lived
protection against subsequent tumour re-challenge in mice
that survived primary tumour challenge [44].

In addition, in a recent study, Sledziriska et al. built on
previous work from a decade ago [45, 46] and found that
tumour-infiltrating Tyl-like CD4" T cells acquired cyto-
toxicity against B16 melanoma. This development of
cytotoxic capability required expression of the transcription
factors T-bet and Blimp-1 [47]. Collectively, these recent
preclinical studies demonstrate the critical and versatile role
of polyfunctional tumour-infiltrating CD4" T cells in the
overall anti-tumour immune response.

Recent clinical evidence has also raised the importance
of CD4" T cells in generating successful anti-tumour
immunity. In a meticulous deep single-cell analysis of T cell
receptor (TCR)- and RNA-sequencing from colorectal
cancer patient biopsies, Zemin Zhang’s group found that
patients with microsatellite-instable tumours (which show a
strikingly favourable response profile to ICB therapy)
showed preferential enrichment for a Tyl-like subset of
CD4" T cells. These unique tumour-infiltrating CD4"
T cells expressed the transcription factor BHLHE40, the
effector cytokine /FNG, and the chemokine receptor
CXCR)5 [48]. In a second study, Galaine et al. reported the
presence of anti-tumour CD4" T cells that recognised MHC
II-restricted, promiscuously-binding tumour-associated
antigens in colorectal cancer patients undergoing oxaliplatin
chemotherapy. In some patients, CD4" T cell responses
persisted even after 3 months of oxaliplatin treatment [49],
highlighting the importance of understanding the immuno-
modulatory effects of oxaliplatin and other chemother-
apeutic agents on CD4" T cells.

Interestingly, the presence of specific subsets of CD4"
T cells in the peripheral circulation was also found to be
predictive of good prognosis in non-small cell lung cancer
(NSCLC) patients, where ICB treatment has efficacy either
as a single agent or in combination therapy. A Japanese
study by Kagamu et al. found that a higher level of circu-
lating CD62L'° CD4™ T cells prior to PD-1 checkpoint
blockade was significantly correlated with better response
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and with the presence of effector CD8" T cells [50]. This
subset of CD4™ T cells expressed T-bet and CXCR3 but not
CD27 or FoxP3. Furthermore, the maintenance of high
levels of these CD4" T cells correlated significantly with
patient survival, whereas a loss of this population of CD4*
T cells after ICB was correlated with resistance to ICB
therapy. Separately, Laheurte et al. found that higher levels
of TERT-specific Ty1-type CD4™ T cells in peripheral blood
was associated with better prognosis of NSCLC patients
[51].

Overall, these recent clinical advances corroborate the
robust findings from preclinical models that CD4™ T cells
play a fundamental role in driving and sustaining mean-
ingful anti-tumour immune responses.

Regulatory T cells in cancer immunotherapy—
a plot twist

CD4" T regulatory cells (Tregs) are a major subset of CD4"
T cells, distinct from the conventional CD4™" effector line-
age (Tconvs), that mediate immunosuppressive and tolero-
genic functions in both homoeostasis and inflammation
[52-56]. CD4*% Tregs are most broadly characterised by
their expression of the transcription factor FoxP3, which is a
master regulator of their immunosuppressive function [53]
(Fig. 1). Until recently, the prevailing paradigm was that the
presence of Tregs within the tumour microenvironment
(TME) was ‘bad’ for anti-tumour immunity. Tregs suppress
anti-tumour immune effector responses in the TME, pri-
marily by promoting an immunosuppressive micro-
environment by their secretion of cytokines such as IL-10
and transforming growth factor-f (TGFP) [57-59], and
possibly by targeting anti-tumour effector immune cells and
antigen-presenting cells for granzyme- and perforin-
mediated killing [59-61]. In addition, it has also been
proposed that the milieu of the tumour microenvironment
converts effector CD4" T cells into Tregs or promotes the
differentiation of naive CD4" T cells into induced Tregs
[62, 63], further exacerbating suppression of nascent anti-
tumour immunity. The immunosuppressive role for tumour-
infiltrating Tregs continues to be validated by observations
in the clinic that increased frequencies of Tregs are asso-
ciated with poorer cancer patient prognoses [64—67].
Consequently, most therapeutic modalities targeting
Tregs involve depletion by specific chemotherapeutic
agents such as cyclophosphamide, or by antibody-
dependent cellular cytotoxicity (ADCC) mechanisms initi-
ated by the targeted labelling of Tregs with antibodies
specific for surface markers strongly expressed on Tregs
such as CD25 and CTLA-4 (comprehensively reviewed
here [68]). Other approaches include blocking of Treg
recruitment into the TME by blocking the binding of

