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ABSTRACT
Background: The lesser grison (Galictis cuja) is one of the least known carnivores in
the Neotropical region. Its wide geographical occurrence and range of habitats could
lead to morphological variations along its distribution. So, this study aimed to
investigate the variation in skull shape and size of this species, by testing the existence
of ecotypes adapted to their respective environments (Uruguayan savanna and
Atlantic Forest), as well as its relationship with selected abiotic variables.
Methods: The skulls of 52 museum specimens were photographed in the ventral,
dorsal, and lateral views, and were analyzed using geometric morphometric
techniques.
Results: We found sexual size dimorphism, with males being larger than females.
The shape variation between sexes, as well as between ecoregions, is mostly explained
by the effect of allometry. The specimens from Uruguayan savanna are larger than
the ones from the Atlantic Forest. Size variation was also significantly correlated to
latitude, temperature and precipitation patterns. No correlation between skull shape
with geographical distance was detected.
Discussion: Morphometric measurements and diet data of lesser grison in regions
from higher latitudes than our sampling show a tendency to heavier individuals, and
the consumption of bigger prey compared to Uruguayan savanna. The results
indicated the smaller specimens associated to low variability in annual temperature,
congruent to Atlantic Forest region. An explanation for observed variation may be
related to the “resource rule” but, due the minimal natural history information
regards this species, we can just speculate about this.

Subjects Biodiversity, Evolutionary Studies, Zoology
Keywords Geometric morphometrics, Intraspecific variation, Sexual dimorphism, Uruguayan
savanna, Atlantic Forest

INTRODUCTION
The lesser grison, Galictis cuja (Molina, 1782), is one of the least known mustelids of the
Americas, characterized by a thin and elongated body, short legs, and a short, bushy tail
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(Yensen & Tarifa, 2003; Oliveira, 2009). It is widely distributed across the Neotropical
regions, including southern Peru, western Bolivia, central Chile, Paraguay, Uruguay, north
and southern Argentina, and east to southeastern Brazil. It inhabits a great variety of
habitats from sea level to 4,200 m, such as arid scrub, the Chaco Desert, steppes, wet forest
and Andean shrublands (Yensen & Tarifa, 2003). Within Brazil, the lesser grison occurs
in almost all ecoregions, including the Cerrado and Caatinga in the northeast, as well as
the tropical and subtropical moist broadleaf forest (Atlantic Forest) throughout the eastern
seaboard, and the Uruguayan savanna toward the southern region of the country
(Bornholdt et al., 2013).

The majority available literature on this species includes information about its trophic
ecology in Argentina, Chile, Uruguay, and southern Brazil (Ebensperger, Mella &
Simonetti, 1991; Diuk-Wasser & Cassini, 1998; Delibes et al., 2003; Kraus & Rödel, 2004;
Zapata et al., 2005; Sade, Rau & Orellana, 2012; Kasper et al., 2015), habitat selection
(Zúñiga, Muñoz-Pedreros & Fierro, 2009), and anatomy (Ercoli et al., 2012, 2016). Except
for the studies of Zapata et al. (2008) and Schiaffini & Prevosti (2013) and a revision of
the morphological and molecular characteristics of the genus Galictis (Bornholdt et al.,
2013), the cranial morphology of the species has been largely unexplored, even in
ecomorphological studies of Mustelidae (Catalano, Ercoli & Prevosti, 2014; Law et al.,
2018). Thus, the present study aims to contribute to the knowledge on the intraspecific
morphological variation in the skull size and shape of the lesser grison, particularly along
its distribution in Brazil.

