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SUMMARY
Accurately predicting cardioactive effects of new molecular entities for therapeutics remains a daunting challenge. Immense research

effort has been focused toward creating new screening platforms that utilize humanpluripotent stem cell (hPSC)-derived cardiomyocytes

and three-dimensional engineered cardiac tissue constructs to better recapitulate humanheart function and drug responses. As these new

platforms become increasingly sophisticated and high throughput, the drug screens result in largermultidimensional datasets. Improved

automated analysismethodsmust therefore be developed in parallel to fully comprehend the cellular response across amultidimensional

parameter space. Here, we describe the use of machine learning to comprehensively analyze 17 functional parameters derived from force

readouts of hPSC-derived ventricular cardiac tissue strips (hvCTS) electrically paced at a range of frequencies and exposed to a library of

compounds. A generated metric is effective for then determining the cardioactivity of a given drug. Furthermore, we demonstrate a clas-

sification model that can automatically predict the mechanistic action of an unknown cardioactive drug.
INTRODUCTION

Drugs in late-stage development as well as those with

market approval are often withdrawn due to previously un-

detected drug-induced cardiotoxicity. Unpredicted drug-

induced cardiotoxicity jeopardizes patients’ lives, erodes

public trust in the regulatory process, and financially bur-

dens the pharmaceutical industry. For example, cisapride,

a gastrointestinal drug intended to treat heartburn, was re-

ported to have caused serious ventricular arrhythmias and

sudden deaths prior to withdrawal (Ferriman, 2000). The

associated pharmaceutical company agreed to settle law-

suits for a total of $90 million US dollars for 300 deaths

and 16,000 injuries (Harris and Koli, 2005). Progress has

been made to facilitate better safety through the adoption

of US Food and Drug Administration guidelines that

recommend screening new drugs with the human ether-

a-go-go-related gene (hERG) inhibition assay (FDA, 2005).

Nonetheless, within the past decade, an assortment ofmar-

ket-approved therapeutics (e.g., clobutinol, sibutramine,

and tegaserod) had to be withdrawn due to unpredicted

drug-induced cardiotoxicity (FDA, 2016; Li et al., 2016).

The need for more accurate and faster pre-clinical detec-

tion methods has led to the emergence of a variety of

screening platforms in recent years. A majority of these

detection systems have begun to utilize human pluripotent

stem cell-derived cardiomyocytes (hPSC-CMs). These cells
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are more physiologically similar to human myocardium

than laboratory animals or genetically transformed non-

cardiac cell lines (e.g., human embryonic kidney cells)

(Dick et al., 2010). Aside from the commonality of using

hPSC-CMs, these platforms vary greatly in their setup,

including differences in tissue geometry. Certain platforms

employ hPSC-CMs in a two-dimensional manner (e.g.,

monolayer), while others attempt to recapitulate aspects

of the three-dimensional environment of native myocar-

dium bymodeling the cells as cardiacmuscle fibers or heart

chambers (Chen et al., 2014; Huebsch et al., 2016; Lee et al.,

2008). These systems can also differ drastically in their

methodology of quantifying changes in hPSC-CMs

exposed to cardioactive compounds. Some systems

examine the electrophysiological properties while others

focus on the calcium transients or measurements of

contractility (e.g., shortening, force, pressure) generated

by the cardiomyocytes (Lu et al., 2015; Maddah et al.,

2015; Navarrete et al., 2013; Zhang et al., 2014).

While the experimental platformsmay vary, quantitative

readouts generally characterize individual contractile

events. Combining this with the number of experimental

conditions (e.g., various pacing frequencies or drug con-

centrations) can yield large multidimensional datasets

that make it difficult to draw thorough conclusions.

Researchers often simplify the raw data by preselecting

a limited number of parameters as an attempt to
The Authors.
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comprehend the complexity of the data, albeit losing infor-

mation in the process.Without full interpretation of such a

rich dataset, there is a risk of not detecting information that

differentiates the behavior of normal hPSC-CMs from

those exposed to cardioactive compounds. In addition, as

these platforms are meant for high-content screens, the

analysis of the datasets needs to be automated.

Holistic approaches must be developed to optimize the

utility of datasets generated from screening platforms.

Machine learning has been shown to handle such multidi-

mensional datasets in an automated fashion (Lee et al.,

2015). We previously demonstrated that support vector

machine (SVM), a supervised learning algorithm, can be

used to consolidate 12 parameters, which characterize the

contractile behavior of hPSC-CMs exposed to cardioactive

compounds, into a singular quantitative index that

expresses the level of induced cardioactivity (Lee et al.,

2015). Machine learning can be further leveraged into a

suite of tools that provide more in-depth details of hPSC-

CM behavior when exposed to cardioactive compounds.

