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Introduction
Post-stroke depression (PSD) is a major and fre-
quent consequence of stroke, associated with an 
increase in morbidity and mortality.1–4 Although 
the precise prevalence of PSD is hard to ascertain, 
estimates range from 20% to 60%.5,6 Despite its 
debilitating effects on patients’ recovery and 
 quality of life, there remains no reliable and 
 universal treatment for PSD. Historically, most 
antidepressant therapeutics influence seroton-
inergic, adrenergic, and/or dopaminergic systems 
with the aim of increasing synaptic availability  
of serotonin, norepinephrine, and dopamine. 
However, more recent studies have investigated 
the involvement of the glutamatergic system in 
the etiology and treatment of depression.

Glutamate is a nonessential amino acid that 
accounts for approximately 60% of all neuro-
mediator activity. During stroke, glutamate 

concentrations in the brain’s extracerebral fluid 
and cerebrospinal fluid (CSF) increase 300–400-
fold.7–11 As a result, the glutamate spreads, causing 
neuronal damage to areas beyond the infarcted tis-
sue.12 Glutamate receptors are stimulated by the 
excess glutamate and lead to cell swelling, apopto-
sis, and neuronal death, with subsequent poor 
neurological outcomes.13–15 The glutamatergic sys-
tem similarly plays a critical role in many mood 
disorders, such as depression, anxiety, dementia, 
and other psychiatric diseases.16–54 Ample evidence 
in the literature suggests that the next generation of 
antidepressants will consist of substances centered 
around the glutamate system.55 Limiting the sec-
ondary brain damage accompanied by excess glu-
tamate concentrations post-brain injury is a vital 
part of stroke management.

A promising method involves the administration 
of intravenous pyruvate and oxaloacetate, called 
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‘blood glutamate scavengers’ (BGS) which have 
demonstrated reductions in brain glutamate con-
centrations.56 In recent years, BGS have been 
gaining attention in the scientific community and 
have been extensively examined in a wide variety 
of neurologic and psychiatric animal models. 
This review discusses recent evidence in the lit-
erature for the potential therapeutic benefits of 
BGS for reducing PSD and other related neu-
ropsychiatric conditions. Although clinical human 
trials have not yet taken place, the efficacy of BGS 
in limiting depressive-like symptoms following 
stroke has been shown in rodents.57 Unlike exist-
ing methods for treating PSD, the ability of BGS 
to reduce brain glutamate levels can potentially 
cease PSD development by targeting both the 
psychiatric and neurologic pathology.

The impact and burden
Stroke is often a devastating event, suffered by 
over 16 million people globally each year, and is a 
leading cause of death and disability.58–61 One 
third of cases lead to death, and another third to 
permanent disability.62,63 Stroke is a major con-
tributor to acute hospitalizations for neurological 
conditions.64 Depression and anxiety disorders 
are the most common psychiatric conditions that 
appear post-stroke; however, many experience 
other psychotic symptoms, including hallucina-
tions, delusions, and manic symptoms.

PSD is often overlooked and untreated, though it 
can have a serious, long-lasting impact on recov-
ery and quality of life. It is estimated that PSD can 
appear in 30–35% of patients, with a range of 20–
60%.5,6 Recently, it has been found that greater 
than 50% of rats developed mental and behavioral 
disorders after stroke and subarachnoid hemor-
rhage.65,66 The highest prevalence occurs between 
six months and two years following stroke,6 and 
the condition is accompanied by more acute phys-
ical and cognitive impairments, impaired quality 
of life, and an increased mortality.67 The rate of 
anxiety in the first 6 months after stroke varies 
between 22% and 25%.68

Another common neuropsychiatric complication 
of stroke is delirium, considered a major compli-
cation. In clinical studies, delirium in the acute 
period of stroke occurs 19%69 to 48%70 of the 
time, and the rate of post-stroke dementia is 
6–32%. Post-stroke emotional incontinence 
(PSEI) affects between 11% and 52% of all stroke 
survivors.71,72 It is typically observed within a few 

weeks following stroke,73 persists from 1 week to a 
few years,73,74 and makes clinical treatment diffi-
cult.75 Most often, patients with PSEI present 
with bouts of laughter, crying, or both, that are 
uncontrollable,76 without any perceivable stimu-
lus or initiated by minor, nonspecific stimuli. 
PSEI can cause patients distress and embarrass-
ment, as well as social difficulties,77 and may 
interfere with the rehabilitation process due to the 
irritability and impulsiveness of the patients.