The cranial, mandibular and dental morphology of the lesser grison are consistent with
the general descriptions of weasels (genus Mustela) (Zapata et al., 2008). The long and
narrow skull features sagittal and nuchal crests that provide extra space for the temporalis
muscles to anchor. The jaw is short, and the teeth are specialized for a diet of flesh, to a
degree matched only in the cat family (King & Powell, 2007). Relative to other small
carnivorans from South America, the lesser grison has a reduced M1, a reduced lingual
portion of the upper carnassial P4, a longer and thinner palatal plate that is extended
beyond M1, and a longer basicranium (Schiaffini & Prevosti, 2013; Prevosti & Forasiepi,
2018). In addition, the pre- and postglenoid processes are so developed that it is difficult
to separate the jaws from the skull, which indicates that this species has a particularly
powerful bite (Zapata et al., 2008). This characteristic has been associated with greater
efficiency in closing the jaws in mustelids that feed on prey larger than themselves
(Christiansen & Wroe, 2007). This is also consistent with some morphofunctional
specializations, such as a flexible axial region and strong neck muscles, which give the
lesser grison the ability to pursue and hunt its prey through narrow tunnels, as well as to
transport relatively heavy prey in the mouth (Yensen & Tarifa, 2003; Ercoli et al., 2016).
Its diet consists of small to medium-sized vertebrates, especially lagomorphs, rodents,
birds, frogs, lizards, snakes, and their eggs (Yensen & Tarifa, 2003).

The wide geographical distribution of the lesser grison and the range of habitats this
mustelid occurs in offer the opportunity to evaluate morphological variations, by testing the
existence of ecotypes (Turesson, 1922). Morphometric analyses of several mammalian
craniums suggest that patterns of morphological variation in species with large distribution
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areas might be adaptations to a range of environmental conditions (Gay & Best, 1996),
availability of resources (Mcnab, 2010; Schiaffini, 2016a), or to reduce competition
with ecologically similar species occurring in sympatry (Bubadué et al., 2015). Thus, we
hypothesize that there should be a variation in the size and/or shape of the skull of the
lesser grison among populations of different ecoregions throughout the distribution
of the species in Brazil, leading to the existence of ecotypes adapted to their respective
environments. We also tested the relationships between the skull size variation and
selected abiotic variables.

MATERIALS AND METHODS
Sampling and variables
The skulls of museum specimens of the lesser grison were photographed with a
Sony DSC-H9 digital camera at a fixed distance of 24 cm, using a support platform.
One millimeter graph paper was used as a photographic background for subsequent scale
referencing. The photographs were taken and landmarks were digitalized by the same
investigator (RPM) to avoid inter-observer error. Only adult skulls with known locality
and sufficient integrity to digitalize landmarks that represent the overall skull morphology
were included in the statistical analyses. Adult specimens were recognized as those that
presented a fully erupted permanent dentition along with a total fusion of the skull sutures
(Bornholdt et al., 2013).

Specimens lacking the corresponding geographical coordinates were georeferenced
using Google Earth (Google, 2018), using the central coordinate of the municipality
cataloged by the collections as the reference. Each specimen was assigned to a Neotropical
ecoregion, based on the nomenclature proposed by Olson et al. (2001), using a shapefile
in QGIS 2.18.25 (QGIS Development Team, 2018). As the sampling numbers were
small, the specimens were grouped into two contrasting major habitat types for analysis
(Fig. 1): (a) Uruguayan savanna—where medium/tall grasslands prevail, with sparse
shrub and tree formations (11 males, eight females, and eight unsexed); and (b) Atlantic
Forest—a forested formation composed of the specimens from the Alto Paraná
Atlantic Forest, Araucaria Moist Forest, Serra do Mar Coastal Forest, Southern Atlantic
Mangroves, Bahia Interior Forest, and Bahia Coastal Forest ecoregions (10 males, nine
females, and six unsexed).

Each specimen was also assigned a value of latitude, as well as 19 bioclimatic variables
taken from the WorldClim version 2.1 database (Fick & Hijmans, 2017) at a spatial
resolution of 30s (approximately 1 km2). This methodological step was realized in QGIS
2.18.25 (QGIS Development Team, 2018).