In this study, we hypothesize that multiclassification algo-

rithms can be implemented to create amodel to define drug

classes and subsequently predict an unknown compound’s

mechanistic action. Such information would assist in

streamlining the drug discovery pipeline, allowing for the

rapid identification of select compounds for more in-depth

follow-up assays. In addition, this information coupled

with knowledge of predicted class can guide scientists to

efficiently and selectively screen for specific drug-to-drug

interactions that prompt cardiotoxicity (e.g., disruption

of Ca2+ handling when sofosbuvir and amiodarone are

combined) instead of relying on the traditional brute force

approach (Millard et al., 2016). Furthermore, drug-

response relationships between the unknown compound

and the library can be determined.

To test our hypothesis, we examined a database (not yet

published) containing drug screens of various compounds

on twitch forcemeasurements fromhuman ventricular car-

diac tissue strips (hvCTS) engineered from hPSC-CMs

embedded in a 3D collagen-based matrix (Turnbull et al.,

2014). A unique aspect of these screens was that the

hvCTSs were electrically paced at four different frequencies

from 0.5 to 2.0 Hz, spanning a physiological range. These

measurements interrogated the influence of cardioactive

compounds on the hvCTS force-frequency relationship

and contributed to a multidimensional dataset. We

selected a total of 12 compounds with acute cardiac effects

that represented five drug classes (1, Ca2+ channel blockers;

2, adrenergic agonists; 3, cardiac glycosides; 4, hERG K+

channel blockers; and 5, angiotensin-converting enzyme

[ACE] inhibitors) along with one reference compound

(aspirin). In this study, we report the use of machine

learning to establish a drug classification model based on
hvCTS contractile behavior (using half of the selected com-

pounds) and subsequently demonstrate predictive capabil-

ities by having the model classify unknown compounds,

which were withheld from the machine during training.
RESULTS

Formation of the Drug Classification Model

To form the drug classification model, the screens of 12

compounds (Table 1) acquired on the hvCTS platform

were used. Each of the compounds, with the exception of

aspirin, belonged to one of five classes with each class

comprising a minimum of two compounds. Aspirin func-

tioned as a reference for a cardiac-neutral compound. To

quantify the cardioactive effects of these compounds, a

total of 17 parameters were derived from each contractile

event recorded in the hvCTS twitch force versus time trac-

ings (Figure S1). Once the parameters characterizing each

contraction were calculated, establishing the library with

machine learning consisted of two primary steps. The first

step was determining the degree of cardioactivity for each

compound at a given dosage by calculating a singular

quantitative index generated by a binary SVM approach

(Figure 1A). The second step involved multiclass SVM to

establish the boundaries that represent each drug class

(Figure 1B).

The binary SVM is capable of summarizing all parameters

and providing a simplemetric that expresses a compound’s

degree of cardioactivity at a given dosage (Lee et al., 2015).

Specifically, the machine is tasked with creating a decision

boundary that separates two groups (data from untreated

hvCTSs and those fromhvCTSs exposed to a concentration

of a compound) as seen in Figure 1A. The decision bound-

ary is evaluated for generalizability by classifying withheld

data, referred to as a test set. As a result, an SVM accuracy

metric is calculated to reflect the machine’s ability to iden-

tify a cardioactive effect (e.g., 75% accuracymeans that out

of 100 data points, the machine could correctly classify 75

of them). To account for variations within the dataset, mul-

tiple runs are performed to calculate the mean SVM accu-

racy. A value of approximately 50% mean SVM accuracy

suggests non-cardioactivity as the machine cannot distin-

guish between treated hvCTS data from control data, and

the classification becomes random. Prominent cardioactive

effects allow the space between the data from treated and

control conditions to become more distinguishable, lead-

ing to a higher SVM accuracy with 100% being the

maximum.