chemokine receptors such as CCR4 involved in their traf-
ficking to tumour sites [68, 69], or inhibiting Treg immu-
nosuppressive function [59, 68]. Of note, CD4" Tregs
constitutively express high levels of surface receptors that
are only upregulated by conventional T cells in response to
activation, including PD-1 and CTLA-4, as well as a host of
TNF receptor superfamily members such as OX-40
(CD134) and GITR [57, 58, 70]. These receptors are
potential targets for antibody-mediated depletion. Of note,
the therapeutic efficacy of the anti-CTLA-4 antibody ipili-
mumab is likely due in part to its depleting effects on
intratumoral Tregs [71].

However, despite advances in technology, the function
and stability of Tregs within the tumour microenvironment
have been poorly characterised beyond the minimum
knowledge necessary to remove Tregs or inhibit their
function.

Early reports as far back as 2009 indicated potential
involvement of FoxP3" CD4" Tregs in the anti-tumour
response in patients that had been treated with a MHC II-
restricted MAGE-A3 peptide vaccine [18]. A subsequent
study in murine B16F10 melanoma found that administra-
tion of glucocorticoid-induced TNF receptor (GITR) ago-
nist antibodies resulted in the selective expansion of
tumour-specific Tregs and was accompanied by a broad-
ening of the TCR repertoire of the Teg population, but not
of the Tconv TCR repertoire [72]. Furthermore, Tregs were
substantially increased in HER2™" breast cancer patients that
showed tumour rejection following treatment with the drug-
antibody conjugate trastuzumab emtansine (Kadcyla®) [73].
Although tumour-infiltrating Tregs were known to be
immunosuppressive, distinct from anti-tumour CD4"
Tconvs [67, 74, 75], these early studies raised the question
of whether tumour antigen-specific Tregs could potentially
acquire an effector phenotype under certain conditions and
contribute towards anti-tumour immunity.

Recent literature has raised the interesting possibility that
Tregs can indeed be converted into anti-tumour effector
cells. Several molecular mechanisms controlling the stabi-
lity of the suppressive phenotype of Tregs have been
identified, including OX-40 signalling [76, 77], GITR sig-
nalling [78], NF-xB signalling [79], the histone methyl-
transferase Ezh2 [80], and the Ikaros family transcription
factor Helios (IKZF2) [81, 82]. These molecules may well
function as gatekeepers for the conversion of Tregs into
anti-tumour effector CD4" T cells. The application of such
findings to develop Treg conversion as a potential cancer
immunotherapy could thus potentially deliver a potent one-
two combo by minimising Treg immunosuppression while
simultaneously generating more anti-tumour effector
T cells.

In one notable study, Shimon Sakaguchi’s group showed
that CD4" Tregs isolated from colorectal cancer patients
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could be subdivided into two functionally distinct popula-
tions based on levels of FoxP3 expression. These tumour-
infiltrating Tregs consisted of a FoxP3" population
suppression-competent population, and a second poorly
suppressive FoxP3° population that was induced by the
Tyl-polarising cytokine IL-12 and that also secreted the
pro-inflammatory cytokines IFNy and IL-17 [65]. Interest-
ingly, patients with higher infiltrates of FoxP3' cells
showed better clinical prognoses than did patients with
lower infiltrates of the same cells, suggesting that these cells
could be anti-tumour effectors. More recently, Steven
Rosenberg’s group found that tumour-infiltrating CD47"
Tregs expressed a distinct TCR repertoire that was enriched
in tumours across several cancer types [83] by using deep
TCR-sequencing to compare the TCR repertoires of
tumour-infiltrating CD4" Tregs and Tconvs with those of
CD4" T cell populations in autologous peripheral blood.
Intriguingly, the authors also found two patient-derived
TCRs that were reactive to tumour neoantigens and stimu-
lated production of the effector cytokine IFNy. These
findings, while not definitive statements about tumour-
reactive Tregs, provide support for Treg conversion as a
paradigm relook at cancer immunotherapy.