The examined specimens are housed in the open access mammalian collections of
the following institutions: Museu de Zoologia do Pampa (MZPAMPA), located at the
Laboratório de Biologia de Mamíferos e Aves, of the Universidade Federal do Pampa,
São Gabriel (LABIMAVE-UNIPAMPA); Museu de Ciências Naturais da Fundação
Zoobotânica do Rio Grande do Sul, Porto Alegre, Brazil (FZB/RS); Museu de Ciências
e Tecnologia da Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre,
Brazil (MCT-PUCRS); Museu de Ciências Naturais da Universidade Luterana do Brasil,

Migliorini et al. (2020), PeerJ, DOI 10.7717/peerj.9388 3/19

http://dx.doi.org/10.7717/peerj.9388
https://peerj.com/


Canoas, Brazil (MCNU-ULBRA); Laboratório de Mamíferos Aquáticos da Universidade
Federal de Santa Catarina, Florianópolis, Brazil (LAMAq-UFSC); Museu de Zoologia da
Universidade de São Paulo, São Paulo, Brazil (MZUSP); Museu Nacional de História
Natural, Rio de Janeiro, Brazil (MNHN-UFRJ); Centro de Coleções Taxonômicas da
Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (CCT-UFMG); and Museu
Paraense Emílio Goeldi, Belém, Brazil (MPEG). These collections were accessed
through contact with the respective curators responsible for them. The list of analyzed
specimens is presented in Table S1.

Geometric morphometric procedures
The skulls of 52 adult specimens (21 males, 17 females, and 14 unsexed) were
photographed in the ventral (n = 48), dorsal (n = 51), and lateral views (n = 52) (Fig. 2).
The photos were compiled using tpsUtil 1.64 (Rohlf, 2013) and the landmarks were

Figure 1 Geographic distribution of the 52 analyzed specimens of Galictis cuja (squares, males;
diamonds, females; and circles, unsexed), indicating the ecoregions of origin.

Full-size DOI: 10.7717/peerj.9388/fig-1
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Figure 2 Landmarks digitized in 52 skulls of Galictis cuja. Ventral view (A): middle point of the
incisive series (1); most anterior point of the canines (2–3); posterior point of the palatine torus (4),
temporal-masseter muscle insertion area (5–10); anterior point of the tympanic bulla (11–12); most
lateral point of the mastoid process (13–14); paroccipital process (15–16); and ventral point in the
foramen magnum (17). Dorsal view (B): anterior point of the nasals in the sutura internasalis (1); tips of
the nasal process (2–3); point of least width between the maxillae (4–5); the lacrimal foramen (6–7); point
of least width between the frontals (8–9); anterior point of the squamous (10–11); most external posterior
point of the zygomatic arch (12–13); posterior point of the zygomatic arch (14–15); most lateral point of the
mastoid process (16–17); most external points of the lambdoid crest (18–19); and point of the inion (20).
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digitalized using tpsDig 2.26 (Rohlf, 2015). The landmarks can be defined as type II
(ventral: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17; dorsal: 1, 2, 3, 8, 9, 10, 11, 20; lateral: 1,
2, 3, 10, 11), and type III (ventral: 13, 14; dorsal: 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 19;
lateral: 4, 5, 6, 7, 8, 9, 12, 13), according to Bookstein (1991).

Data analysis
First, landmark coordinates were superimposed with a generalized Procrustes analysis
(GPA) (Dryden & Mardia, 1998), which removes the effects not related to shape, such as
position, scale, and orientation. The GPA generates new data from landmark coordinates,
the centroid size and shape residuals (Procrustes coordinates). Although extracting the
size information from the raw data of landmark coordinates eliminates the variation in size
per se, the shape data may still contain a component of size-related shape variation because
of the effects of allometry (Klingenberg, 2016). Therefore, the presence of allometry was
examined using a multivariate regression of shape on size (Monteiro, 1999). As preliminary
analysis, we performed a Shapiro–Wilk test to analyze the normality of size (i.e., centroid
size) data (Royston, 1995). So, sexual size dimorphism was evaluated using a Student’s
t-test since data presented normal distribution for the three views. Sexual differences in
shape (i.e., Procrustes coordinates), as well as the interaction between the factors “sex” and
“ecoregion”, were tested through a Procrustes analysis of variance (ANOVA) (Adams &
Otárola-Castillo, 2013).