The second step was the utilization of multiclass SVM to

create and evaluate amodel. The 11 compounds (excluding

aspirin) were divided into two groups (Figure 1B). The first

group was referred to as a ‘‘drug library’’ and used to train
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Table 1. Library Compounds

Compound Name Class Description Test Range (M)
Number of
hvCTS (n)

Nifedipine Ca2+ channel blocker an L-type Ca2+ channel blocker known to

shorten action potential duration (Harris

et al., 2013)

10�8 to 3.0 3 10�5 10

Mibefradil Ca2+ channel blocker a tetralol derivative that blocks both L- and

T-type Ca2+ channels with higher affinity for

T-type (Martin et al., 2000)

10�9 to 3.0 3 10�6 6

Isoproterenol adrenergic agonist a mixed b-adrenergic agonists; compound

is non-selective in terms of breceptors

(Steinberg, 1999)

10�8 to 10�4 10

Norepinephrine adrenergic agonist mixed adrenergic agonist that stimulates

both a and breceptors (Yang et al., 2014)

10�9 to 10�5 8

Digoxin cardiac glycoside a cardiac glycoside that inhibits Na+/K+-ATPase,

resulting in higher intracellular Na+; higher

Na+ concentration suppresses the Na+/Ca2+

exchanger causing the accumulation of

intracellular Ca2+ (Katz et al., 2010)

10�8 to 10�4 9

Ouabain cardiac glycoside a cardiac glycoside that affects Na+/K+-ATPase,

which consists of both a and b subunits; has a

lower affinity for a subunits than digoxin (Katz

et al., 2010).

10�8 to 10�4 10

Flecainide hERG K+ channel blocker a mixed hERG K+ blocker that also inhibits

Na+ channels, causing effects on action

potential repolarization and conduction

(Harris et al., 2013)

10�8 to 10�4 8

E-4031 hERG K+ channel blocker a pure hERG K+ channel blocker known for its

pro-arrhythmic potential (Ziupa et al., 2014)

10�8 to 10�4 8

Cisapride hERG K+ channel blocker a serotonin (5-HT4) receptor agonist that also

inhibits the hERG K+ channel (Wong et al., 2010)

10�8 to 10�4 9

Lisinopril ACE inhibitor an ACE inhibitor, which reduces vasoconstriction

and lowers blood pressure in patients (Williams,

1988)

10�8 to 10�4 8

Ramipril ACE inhibitor an ACE inhibitor; it does not block ACE until it

is converted by the liver (Williams, 1988)

10�9 to 10�5 7

Aspirin non-cardioactive

reference

non-steroidal anti-inflammatory drug that has

been shown to have no cardioactive effects in

screening platforms (Maddah et al., 2015)

10�8 to 10�4 6

n refers to independent biological replicates. hvCTS, human ventricular cardiac tissue strips; hERG, human ether-a-go-go-related gene; ACE, angiotensin-

converting enzyme.
amodel that defined the boundaries of each drug class. The

second group was completely withheld from the computer

throughout the entire training and tuningof themodel and

was referred to as the ‘‘unknown’’ compounds. To

normalize for the varying degrees of cardioactivity among

compounds, the concentration of a compound that

achieved a metric closest to 85% mean SVM accuracy (see

Supplemental Experimental Procedures) was used in the

formation and evaluation of the model. To ensure that the
1562 Stem Cell Reports j Vol. 9 j 1560–1572 j November 14, 2017
library was generalizable or had the capability to classify it-

self, a subset of thefirst group’s data, a test set,was randomly

withheld from the computer prior to training. The library

was evaluated on its performance to accurately identify

this test set. Afterward, the library was asked to predict the

unknown compounds, and its performance was evaluated

for predictive capabilities. To account for the variation

and random selection of training and test sets, the creation

and evaluation of the models were performed 50 times.



Figure 1. Determining Cardioactivity and
Predicting Mechanistic Action
(A) To determine if a concentration of a
compound was cardioactive, parameters
describing the force waveforms were
compared with those of vehicle study with
the binary SVM approach. If the compound
does not modulate the contractile behavior
of hvCTSs, the generated data points would
be similar to those of vehicle, yielding poor
separation and an SVM accuracy of approx-
imately 50%. However, if a compound’s
cardioactive effects become more distin-
guishable, separation between the two
groups becomes more feasible and results in
a higher SVM accuracy (100% as maximum
distinguishability). This binary SVM
approach generates a singular quantitative
index that describes the degree of car-
dioactivity of a given concentration for a
drug compound.
(B) To create a model for the prediction of
mechanistic action, data from screened
compounds were divided into two groups:
library and unknown. Using data from the
library group, the machine defined bound-
aries that represent various drug families.
The model was evaluated for its predictive
capabilities by having the machine classify
the unknown compounds.
Control Experiments