Recent advances in CD4" CAR T cells

The observation that CD4" T cells synergise with CD8"
T cells in the immune response against tumours also extends
to CAR T cell adoptive immunotherapy. Carl June’s
research group recently reported preliminary observations
that a higher CD4/CD8 ratio in the leukapheresis products
used to generate CAR T cells directed against multiple
myeloma correlated with better clinical response [84]. These
observations, while not necessarily indicative of any parti-
cular mechanism, are nonetheless consistent with the known
function of CD4" T cells in co-ordinating and sustaining the
immune response against tumours. Furthermore, in a recent
glioblastoma (GBM) study, Wang et al. found that the
maintenance of CD4" CAR T cells correlated positively
with the recursive killing ability of CAR T cell products
derived from GBM patients (so-called “serial killers [8]).
These CD4" CAR T cells also showed anti-tumour effector
activity independent of CD8" CAR T cells [85].
Reflecting the increasing appreciation for the role of
CD4" T cells in sustaining the efficacy of CAR T cell
therapy, a number of recent studies have characterised
molecular regulators of CD4" CAR T function. In an ele-
gant study, Yang et al. showed that CD4™ and CD8™ T cells
transduced with a second-generation CD19-targeting CAR
(with a CD28 co-stimulatory signalling domain) showed
similar in vitro and in vivo efficacy against a murine model
of pre-B cell acute lymphoblastic leukaemia. Strikingly,
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unlike CD8" CAR T cells that become exhausted or
apoptotic when exposed to activating signals through both
their CARs and native TCRs, CD4" CAR T cells retained
their in vivo efficacy in controlling leukaemia [86]. In
another study using murine CAR T cells specific for B7H6
(a tumour-specific activating ligand for the NKp30 receptor
[87]), the Tyl phenotype-associated transcription factor
T-bet was found to increase the efficacy of their CAR
T cells in controlling NKp30™ RMA tumours in mice [88].

Finally, in a comprehensive study combining multiple
single-cell analysis techniques, Xhangolli and co-authors
profiled the transcriptional responses of human T cells
expressing a third-generation CAR specific for CD19
(containing both 4-1BB and CD28 signalling domains) in
response to CAR stimulation. In agreement with the work
of Yang et al, 2 years prior, they found that CD4" and
CD8" CAR T cells were indeed equally effective at killing
human CD19" Raji cells. Furthermore, while both CDh4*
and CD8" CAR T cells were highly polyfunctional, with
more than 50% secreting >5 cytokines (including the Tyl-
characteristic cytokine IFNy), CD4" CAR T cells were
slightly more polyfunctional than CD8% CAR T cells, and
exhibited a mixed Tyl/Ty2 transcriptional and cytokine
secretion profile [89].

Altogether, these recent studies highlight a role for CD4*
T cell-derived CAR T cells distinct from their CD8" T cell-
derived counterparts. Although molecular evidence is cur-
rently scant and preliminary, these pioneer studies also
suggest that a polyfunctional Tyl-like phenotype (char-
acterised by secretion of IFNy and possibly driven by the
activity of the transcription factor T-bet) may be beneficial
for the overall efficacy of the final CAR T cell product.
However, given the diversity of CD4% T cell functional
subtypes (Fig. 1) and the current lack of information
regarding potential cross-talk between CAR signalling and
CD4" T cell-intrinsic gene programmes, it is very likely that
CD4" T cell-derived CAR T cells polarised towards non-
Tyl phenotypes may also mediate effective anti-tumour
immunity in a context-dependent manner. In addition, there
is also the possibility that CD4" CAR T cells could be
influenced by the TME to acquire Treg-like immunosup-
pressive phenotypes. Further investigation into all these
open questions would be essential to further refine CAR T
cell engineering to increase its treatment efficacy and safety
profile.