All of these deleterious side effects lead to enor-
mous financial burden. Stroke costs the United 
States and European Union an estimated $34 bil-
lion78 and €45 billion,79 respectively, each year. 
Considering the modest arsenal of medical 
approaches for the treatment of PSD and behav-
ior-related complications, we believe that the uti-
lization of new therapeutic options in the form of 
glutamate scavengers may have enormous bene-
fits to improve quality of life for stroke survivors.

Nonglutamate mechanisms of post-stroke 
psychiatric complications
The basis of PSD and other psychiatric compli-
cations of stroke remain largely unknown, with 
many theories linking their mechanisms to 
other, similar mechanisms known to be associ-
ated with depressive symptoms. Yet, as will be 
seen, these models are imperfect, given the 
 specific cause of PSD compared with other 
depressive conditions.

Monoamine hypothesis
The monoamine hypothesis suggests that disrup-
tion in the synaptic availability of neurotransmitters, 
including serotonin, dopamine and norepinephrine, 
are largely responsible for depressive behavior and 
other psychiatric symptoms.80–82 Patients with PSD 
have been found to have significant reductions in 
levels of both serum and CSF serotonin.83 A com-
mon treatment for depression, including PSD, 
involves decreasing the reuptake of serotonin 
through amino–neurotransmitter drugs like selec-
tive serotonin reuptake inhibitors (SSRIs), and ser-
otonin and norepinephrine reuptake inhibitors 
(SNRIs).4

Vascular depression theory
Some evidence suggests that vascular depression 
caused by cardiovascular disease might contrib-
ute to the pathogenesis of PSD.4,84–89 This theory 
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suggests that cerebral lesions disrupt critical areas 
in the brain that lead to symptoms of depres-
sion.90,91 Hypertension after stroke has been 
shown to result in depressive symptoms,92 and 
homocysteine, a risk factor for vascular disease, 
has also been studied for its possible association 
with PSD.93

Neurogenesis hypothesis
Alternatively, the neurogenic hypothesis suggests 
that depression may be related to an impairment in 
neurogenesis, the brain’s capacity to produce new 
neurons.4 This hypothesis bases itself on studies of 
people with depression or animals exhibiting 
depressive-like symptoms with decreased neuro-
genesis and hippocampal volume.94 Furthermore, 
studies have shown that antidepressants enhance 
the neurogenesis of hippocampus.95

Activation of the hypothalamic–pituitary–
adrenal axis
PSD is associated with increased cortisol levels,96 
yet the specific pathogenesis of hypercortisolism-
related depression remains unknown.4 Like other 
stressors, the stress from stroke may cause activa-
tion of the hypothalamic–pituitary–adrenal axis. 
There is also evidence, however, that hypercorti-
solism may be related to cytokine activity97,98 with 
or without monoamine dysfunction.99

Estrogen and progesterone theory
The hormone estrogen has been implicated in 
depressive disorder. Similarities between estrogen 
and brain-derived neurotrophic factor, which is 
associated with PSD, suggest that estrogen 
replacement therapy would be a proper treatment 
for PSD.66,100,101

Immune dysfunction hypothesis
A substantial volume of evidence shows that 
depression may be partly attributable to  dysfunction 
of the immune system.102,103 While the specific 
mechanisms on the molecular and cellular level 
remains unclear, this theory  proposes that PSD 
may be related to an overly activated inflammatory 
response104 leading to  inflammation-bound cell 
death in areas of the brain involved in mood.105 
During PSD, there is an increase in numerous 
inflammatory markers, pro- inflammatory cytokines, 
and pre- inflammatory/anti- inflammatory ratios 
with reduced complementary expression.4,106

Glutamate mechanisms of post-stroke 
psychiatric complications
There is increasing evidence from the past few 
years that the glutamatergic system plays a crucial 
role in the development of mental disorders.26–54 
Glutamate levels have been shown to contribute 
to depression,16–19 anxiety,20–22 and dementia23–25 
among other psychiatric diseases.