Although the hvCTSs (Figure 2A) were examined under

temperature-controlled conditions, there was an observ-

able drift in contractile behavior of the vehicle-treated

hvCTSs. For example, the relative measured maximum

developed force increased for all pacing frequencies by a

cumulative average of 16.96% ± 0.83% upon the ninth

serial addition (Figure 2B). To account and normalize

for baseline drift, each drug condition was compared

with its respective vehicle condition via binary SVM

(e.g., measurements of the seventh serial drug addition

were compared with those of vehicle-treated hvCTSs at

the seventh serial addition). To establish a benchmark

of non-cardioactivity, a subset of the vehicle-treated

hvCTSs was randomly selected to model a non-cardioac-

tive compound. Binary SVM was then performed
between the subset and a corresponding control group

of equal size (n).

To ensure that the number of hvCTSs in the subset had

no effect, the calculations were performed with the sample

size, n, equal to 6–10, whichmatched the range of numbers

of strips used in each drug study of the 12 tested com-

pounds. As expected, the SVM accuracy, regardless of the

size of n, was approximately 50% for all serial additions

(Figure 2C). These results indicated that there were no

consistent and distinguishable trends within each serial

addition, and therefore a reference of non-cardioactivity

was created.

To validate this reference of non-cardioactivity, drug

screens of aspirin from the database were used as negative

controls. Aspirin is known to have no cardioactive effects

on hPSC-CMs (Lu et al., 2015; Maddah et al., 2015; Scott
Stem Cell Reports j Vol. 9 j 1560–1572 j November 14, 2017 1563



Figure 2. Control Experiments and Screen of Non-cardioactive Compounds
(A) hvCTSs were formed by compaction of hPSC-CMS, fibroblasts, and extracellular matrix solution around two PDMS posts. Force was
derived from the deflection of the posts. Scale bar, 10 mm.
(B) hvCTSs of the vehicle study exhibited a drift in contractile behavior after serial additions of water (n = 28).
(C) To normalize for shift, data from each drug condition were compared with its respective vehicle condition (matching serial addition
number). With this, a benchmark of non-cardioactivity was created with subsets of vehicle-treated strips being modeled as strips exposed
to non-cardioactive compounds and compared with other vehicle-treated strips with binary SVM. The number of tissue strips in the subset
(n = 6–10) had no effect as SVM accuracies were approximately 50% for all conditions.
(D) To assess the non-cardioactivity benchmark, the data of aspirin-treated hvCTSs indicated no statistical difference from the vehicle
study over the tested range (n = 6). n refers to independent biological replicates.
All results are presented as means ± SD.
et al., 2014). The SVM accuracies of the aspirin drug screens

(n = 6) had an average of 52.85% ± 1.77% among all serial

additions (10 nM to 100 mM). None of the conditions were

statistically different from vehicle counterparts, indicating

non-cardioactivity by aspirin (Figure 2D).

Generalizability of the Drug Classification Model

In setting up the drug classification model, the 11 non-

reference compounds were compared with vehicle-treated

tissue strips with the aforementioned binary SVM

approach. At one or more of the tested concentrations,

all but two compounds, lisinopril and ramipril, had

SVM accuracies that were significantly greater than those

of the respective vehicle studies (Figure 3). The ACE inhib-

itors, lisinopril and ramipril, did not have detectable car-

dioactive effects on hvCTS contractility, consistent with

the results of other platforms (Harmer et al., 2012; Scott

et al., 2014). Therefore, the ACE inhibitor class was

removed from the library resulting in a four-class system.

Mibefradil, norepinephrine, ouabain, and cisapride were
1564 Stem Cell Reports j Vol. 9 j 1560–1572 j November 14, 2017
chosen to represent the unknown compound group on

which the model would make de novo predictions. Mibe-

fradil and cisapride were of particular interest because

both compounds had received market approval and

were subsequently withdrawn (Li et al., 2016). Nifedipine,

isoproterenol, and digoxin were chosen to represent the

Ca2+ channel blocker, adrenergic agonist, and cardiac

glycoside classes, respectively. As both flecainide and

E-4031 have known hERG K+ channel-blocking capabil-

ities, the impact of having either compound represent

the hERG K+ blocker family was evaluated by generating

the multiclass model under three different conditions:

(1) flecainide only, (2) E-4031 only, and (3) both flecainide

and E-4031.