To analyze statistical skull size differences between the Uruguayan savanna and Atlantic
Forest samples we performed the Student’s t-test for the views with normal distribution of
measurements and the nonparametric Mann–Whitney test (Hollander & Wolfe, 1973)
for the views that did not present normality. The existence of differences in the skull
shape between the two distinct ecoregions was tested employing a Procrustes ANOVA
(Adams & Otárola-Castillo, 2013). The dimensions of the Procrustes coordinates of shape
variation were reduced with a principal component analysis (PCA). The subset of principal
components (PCs) sufficient to explain 99% of the total variance was used to perform
a linear discriminant analysis (LDA), to compute a leave-one-out cross-validation, which
was in turn used to calculate the percentages of correct classifications for both groups
(Baylac & Friess, 2005).

The relationship between skull size (i.e., centroid size) and latitude was tested
through a multivariate regression (Monteiro, 1999). The association between size and the
19 bioclimatic variables was tested by a single ordinary least-squared (OLS) regression
analyses, conducted first separately for each variable (see Table S3). Correlation coefficients (r)

Figure 2 (continued)
Lateral view (C): anterior point of the dentary row (1); point between P4 andM1 (2); most anterior point of
the premaxilla and nasal bone suture (3); the lacrimal foramen (4); point of intersection between the dorsal
margin of the frontal bone and a line that crosses the ventral and dorsal postorbital processes (5); most
lateral point of the jugal on the maxilla (6); most posterior ventral (7) and higher (8) points of the squa-
mosal process; posterior point of the zygomatic arch on the braincase (9); most lateral point of the mastoid
process (10); the paroccipital process tip (11); most external point of the lambdoid crest (12); and point of
the inion (13). Full-size DOI: 10.7717/peerj.9388/fig-2
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between the predictor variables were calculated to avoid multicollinearity (Graham, 2003).
For those with r > 0.7 we applied the stepwise algorithm to keep in the model the variables
that provided the best explanation. Thus, a subsequent multiple regression analyses
were performed to evaluate the contribution of each predictor variable to size in the presence
of the others. The existence of spatial autocorrelation, that is the lack of independence
between pairs of observations at given geographical distances (Legendre, 1993), in the size
data was evaluated in the residuals of the OLS by the Moran’s I index (Diniz-Filho, Bini &
Hawkins, 2003).

The distance between the midpoints of each specimen’s locality was used to generate
a geographical distance matrix, using the Geographic Distance Matrix Generator v 1.2.3
(Ersts, 2018). The residuals of the GPA, originated by the superimposition of the landmark
coordinates of the specimens, were used to generate a Mahalanobis distance matrix.
The degree of morphological variation was correlated with the geographic distance of the
specimens, through an approach similar to the isolation-by-distance model, commonly
used in genetic studies (Wright, 1943). For this issue, these matrices were tested by
correlation, through an RV coefficient (Heo & Gabriel, 1997).

All statistical analyses and graphs were generated in “R”, version 4.0.0 (R Development
Core Team, 2018), using the libraries MASS (Venables & Ripley, 2013), ape (Paradis,
Claude & Strimmer, 2004), stats (R Development Core Team, 2018), ade4 (Dray & Dufour,
2007), geomorph (Adams & Otárola-Castillo, 2013), and letsR (Vilela & Villalobos, 2015).

RESULTS
Sexual dimorphism
The males and females differed in skull size in the ventral (t = −5.9755, df = 33.789,
p < 0.001), dorsal (t = −7.006, df = 33.93, p < 0.001), and lateral (t = −6.853, df = 35.914,
p < 0.001) views, with males being larger than females. However, the multivariate
regression of shape on size revealed that allometry was also significant. The percentages of
shapes predicted by size for males and females were 28.2% (p = 0.001), 26.7% (p = 0.001),
and 11.3% (p = 0.003) for the ventral, dorsal, and lateral views, respectively. The Procrustes
ANOVA confirmed this, showing size as the significant variable explaining sexual
dimorphism in the shape for the three views. The effect of the factor “sex” alone was
non-significant (ventral: SS < 0.001, MS < 0.001, Rsq = 0.018, F = 0.875, p = 0.546; dorsal:
SS < 0.001, MS < 0.001, Rsq = 0.018, F = 0.884, p = 0.535; and lateral: SS = 0.002,
MS = 0.002, Rsq = 0.028, F = 1.123, p = 0.285). Based on the absence of interaction between
the factors “sex” and “ecoregion” (both in skull size and shape), the males, females, and
unsexed specimens were pooled together for the subsequent analysis of variation between
ecoregions (see Table S2).