Alterations in glutamate levels have been 
described in the blood38 and CSF37 of patients 
with major depression disorder (MDD). Plasma 
glutamate levels are associated with the severity of 
depressive symptoms.39 Frontal cortex postmor-
tem human tissue has been shown to have 
increased glutamate levels in those with a history 
of depression-compared controls.36 Magnetic res-
onance spectroscopy (MRS) facilitates simultane-
ous in vivo glutamate measurements, and the 
observed regional changes in glutamate provide 
the most promising evidence of an association 
between glutamate and depression. These studies 
have revealed increased levels of brain glutamate 
of patients with MDD107,108 and patients with 
PSD.109

Current approaches for the treatment  
of PSD
The previous section demonstrated mechanisms 
of PSD which often parallel other depressive con-
ditions. Since PSD remains difficult to manage 
and treatment often fails, current therapeutic 
approaches for this condition have been of great 
interest (Table 1). While historically, treatment 
for PSD targeted the γ-aminobutyric acid or sero-
tonergic neurotransmitter systems, recent thera-
peutic modalities have focused on the role of the 
glutamatergic system.

Nonglutamate-based antidepressants
Treatments that target the γ-aminobutyric acid or 
serotonergic system, such as benzodiazepines and 
SSRIs, respectively, are the most commonly uti-
lized therapy for anxiety, depression, stress, and 
trauma-related disorders. However, only 50–60% 
of patients treated for depression and anxiety with 
antidepressants respond to this therapy.110,111

PSD can often be treated with SSRIs, SNRIs, 
monoamine-oxidase inhibitors (MAOIs), tricy-
clic antidepressants (TCAs), norepinephrine 
and dopamine reuptake inhibitors, other sero-
tonergic antidepressants, as well as stimulants 
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and even electroconvulsive therapy.112–115 These 
treatments are not universally effective. A recent 
randomized controlled trial showed that the 
SSRI, sertraline (Zoloft), was no more effective 
than placebo in treating people with depression 
following traumatic brain injury (TBI).116 Due 
to the high prevalence of post-TBI and PSD, 
finding a solution that specifically targets these 
neuropsychiatric conditions is optimal.

Glutamate-based antidepressants
The antidepressant-like effects of glutamatergic 
agents have recently become more widely studied 
and applied to the treatment of various mood dis-
orders. Recent clinical studies have illustrated the 
effectiveness of glutamatergic agents for the treat-
ment of PSD,16,19,117,118 obsessive–compulsive 

disorder,119 post-traumatic stress disorder,120,121 
generalized anxiety disorder,120–124 and social pho-
bia.125 It is thought that the efficacy of these drugs 
reflects the impact of glutamate in the develop-
ment of mental disorders.18–21,117,126–130 Here, we 
summarize the known antidepressant properties of 
various therapeutic agents that act on the gluta-
matergic system.

N-methyl-D-aspartate receptor antagonists
There are many clinical studies that have revealed 
antidepressive effects of drugs that antagonize 
the N-methyl-D-aspartate receptor (NMDA) 
receptor. Recent evidence has determined the 
rapid antidepressive effects of ketamine, which 
interferes with glutamate receptor activation in 
patients with treatment-resistant MDD.131,132 

Table 1. Therapeutic targets for poststroke depression.

Therapeutic targets Advantages Disadvantages

γ-aminobutyric acid or 
serotonergic system (SSRI, SNRI, 
MAOIs, TCAs, NDRIs)

Antidepressive effects
Most widely used

Not universally effective
Does not address neurologic 
pathology of stroke
Unpleasant side effects
Risk of drug interactions
May take more time for effect

NMDA-receptor antagonists 
(ketamine, esketamine, Ro25-
6981, CP-101,606, memantine, 
magnesium, MK-0657, AZD6765, 
traxoprodil, NRX-1047, GLYX-13, 
D-cycloserine, zinc, MK-801, 
CGP37849)

Antidepressive effects
Associated with positive 
neurological outcome in animal 
models

Associated with poor neurological 
outcome, cardiovascular disease, 
and mortality in clinical studies
Decreases normal glutamate 
activity within and outside of the 
brain

AMPA-receptor antagonists 
(aniracetam, piracetam, 
ampakines, CX614, LY392098, 
LY451646)

Antidepressive effects Decreases normal glutamate 
activity within and outside of the 
brain
Limited clinical trials

BGS (pyruvate, oxaloacetate) Antidepressive effects
Maintains neuronal integrity
Associated with positive 
neurological outcome
Inexpensive
Ability to maintain functional 
glutamate levels