A subset of the data was always withheld from the ma-

chine prior to training in each of the runs. This withheld

set quantified the generalizability in the models and

ensured that overfitting had not occurred. Upon asking

the machine to classify these test sets, the multiclass

models demonstrated good generalizability by being able



Figure 3. Applying Cardioactive Index to Drug Responses
Implementation of binary SVM to determine cardioactive effects of 11 compounds, including: (A) nifedipine (p % 0.0063; n = 10),
(B) mibefradil (p % 0.0063; n = 6), (C) isoproterenol (p % 0.0055; n = 10), (D) norepinephrine (p % 0.0055; n = 8), (E) digoxin (p %
0.0055; n = 9), (F) ouabain (p% 0.0055; n = 10), (G) flecainide (p% 0.0055; n = 8), (H) E-4031 (p% 0.0071; n = 8), (I) cisapride (p%
0.0055; n = 9), (J) lisinopril (p % 0.0055; n = 8), and (K) ramipril (p % 0.0055; n = 7). Red circles indicate statistical significance in
comparison with vehicle-treated hvCTSs. p values are adjusted with a Bonferroni correction. n refers to independent biological replicates.
All results are presented as means ± SD.
to correctly classify itself at an average accuracy rate of

76.09% ± 6.43%, 78.29% ± 5.34%, and 73.61% ± 5.19%

for the flecainide only, E-4031 only, and flecainide and

E-4031 conditions, respectively (Figure 4).

In all three conditions, the multiclass models behaved

similarly in that both the nifedipine and isoproterenol clas-

sifiers performed the best by always achieving the highest

F1 score values, a metric that ranges from 0 to 1 with 1 rep-
resenting perfection in the model’s classification. This

performance indicates that the data points of the nifedi-

pine and isoproterenol compounds occupied very distinct

boundaries compared with the other two classes, allowing

for the binary learners to more accurately separate these

compounds from others. For perspective on the quality of

model performance, if there were no discernable differ-

ences among the four compounds for the machine to use,
Stem Cell Reports j Vol. 9 j 1560–1572 j November 14, 2017 1565



Figure 4. Generalizability of Drug Classifi-
cation Models with Varying Representative
Compound(s) for the hERG K+ Channel
Blocker Family
(A) Condition 1: flecainide. Generalizability
was evaluated by having the model classify a
withheld test set composed of compounds
used to define the library. (Left) The confu-
sion matrix displays the average number of
classified contractile events (individual
twitches in acquired waveform) over 50 runs
and is imposed with a color scale that in-
dicates precision rate. (Right) Summary of
the metrics evaluating performance. F1 scores
are above 0.6 for all classifiers, indicating
good predictability.
(B) Condition 2: E-4031. (Left) Confusion
matrix indicates that all compounds were
being correctly classified as themselves as the
diagonal of the matrix had the highest pre-
cision rate. (Right) Metrics indicate a similar
performance between conditions 1 and 2.
(C) Condition 3: flecainide and E-4031. (Left)
Confusion matrix indicates no major effect on
generalizability by having two compounds
define a class. (Right) Similar to conditions
1 and 2, F1 scores are all above 0.6, indicating
good generalizability of the model.
All results are presented as means ± SD.
the expected values for precision (i.e., positive predictive

value), recall (i.e., sensitivity), and accuracy would be a

rate of 25% with an F1 score of 0.25 (see Experimental Pro-

cedures). As all three multiclass models demonstrated good

generalizability with average accuracy rates exceeding

70%, these results suggest the setup of the model was

robust to the choice of compound representing the hERG

K+ channel blocker family.

Prediction on Unknown Compounds

With each condition’s model established and evaluated,

the machine was then asked to predict the data from the

unknown compounds group. In the first scenario with

flecainide as the only hERG K+ channel blocker representa-

tive, the multiclass model was able to correctly assign the

four unknown compounds to their corresponding counter-

parts with an average accuracy of 71.69% ± 1.96% (Fig-

ure 5A). The four binary classifiers of this model demon-
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strated overall predictability by all having an average F1
score above 0.6.