Self-reactive anti-tumour CD4" T cells—the
next frontier in cancer immunotherapy?

The evolving themes we have highlighted illustrate a
renewed appreciation of the central role of CD4" T cells
directed against cancer. While these recent studies have
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Fig. 3 Open questions for research into harnessing the therapeutic
potential of tumour-specific CD4" T cells. a The majority of tumour-
reactive CD4" T cells have been found to recognise self-derived
antigens, but have thus far only been shown to become activated in the
tumour microenvironment (TME) and not in surrounding tissues,
suggesting that there may be mechanisms specific to within the TME
that permit the breaking of self-tolerance. Another possible avenue for
loss of CD4" T cell self-tolerance is the conversion of self-specific
Tregs into conventional effector T cells within the TME. b Because
CD4™ T cells are MHC Il-restricted, their activation within the TME
requires antigen presentation in the context of MHC II molecules. In

clearly established that CD4" T cells provide critical help
for anti-tumour immune responses, the repertoire of anti-
gens that CD4% T cells recognise within the tumour
microenvironment remains relatively unexplored.

In principle, tumour-derived MHC Il-restricted epitopes
could be derived either from tumour-specific mutations or
from self-antigens. The empirical evidence thus far suggests
that the majority of the anti-tumour CD4" response is
directed against self-derived epitopes, regardless of whether
Tconv or Treg cells respond. This is likely due to the fact
that self-reactive CD4" T cells are less likely to be deleted
during formation of central tolerance in the thymus (as are
self-reactive developing CDS8™ T cells), but rather are
tolerised in the periphery [55] or develop into regulatory
T cells [53, 54, 56].

This raises three interesting questions that could poten-
tially open up new approaches towards more effectively
incorporating CD4" T cells into the cancer immunotherapy
arsenal (Fig. 3).

First, what breaks peripheral tolerance in self-reactive
CD4" T cells within the tumour microenvironment
(Fig. 3a)? Many of the anti-tumour CD4" T cell responses
described in the early days of cancer immunotherapy were
specific for highly immunogenic self-derived antigens
[14, 31, 32, 90-93]. This in turn implies that, in the case of
self-reactive anti-tumour CD4" T cells, the self-tolerance
mechanisms that would normally check such aberrant self-

on professional or non-canonical APCs

IENy

principle, MHC I tumours could directly present antigen and activate
CD4" T cells, or antigen presentation could occur indirectly via
antigen-presenting cells (APCs) resident within tumours or tumour-
draining lymphoid sites. ¢ The mutually reinforcing interaction
between myeloid-derived suppressor cells (MDSCs) and regulatory
CD4" T cells (Tregs) (above) is a negative mirror image of the APC-
effector CD4™ T cell synergy that drives the generation of effective
immunity (below). Understanding the molecular circuitry is crucial to
developing targeted strategies to disrupt and convert these negative
interactions into cycles that drive anti-tumour immunity.

directed autoimmunity are either disrupted or negated
within the TME. Recent evidence in mouse models has
shown that Tregs (likely to be self-reactive) can become
anti-tumour effector cells in response to epigenetic mod-
ulator drugs [80] or agonist antibodies specific for TNF
receptor superfamily members [82]. Investigating the
upstream signalling cues that trigger and maintain a pro-
inflammatory CD4" T cell phenotype could lead to the
identification of therapeutic regimens that favour the gen-
eration and/or maintenance of self-antigen-biased, anti-
tumour CD4™ T cell immunity.