Skull size and shape between ecoregions
The Student’s t-test showed significant differences in skull size between the Atlantic Forest
and Uruguayan savanna groups in the ventral view (t = −4.413, df = 45.972, p < 0.001), as
well as the Mann–Whitney test in dorsal (W = 0.947, p = 0.025), and lateral (W = 0.953,
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p = 0.047) views, with the specimens from the Uruguayan savanna being larger than those
from the Atlantic Forest, as represented in the boxplot of the ventral view (Fig. 3).

The multivariate regression of shape on size revealed that allometry was significant for
all three views of the skull. The amount of shape predicted by size was 26.4% (p = 0.001),
26.6% (p = 0.001), and 9.5% (p = 0.001) for the ventral, dorsal, and lateral views,
respectively. There were significant differences in skull shape; however, according to the
Procrustes ANOVA, they are mostly explained by size, except for the dorsal view where the
factor “biome” explains 3.6% of the shape variance (SS = 0.002, MS = 0.002, Rsq = 0.036,
F = 2.563, p = 0.006). The first 11 PCs cumulatively explained 95.5% of total variance in the
dorsal view; the first 11 explained 95.6% of the variance in the ventral view; and the first 13
explained 95% of variance in the lateral view. Plotting the first PCs with the second, the
PCA plot did not cluster groups for any of the skull views (Fig. 4). The percentages of
correct classifications for each skull view are shown in Table 1.

Abiotic variables
Because of the presence of significant sexual dimorphism in skull size and the allometric
component leading to dimorphism in shape, subsequent analyses were conducted with the
sexes separated. There was a significant association between size and latitude for both
females and males in the three skull views (Table 2).

The main results of the OLS are presented in Table 3. Temperature Seasonality
explained a significant 57.7% of size variation in ventral and 59.5% in dorsal view of
females’ skulls. Temperature Annual Range was the only significant predictor of variance
in female lateral view (59.4%) and male dorsal view (38.1%). This last variable, together
with Precipitation of Driest Month, Precipitation Seasonality and Precipitation of Wettest
Quarter were the most important variables for male ventral view, explaining 75% of size
variation. Finally, Precipitation of Wettest Month, Precipitation of Driest Month and
Precipitation Seasonality explained 68.2% of size variation for male lateral view.

No significant (p > 0.05) spatial autocorrelation in the OLS residuals were found (see
Table S4). The results also showed no significant correlations between the geographical
distance and Procrustes distances of the consensus shape for both males (ventral: p = 0.271;

Figure 3 Boxplot of the skull log centroid size of Galictis cuja (ventral view) among different
ecoregions in Brazil. The black line represents median values and the boxes represent the first inter-
quartile, while the bars represent the second interquartile. Full-size DOI: 10.7717/peerj.9388/fig-3
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Figure 4 Scatter plots of the two first axes of the principal component analysis (PCA) for Galictis
cuja specimens from Brazil, based on the Procrustes distances of the consensus shape. Uruguayan
savanna individuals are represented in light gray circles and Atlantic Forest in dark gray circles. PC1
represents the skull shape variation in the first axis and PC2 represents skull shape variation in the second
axis, in the ventral (A), dorsal (B) and lateral (C) views. Positive scores are represented by black lines and
negative scores are represented by gray lines. Full-size DOI: 10.7717/peerj.9388/fig-4
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Table 1 Percentage of correct classification from linear discriminant analysis (LDA) for the skull
shape of Galictis cuja specimens from two Brazilian ecoregions.