When the second drug classmodel (only E-4031 defining

the hERG K+ channel blocker class) was used to predict the

unknown compounds, the average accuracy diminished to

65.37% ± 2.33% (Figure 5B). This decrease was mainly the

result of the contractile events from hvCTSs exposed to cis-

apride being miscategorized. Of the 779 contractile events

from hvCTSs exposed to cisapride, on average, 46.76% ±

7.00% of the events were incorrectly labeled as hvCTSs

affected by a cardiac glycoside. These misclassifications

yielded a poor precision rate, 20.51% ± 11.20%, and subse-

quently, a low F1 score, 0.27 ± 0.11, for the hERG K+ chan-

nel blocker classifier. As for the classifiers of the other three

families, they performed comparably with those of the first

condition, and all had an average F1 score over 0.6. These

results indicate that using only data of hvCTSs exposed to

E-4031 is not sufficient for defining the hERG K+ channel



Figure 5. Predictability of Drug Classifica-
tion Libraries with Varying Representative
Compound(s) for the hERG K+ Channel
Blocker Family
(A) Condition 1: flecainide. Libraries of all
three conditions were evaluated for capabil-
ities to predict drug families of compounds
previously unseen by the machine. (Left)
Confusion matrix displays the average num-
ber of predicted contractile events (individ-
ual twitches in acquired waveform) from the
unknown group over 50 runs. Unknown
compounds were classified to the correct
drug family as the precision rate was highest
along the diagonal of the matrix. (Right) The
model demonstrated good predictability as
the macro-average of the F1 score was 0.71.
(B) Condition 2: E-4031. (Left) Cisapride was
predominantly mislabeled as a member of the
cardiac glycoside family, represented by
digoxin. The other three compounds were
classified correctly to their respective drug
families. (Right) The classifier of the hERG K+

channel blocker class had an F1 score of 0.27.
As the other three classifiers maintained an
F1 score above 0.6, E-4031 did not define
boundaries similar to that of cisapride.
(C) Condition 3: flecainide and E-4031. (Left)
Precision rates are highest along the diago-
nal of the matrix. (Right) The model yielded
good predictability and was not affected by
the inclusion of E-4031 data to those of fle-
cainide.
All results are presented as means ± SD.
blocker family within amulticlass model and enabling that

model to correctly predict cisapride’s mechanistic action

on cardiac tissue contractility.

In the last conditionwhere themachinewas trainedwith

both flecainide and E-4031 representing the hERGK+ chan-

nel blocker family, the average accuracy was 71.43% ±

2.09% (Figure 5C). All four classifiers had an average F1
score higher than 0.6. Unlike the second condition, the

hERG K+ channel blocker classifier had a precision rate

higher than 25% at 66.87% ± 8.05%. Similar to that of

the first condition, the macro-average of the F1 scores for

this multiclass model was 0.71, demonstrating good pre-

dictability. These results suggest that the data points from

the hvCTSs exposed to flecainide designated boundaries

within the model that were similar to those of cisapride-

treated hvCTSs. Finally, the inclusion of E-4031 data with

the flecainide data did not negatively affect the multiclass
model’s ability to correctly predict cisapride’s mechanistic

action as neither the precision rate nor the recall rate fell

below 41% as they did in the second condition.

Class Relationship Metrics

Once the drug classes were predicted, the concentrations of

library compounds that induced the most similar cardioac-

tive effects as the unknown compounds were computed

(Figure S2; protocol in Supplemental Experimental Proced-

ures). These relationship metrics are summarized in Table

S1. For example, an estimated 5.35 3 10�5 M digoxin

would be needed to evoke a level of cardioactivity that

matches ouabain tested at 1.03 10�5M. Such relationships

could provide insights about drug potency. In the afore-

mentioned example, ouabain would be considered the

more potent compound as it requires approximately

5-fold lower concentration to achieve the same level of
Stem Cell Reports j Vol. 9 j 1560–1572 j November 14, 2017 1567



cardioactivity. Ouabain’s higher potency has been

observed in other in vitro studies (Guo et al., 2011; Katz

et al., 2010).

Decoupling Force-Frequency Relationship

While the concept of examining multiple parameters from

waveforms has been pursued lately, some studies have sug-

gested that only a few select parameters (e.g., peak count)

are necessary in assessing a compound’s cardioactivity as

other parameters provide no further mechanistic insight

(Lu et al., 2015; Pointon et al., 2016; Sirenko et al., 2013).

This is primarily true when the hPSC-CMs are spontane-

ously beating, meaning the force generated is linked to

beating frequency. This study’s dataset affirmed the impor-

tance of decoupling this force-frequency relationship

through the pacing of the tissues. By setting a fixed pacing

frequency, any changes to the force waveform can be truly

accredited to a compound’s inotropic and lusitropic effects.

For example, if the nifedipine-treated strips were allowed to

spontaneously beat, a positive chronotropic effect would

have most likely been observed (Guo et al., 2011; Harris

et al., 2013; Pillekamp et al., 2012). As the hvCTSs dis-

played anegative force-frequency relationship (Figure S3A),

a decrease in maximum developed force could not be

directly linked to either chronotropic or inotropic effects.