Furthermore, we posit that elucidating the origin of self-
antigen-directed CD4™" T cell immunity would also be par-
ticularly relevant to the engineering of more sophisticated
CAR T cell products for cellular therapy. Certainly, it would
open up the possibility of using self-antigen-specific CARs
to redirect autologous CD4™ T cells (possibly even CD4*
Tregs) with less risk of the immune-related adverse events
(irAEs) that currently limit therapy with CAR T cells.
Another possible translational application of such knowl-
edge would be in pre-selecting autologous self-antigen-
specific CD4" T cells (including Tregs) as the starting
material for CAR T cell generation, in order to favour the
development of more therapeutically efficacious final CAR
T cell product for patient infusion. The use of Tregs as a
source material for CAR T cell development could also
potentially lead to the exciting prospect of generating “dual
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programme” CAR T cells, with the option of selecting
between effector T cell (anti-tumour) and regulatory T cell
(immunosuppressive, to prevent irAEs) functional pro-
grammes as appropriate to the clinical status of the patient.

Second, which antigen-presenting cells are responsible
for activating tumour-specific CD4" T cells in the tumour
microenvironment (Fig. 3b)? Although higher MHC II
expression in tumours correlates with better clinical out-
come in MHC II'" cancers [94-96], MHC 1I expression
across cancer types is highly variable and context-
dependent [97-99]. It may be that tumour-infiltrating
CD4" T cells recognise antigen on MHC II molecules
present on “professional” antigen-presenting cells (myeloid
cells of the macrophage or DC lineage and B cells) within
the tumour or tumour-draining lymphatics. This could pos-
sibly occur in a similar manner to what naturally occurs in
secondary lymphoid organs during an infection [100-102].
Furthermore, under certain conditions, non-haemotopoietic
cells (e.g. epithelial cells) may also acquire the ability to
present antigen on MHC II complexes [103—105]. Under-
standing these mechanisms of antigen priming and/or re-
stimulation within the specific tumour microenvironments
would be critical to harness the full potential of CD4"
T cells in cancer immunotherapy, and may inform
rational combinations with therapies targeting antigen-
presenting cells.

Finally, as the fundamental role of anti-tumour CD4+ T
cell responses becomes increasingly apparent, one under-
explored area that should be examined would be the
dynamics of the interaction between CD4" T cells and
myeloid-derived suppressor cells (MDSCs) within the
tumour microenvironment (Fig. 3c). MDSCs are myeloid-
lineage cells within the tumour microenvironment that
exhibit an immature, tolerogenic phenotype. MDSCs are
capable of promoting the differentiation and expansion of
regulatory T cell populations within the tumour micro-
environment [106—108], possibly by presenting self-antigen
on MHC II molecules. Conceptually, this situation is the
mirror image of the synergistic positive feedback interac-
tions between effector CD4" T cells and activated DCs
presenting non-self-antigens that form the nexus driving
immunity. Identifying molecular drivers that disrupt the
immunosuppressive  interactions  between =~ MDSCs
[109, 110] and Tregs, possibly by simultaneously converting
these cells into activated DCs and effector CD4™ T cells,
respectively, would be highly informative and beneficial to
designing more effective immunotherapeutic strategies.

Conclusions and perspectives

In this review, we present recent literature showing that
CD4" T cells are a critical cornerstone of optimal anti-

SPRINGER NATURE

tumour immunity. Engagement of the CD4" T cell com-
partment is associated with the generation of an effective
anti-tumour response, even when CD4" T cells themselves
are not the primary immune cell subtype targeted by ther-
apy. We highlight the emerging consensus that the majority
of these tumour-specific CD4" T cells are self-reactive, and
juxtapose this against observations from preclinical studies
that self-antigen-biased regulatory T cells can themselves
mount anti-tumour responses when appropriately condi-
tioned. These recent ongoing developments also present
fascinating prospects for the engineering of CD4™ T cells
for ACT. In conclusion, harnessing the full potential of the
immune system for cancer immunotherapy will require a
deeper understanding of, and rational targeting of self-
reactive CD4" T cells to sustain a durable, robust anti-
tumour response towards clinical benefit while minimising
autoimmunity.
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