Lacking clinical studies

Other (glutamate-transporter 
mediated, mGluRs antagonists, 
minocycline, riluzole)

Antidepressive effects Decreases normal glutamate 
activity within and outside of the 
brain
Limited clinical trials

AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; BGS, blood glutamate scavengers; MAOIs, monoamine-
oxidase inhibitors; mGluRs, metabotropic glutamate receptors; NDRIs, norepinephrine and dopamine reuptake inhibitors; 
NMDA, N-methyl-D-aspartate receptor; SNRIs, serotonin and norepinephrine reuptake inhibitors; SSRIs, selective 
serotonin reuptake inhibitors; TCAs, tricyclic antidepressants.
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The robust and now widely accepted antidepres-
sant effects of NMDA receptor antagonists have 
led to the development of other agents targeting 
the same receptor, including Ro25-6981,133 
CP-101,606,134 memantine,135 magnesium,136 
MK-0657,137 AZD6765,138 traxoprodil,139 NRX-
1047,139 GLYX-13,140 D-cycloserine,141 zinc,142 
MK-801,143 and CGP37849.144 Recently, the 
US Food and Drug Administration has approved 
the NMDA receptor antagonist esketamine for 
patients with treatment-resistant depression.145

α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor antagonists
At least six agents that target α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) recep-
tors have been observed as potential therapies for 
depression: aniracetam,146 piracetam,147 ampaki-
nes,147 CX614,148 LY392098,149 and LY451646.150

Metabotropic glutamate receptors
Glutamatergic transmission is controlled by 
 ionotropic and by metabotropic glutamate 
 receptors (mGluRs). Recent studies have shown 
that antagonism of mGluRs lead to antidepressant 
action in mGluR1151 and mGluR5152 (group I); 
mGluR2153 and mGluR3154 (group II); and 
mGluR4,155 mGluR6,156 mGluR7,157 and mGluR8156 
(group III).

Glutamate transporters
Antidepressant activity has been demonstrated not 
only from agents that modulate the glutamatergic 
synapse, but also in those that modify glutamate 
transporters responsible for extracellular glutamate 
uptake. There is evidence for the roles of gluta-
mate transporter 1158,159 and excitatory amino acid 
transporter 2 on depression.128,160

Other
Other glutamatergic drugs have antidepressant-
like effects, including minocycline and riluzole. 
Minocycline is a metabolic pathway of the 
essential amino acid L-tryptophan, which may 
cause NMDA-receptor activity in the brain.127 
Riluzole is an NMDA, AMPA, and kainate 
receptor antagonist that prevents the emission 
of presynaptic glutamate and facilitates the 
uptake of glial glutamate at relatively high 
concentrations.161

Problems
Although glutamate receptor antagonists have 
been shown effective for treatment of depressive 
symptoms in both preclinical and clinical studies, 
their efficacy in preclinical studies to improve neu-
rologic outcomes after stroke and other neurologi-
cal insults has not been replicated in human 
trials.162 Following stroke and TBI, clinical studies 
of NMDA receptor antagonists led to an increase 
in the neurological severity outcomes and mortal-
ity rate.163–165 Complications of these studies 
included premature death, cardiovascular issues, 
and development of psychoses, likely due to the 
harmful impact on the function of normal physio-
logic glutamate receptors in both healthy brain tis-
sue and areas at risk of stroke-related injury.162 At 
normal levels, glutamate plays a crucial role in 
maintaining neuronal function and communica-
tion through the activation of NMDA-receptor 
signal pathways. Agents that block NMDA recep-
tors do not differentiate between the positive and 
negative consequences of NMDA signal dysfunc-
tion.165,166 In addition, glutamate antagonists tar-
get glutamate transporters that are found in other 
areas of the body outside the brain, such as in the 
pancreas,167–171 that are important for the meta-
bolic regulation of glutamate. It is likely that 
NMDA-receptor antagonists have a negative effect 
on metabolic processes throughout the body.

BGS with oxaloacetate and pyruvate as an 
alternative method
BGS likely does not display the same detrimental 
effects of the other receptor antagonists, which 
would make it a better treatment option for the 
same conditions (Table 1). Over the past two 
decades, studies have shown a link between the 
mechanisms of depression and disruptions to the 
glutamatergic system, and determined that this 
system provides a central focal point from which 
to develop new antidepressant treatments.