When 0.3 mM nifedipine-treated hvCTSs were paced at

1 Hz, the captured frequency of the tissue was 0.99 ±

0.01 Hz and the maximum developed force decreased by

45.69% ± 10.42% (Figure S3B). This paced data confidently

confirmed nifedipine had a negative inotropic effect.

Examination of Cardioactive Effects

The data were further examined on an individual param-

eter basis to better comprehend and confirm the perfor-

mance of the multiclass models and their ability to differ-

entiate between different mechanistic actions (Figure S4).

The adrenergic agonists and cardiac glycosides were

expected to induce a positive inotropic response in the

hvCTSs, while the Ca2+ and hERG K+ channel blockers

would induce a negative inotropic response. The negative

inotropic agents prompted distinct decreases in the

maximum force generated among hvCTSs; however, the

hvCTS sensitivity to positive inotropic agents was not

very apparent. For example, hvCTSs exposed to 10 mM

isoproterenol and paced at 0.5 Hz had a similar increase

in maximum developed force to that of respective

vehicle-treated strips (10.42% ± 16.23% and 15.76% ±

21.05%, respectively), suggesting the compoundhad negli-

gible inotropic effects (Figures S5A and S5B) (Turnbull et al.,

2014). Rather, isoproterenol’s cardioactive effects mani-

fested in other parameters. For example, the duration of

the relaxation phase or time from maximum developed

force to 95% cutoff decreased by 22.19% ± 19.35% for
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the strips exposed to 10 mM isoproterenol, while those of

the vehicle-treated strips experienced essentially no

change. Thus, through the various parameters, machine

learning was able to leverage the positive lusitropic effects

in both binary and multiclass SVM to distinguish the

adrenergic agonist class.

Cardiac glycoside-treated hvCTSs also demonstrated the

system’s sensitivity to positive inotropes. Typically, these

compounds increase the Ca2+ transient amplitude and

amplitude of contractility transients; however, in this

dataset, the hvCTSs decreased in maximum developed

force as the concentration increased (Figure S5C) (Demp-

sey et al., 2016; Ravenscroft et al., 2016). Such results

could be attributed to cardiac glycoside toxicity or imma-

ture phenotype. Studies have shown that above 3 mM

digoxin or ouabain, monolayers of hPSC-CMs stopped

beating (Dempsey et al., 2016; Guo et al., 2013; Sirenko

et al., 2013). In this dataset, the highest concentration

applied for both cardiac glycosides was 100 mM. At

100 mM ouabain, 4 of the 10 treated strips stopped beating

at all pacing frequencies.

Like those of isoproterenol, cardioactive effects of the car-

diac glycosides at lower concentrations appeared in other

parameters. When either the concentration of cisapride

or digoxin increased, the maximum developed force

decreased while the duration of the relaxation phase

increased (Figures S5C and S5D). If limited to observation

of only these two parameters, one might conclude that cis-

apride and digoxin are related. But upon visual inspection

of the force traces, it is evident that the compounds have

distinct effects on hvCTSs andmechanistic actions (Figures

S3E and S3F). Changes in these parameters were clearly

unique to the cardiac glycoside family as the ouabain-

treated strips were correctly predicted from the other three

classes.
DISCUSSION

In recognition of the need for better detection of drug-

induced cardiotoxicity, numerous methodologies have

emerged to capture and quantify the attributes of hPSC-

CMs when exposed to cardioactive compounds, ranging

from calcium transients to contractile force. The nature of

the output data becomes multidimensional when multiple

experimental conditions are present or a multiplex system

is used (Dempsey et al., 2016). In this study, we present the

use of supervised machine learning to exploit multidimen-

sional data and provide relevant information in an auto-

matedmanner. Besides indicating if a compoundwas cardi-

oactive, the machine constructed a multiclass drug model

that accurately classified cardioactive compounds that it

had never previously encountered. This comprehensive



approach can be readily applied to other screening plat-

forms to more fully utilize generated datasets and enhance

evidence-based decision-making for drug development.

With multiclass SVM, drug classification libraries were

established under various conditions to examine the effects

on predictive performance. The conditions that yielded the

best performance in predicting mechanistic action were

the two libraries that included flecainide as a representative

of the hERG K+ channel blocker family. In both libraries,

the macro-averages of F1 scores were 0.71 (the macro-

average of F1 scores would be 0.25 if random classifiers

were used).While this clear difference in F1 scores indicates

that the models have the capability to predict a com-

pound’s mechanistic action, there are opportunities to

further improve model performance and obtain F1 scores

closer to 1, indicating reduction in errors.