Uruguayan savanna Atlantic forest Overall

Ventral 40 60 56.2

Dorsal 65.3 56 60.7

Lateral 52 48 50

Table 2 Results of Procrustes analysis of variance (ANOVA) test for the relationship between
latitude and the skull size of Galictis cuja specimens from Brazil.

SS MS Rsq F p

Female Ventral 8.982 8.982 0.498 13.909 0.004

Dorsal 9.694 9.694 0.465 13.061 0.003

Lateral 8.734 8.734 0.380 9.220 0.009

Male Ventral 21.658 21.658 0.431 13.656 0.003

Dorsal 11.685 11.684 0.188 4.193 0.054

Lateral 17.579 17.579 0.356 10.547 0.003

Note:
SS, Sum of squares; MS, mean squares; Rsq, coefficient of determination R-squared and F value. Significance (p < 0.05) is
highlighted in bold.

Table 3 Results of single ordinary least-squared (OLS) analyses of skull size of Galictis cuja
specimens from Brazil and the predictor independent (r < 7) bioclimatic variables.

Bioclimatic variable p

Female Ventral Temperature Seasonality <0.001

Dorsal Temperature Seasonality 0.001

Max Temperature of Warmest Month 0.119

Lateral Max Temperature of Warmest Month 0.158

Temperature Annual Range 0.001

Male Ventral Temperature Annual Range 0.022

Mean Temperature of Wettest Quarter 0.455

Mean Temperature of Driest Quarter 0.831

Mean Temperature of Coldest Quarter 0.492

Precipitation of Driest Month 0.027

Precipitation Seasonality 0.025

Precipitation of Wettest Quarter 0.004

Dorsal Temperature Annual Range 0.002

Lateral Mean Temperature of Wettest Quarter 0.960

Precipitation of Wettest Month <0.001

Precipitation of Driest Month <0.001

Precipitation Seasonality <0.001

Note:
Significance (p < 0.05) is highlighted in bold.
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dorsal: p = 0.417; lateral: p = 0.176) and females (ventral: p = 0.382; dorsal: p = 0.571;
lateral: p = 0.198).

DISCUSSION
Sexual dimorphism
Our results indicate sexual dimorphism in the skull size of the lesser grison, with males
being larger than females. This is not surprising, as sexual size dimorphism within the
Mustelidae family has been reported, especially among smaller species (Noonan et al.,
2016; Law & Mehta, 2018). Small mustelids, such as the lesser grison, are predominately
obligate carnivores, feeding almost exclusively on vertebrates (Zapata et al., 2005).
In this species the dispersion of food resources would promote intrasexual selection for
territories, resulting in mating systems where males must compete for access to females,
which confers a selective advantage to larger males (Noonan et al., 2016). Nevertheless,
increased cranial size dimorphism could reduce dietary competition between the sexes,
rendering niche divergence a mechanism in the maintenance of the evolution of sexual
dimorphism in extant mustelids (Law & Mehta, 2018).

Allometry is a pervasive aspect of morphological variation in mammals, in which large
differences in size are typically accompanied by differences in shape because of the
covariation in these traits (Klingenberg, 2016). This association became evident for the
lesser grison, as the shape variation between sexes we found was mainly related to their
differences in size. The most obvious changes are seen in the more developed lambdoid
crest and mastoid process in males (Fig. S1). This is consistent with the effect of allometry
on the muscular insertion areas described for carnivores in general, and weasels in
particular, where the smaller females usually differ from males by presenting reduced
muscular insertion processes (Ercoli, 2017).

Skull size and shape between ecoregions
Our hypothesis on the existence of ecotypes according to different ecoregions was
supported; we found significantly larger skull sizes in specimens from the Uruguayan
savanna than those in the Atlantic Forest. Overall, the PCA displayed patterns of shape
overlap between specimens from both ecoregions in all three views (Fig. 4). A relative
differentiation was only seen along the first axis for the dorsal view, which placed the
specimens from the Atlantic Forest mostly in the negative scores, representing a skull with
the region that encompasses the points of least width between frontals, the anterior
points of the squamous, to the posterior point of the zygomatic arch, wider than that of
specimens from the Uruguayan savanna. All of the observed skull shape variations were
significantly explained by allometry. Both Procrustes ANOVA and the percentage of
correct classification indicated that the differences between Atlantic Forest and Uruguayan
savanna in the skull shape are small. The percentage of correct classification for skull shape
showed values near 50%, the expected by chance in two possibilities, reinforcing the
similarity between the ecoregions.