The brain uses several techniques to rid itself of 
excess glutamate. Initial studies on potential thera-
peutic modalities focused on antagonizing gluta-
mate receptors, as described above. However, a 
novel approach consists of removing only excess 
glutamate in the brain by utilization of BGS in the 
form of oxaloacetate and pyruvate. This is achieved 
through facilitating the body’s natural brain-to-
blood glutamate efflux down its concentration gra-
dient. Glutamate is metabolized in the blood to its 
inactive metabolite, 2-ketoglutarate, by the enzymes 
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GOT and GPT in the presence of their cosub-
strates, oxaloacetate and pyruvate, respectively.56 
By administering oxaloacetate and pyruvate periph-
erally, blood-glutamate scavenging can occur 
through several processes, such as catalyzation of 
enzymes responsible for glutamate metabolism, 
glutamate redistribution into tissue, and the acute 
stress response.172–174 This approach has been vali-
dated by several animal studies.172,173,175,176

Unlike NMDA-receptor antagonists, BGS do not 
interfere with glutamate receptors or glutamate-
mediated synaptic activity. Rather, BGS eradi-
cate only the pathologically elevated levels of 
glutamate in cerebral fluid without eliminating 
glutamate levels entirely.172–174 This process of 
glutamate efflux is self-limiting, slowing and 
eventually stopping when glutamate concentra-
tions are decreased enough to no longer support 
glutamate transportation.

The reduction of blood glutamate levels leads to 
the formation of a concentration gradient of gluta-
mate between the brain and blood that favors glu-
tamate efflux, thereby prompting the transport of 
excess glutamate from the brain’s extracellular 
fluid (ECF) to the blood. Thus, lowering gluta-
mate levels restricts secondary brain injury associ-
ated with glutamate neurotoxicity.177,178 Moreover, 
the reduction of glutamate in the blood circulation 
assists with neurological outcome after TBI179–182 
and stroke.175,183–187

Clinical studies have demonstrated an association 
between low GOT levels and poor neurological 
outcome post-stroke; while high GOT levels are 
associated with better neurological outcome.183,184 
GOT and GPT cause a reduction in glutamate 
levels both in the brain ECF and in the blood,176 
and both have been used for successful treatment 
in animal models of TBI and stroke.175,179,180,185

Due to its ability to limit secondary effects of 
stroke, BGS potentially provide a treatment option 
for PSD by targeting both the effects of stroke on 
neurological function and on resultant depression. 
Recent support for the role of BGS as a  therapeutic 
modality in PSD was demonstrated in a rodent 
model showing that administration of pyruvate low-
ered glutamate levels, and improved  neurological 
outcome and post-stroke depressive  behavior.57 In 
this study, 80 rats were randomly separated into 
one of three groups: middle cerebral artery 
 occlusion (MCAO) plus pyruvate treatment, 
MCAO and treatment with placebo, and a control 

group. The rats in the first group showed signifi-
cant reduction of lesion volume, brain edema and 
blood–brain barrier breakdown compared with 
rats who had MCAO with placebo, and displayed 
fewer depressive-like behaviors.57

Therefore, there is growing evidence that BGS 
may be advantageous as a therapeutic option for 
PSD due to their ability to maintain the physio-
logical effects of glutamate, allowing for its con-
tinued preservation of the metabolic and 
electrolyte balance, and neuronal function, and 
its benefits for neurological recovery after brain 
injury.188 BGS possess the ability to maintain 
equilibrium between minimizing the negative 
effects of excess glutamate and keeping its posi-
tive effects that are essential for life.178

Conclusion
Stroke itself has debilitating effects on neurologi-
cal function, and additional complications such as 
PSD make treatment of stroke challenging. 
Current treatment for PSD is often insufficient, 
but the therapeutic role of glutamatergic agents 
has been encouraging. Collectively, experimental 
evidence with BGS has shown much promise in 
the treatment of PSD. Clinical trials are a requisite 
future action to studying the clinical effects of 
BGS for the treatment of PSD in humans. A bet-
ter understanding of the relationship between glu-
tamate and BGS will produce critical insights that 
will be indispensable for the advancement of the 
clinical diagnosis, prognosis, and treatment of 
PSD.
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