Despite the particular compositions of the ecoregions clustered as Atlantic Forest (Olson
et al., 2001), because of our small sample size and since those ecoregions are all associated
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to forested formations (Instituto Brasileiro de Geografia Estatística (IBGE), 1993),
we decided to focus the analysis on the comparison of two major contrasting habitats
(i.e., moist broadleaf forests versus grasslands, savannas and shrublands). Intraspecific
variation has already been observed in some characteristics of the lesser grison, such as fur
color, with the yellowish specimens found mainly in the open and drier landscapes, for
example, savannahs and grasslands, which is assumed to be an adaptation favored as
camouflage (Bornholdt et al., 2013). Patterns of morphological change associated with
contrasting habitats, in which different selective pressures leads to changes in skull shape
and size, have also been observed in other mustelids (Hernández-Romero, Guerrero &
Valdespino, 2015). The lesser grison is usually described as a generalist species regarding
habitat requirements (Yensen & Tarifa, 2003; Schiaffini, 2016b), and it appears to be
unusual in most habitats (Kasper et al., 2013). However, more data on the species ecology
and increased samplings (especially from its northern distribution) are needed to better
understand its skull size variation.

When two morphologically and or/ecologically similar species geographically overlap,
a change in size or morphology is expected to minimize competition (Brown & Wilson,
1956). Competition is assumed to occur mostly among closely related species, but may also
take place among species from different clades with similar ecologies (Van Valkenburgh,
1999). Throughout the ecoregions we sampled, there are no other similar small mustelids
that could compete with the lesser grison for the same resources, with the only other
hypercarnivorous species in sympatry being the felids (Reis et al., 2011). However, despite
its food indices having up to 95% similarity with small cats, as reported in southern Brazil
(Kasper et al., 2015), these species use different foraging strategies. Cats generally lie in
ambush by trails or burrow entrances waiting for the prey to appear (Kitchener, Van
Valkenburgh & Yamaguchi, 2010). Thus, it can be argued that character displacement does
not provide the most comprehensive explanation for the lesser grison’s skull size
differentiation between the different ecoregions.

The body size of small weasel-like mammals is probably most strongly influenced by the
most workable balance between hunting efficiency and energy balance under local
conditions (King & Powell, 2007). In other species of Mustelidae, such as an assemblage
composed of three NewWorld sympatric least weasels, it is assumed that the force driving
the morphological convergence in their canine size may simply be a local adaptation
for hunting similar resources (Meiri, Simberloff & Dayan, 2011). Despite its wide
distribution, the lesser grison’s food habits are poorly understood in most of its habitat
range, precluding a comparison of patterns of prey consumption from the Uruguayan
savanna and Atlantic Forest groups.

Abiotic variables
We also found a significant association between skull size and latitude, following the
predictions of Bergmann’s rule. This indicates that within warm-blooded (endothermic)
species, individuals from colder climates or higher latitudes are generally larger than those
from warmer regions or lower latitudes (Bergmann, 1847). Data on morphometric
measurements from the lesser grison’s distribution further south of our sampling, that is
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higher latitudes, comes from Buenos Aires Province (Vidal et al., 2016). The authors
recorded body mass outside the range reported in the literature, with specimens weighing
up to 2.8 kg. The average male body mass of 2.12 kg is greater than the mean weight of
the specimens available in the collection database we sampled from the Uruguayan
savanna (1.74 kg), which was also greater than that from the Atlantic Forest (1.41 kg).
These values may be indicative of a trend in the skull size following this pattern throughout
its distribution.

Although Bergmann’s rule has been extensively discussed, there is no general agreement
about its validity. The heat retention explanation and mass-specific rates have been
criticized for their inconsistent ecological realities (McNab, 1999). Therefore, another
proposal for trends in size was made by Mcnab (2010), who called it the “resource rule”,
according to which the spatial variation in mammal body size could be explained by the
availability and characteristics of the consumed resources. Mustelids, such as the lesser
grison, have higher energy needs than expected for their body mass, which may require a
larger prey size to satisfy their energetic requirements (Brown & Lasiewski, 1972).
In Argentina, the lesser grison’s diet consists mostly of introduced lagomorphs, which
seems consistent with its ability to subdue prey larger than expected for its body size, even
in burrows and nests (Ebensperger, Mella & Simonetti, 1991; Delibes et al., 2003). A study
from southern Brazil (Kasper et al., 2015) suggested a diet based on smaller rodents,
and despite the high abundance of Lepus europaeus (Pallas, 1778) in the region (Kasper et al.,
2012), there is no evidence of its consumption. Unfortunately, the lack of information
regarding the diet of the lesser grison from its Brazilian northern distribution, comprising a
single mention based on one fecal sample (Rocha-Mendes et al., 2010), allows us to speculate
that those specimens became smaller because they feed on smaller prey.

Skull size variation of lesser grison also seems to be related to temperature and
precipitation patterns. Temperature Annual Range and Seasonality showed a positive
correlation with skull size, indicating larger specimens occurring in regions with greater
variability in annual temperature. The ecoregion analyses showed similar results, once the
Atlantic Forest (i.e., moist broadleaf forest) is characterized by low variability in annual
temperature and contains the smaller specimens. An environmental niche modeling
indicated higher predictive values for lesser grison distribution along regions with highly
variable precipitation and temperature (Schiaffini, 2016b). It was proposed that the species
presence in cold zones might be related to the consumption of large number of preys to
maintain a constant body temperature. As the lesser grison seems to be larger in the
southern colder ecoregions, it is possible to suppose that it can prey upon a wider range of
prey sizes (Ebensperger, Mella & Simonetti, 1991; Delibes et al., 2003) as a way to overcome
the species poor thermal balance.

Our results revealed no significant correlation between geographical and morphological
distance. This indicates that the skull shape variation did not follow a pattern similar to
the isolation-by-distance model, which predicts an exponential decrease in the genetic
similarity between populations, as the geographic distance between them increases
(Wright, 1943). Morphological variation in some Neotropical mustelids is explained
by the presence of different evolutionary units delimited by geographical barriers
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(Hernández-Romero, Guerrero & Valdespino, 2015). However, the lesser grison seems
to occur continuously and uniformly along the sampled regions, with no apparent
geographical barriers. Our result is also congruent with the current research on genetic
variability which does not suggest the recognition of subspecies (Bornholdt et al., 2013).

CONCLUSIONS
This study adds new information on the skull size and shape variation of the lesser grison
in Brazil. Sexual size dimorphism was observed, with males being larger than females;
this is an expected pattern for a small mustelid. The shape variation between the sexes,
as well as between ecoregions, is mostly explained by the effect of allometry, and no
correlation with geographical distance was detected.

The specimens from the Uruguayan savanna were significantly larger than those from
the Atlantic Forest, and the size variation was also significantly correlated to latitude,
as well as temperature and precipitation patterns. The morphometric measurement data
on regions from higher latitudes than our sampling showed a tendency toward heavier
individuals, as well as the consumption of bigger prey, compared to those from the
Uruguayan savanna. Unfortunately, its minimal natural history information (Poo-Muñoz
et al., 2014) only allows us to speculate that the lesser grison’s skull size variation pattern
follows the “resource rule”.

Although relatively common in most parts of Brazil, some ecoregions are not well
represented in scientific Brazilian collections as they are hampered by the predominance of
young specimens and individuals without cataloged origins. In addition, to completely
understand the variations in the skull size and shape of the lesser grison, future studies
should focus on gathering information on the species ecological aspects, especially from its
northern distribution.
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