One method to improve model performance is to define

each drug family with multiple compounds. By having

only one compound define a class, there is a risk of only

defining a partial region of space that the drug class truly

encompasses. The data of E-4031 exemplified this when

it was tasked with defining the hERG K+ channel blocker

family. E-4031’s defined boundaries did not match or

include those of cisapride, another hERG K+ channel

blocker, causing classification of cisapride to be closer to

that of the cardiac glycoside family. The inclusion of flecai-

nide, a mixed hERG K+ channel blocker, with E-4031 in the

definition of the class allowed for the correct prediction of

cisapride without adversely affecting the predictive capa-

bility of the remaining classes. Although the addition of

E-4031 to the hERG K+ channel blocker definition does

not necessarily improve the predictive capability with

respect to cisapride classification, establishing a more

expansive region of space to define the hERG K+ channel

blocker class may improve prediction of other unknown

hERG K+ channel blockers that have effects more similar

to E-4031 than flecainide. These results also suggest the

potential of having subgroups within classes of the model,

which can be achieved through a series of multiclass classi-

fications. For instance, a compound can be predicted as a

Ca2+ channel blocker in the first classification; within this

family, the compound can be subsequently categorized

into a subgroup (e.g., defined by frequency-dependent car-

dioactivity). As machine learning does not define drug

classes with a priori knowledge (e.g., guidelines on how pa-

rameters are expected to change), the number of drug fam-

ilies and subclasses that can be defined within a model are

not limited. The unbiased and automated nature of

machine learning is also advantageous when a new drug

family needs to be added, because no rubric needs to be

manually amended and re-evaluated.

This study demonstrates the potential of machine

learning for providing insights in the detection of cardioac-
tivity using hPSC-CMs. The basis of this study’s libraries

was an error-correcting output codes approach with binary

learners being SVM. Different binary learners, such as deci-

sion trees, should be explored alongside completely

different approaches (e.g., neural networks). The ideal ma-

chine learning technique should balance predictive capa-

bilities and use of computational resources. In this study,

all models were generated with a standard desktop. Each

calculated instance of a model took approximately 4 hr.

However, once all models were formed, the predictions

made on unknown compounds were on the timescale of

seconds.

Improvements of the multiclass drug libraries can also be

achieved from enhancements of the hvCTSs and acquisi-

tion system. In particular, the sensitivity of this system to

positive inotropic compounds can be increased by address-

ing two issues: the maturity of stem cell-derived cardio-

myocytes and the drifting baseline of vehicle-treated strips.

Studies have shown that hPSC-CMs elicit a minimal to

non-existent response to certain positive inotropic com-

pounds, such as b-adrenergic agonists, because of imma-

ture intracellular structures (Lundy et al., 2013; Pillekamp

et al., 2012). When these diminished responses are paired

with a baseline that has increasing contractility over

time, positive inotropic effects of a compound can get

masked and become harder to detect as seen in the afore-

mentioned isoproterenol drug screen. While hvCTSs were

arranged in an aligned manner and co-cultured with fibro-

blasts, they can be further matured through additional

techniques, such as conditioning by electrical stimulation,

a cellular tri-culture including endothelial cells, or forced

expression of selected proteins (Eng et al., 2016; Liu et al.,

2009; Ravenscroft et al., 2016). As for stabilization of the

baseline, different components of the setup, ranging from

pH to CO2 levels in an ambient environment, should be

re-evaluated to minimize overall drift during serial addi-

tions. Increasing the system’s sensitivity to positive

inotropic agents would yield even more distinct bound-

aries and subsequently better predictability in the drug

classification libraries.

While we demonstrated the importance of pacing

hvCTSs, a limitation of this study is the absence of

responses of spontaneously beating hvCTSs to cardioac-

tive compounds. These data would provide understanding

of a compound’s chronotropic effects. Even though the

model has already demonstrated good predictability on

inotropic- and lusitropic-related data alone, the model

would benefit from chronotropic-related data as it would

provide more dimensions in which compounds can

further distinguish themselves and yield better

predictability.

In summary, we present the implementation of super-

vised machine learning on multidimensional data of
Stem Cell Reports j Vol. 9 j 1560–1572 j November 14, 2017 1569



hvCTSs exposed to drugs while paced at various fre-

quencies. In an automated fashion, this machine learning

approach is able to not only determine if a compound is

cardioactive but it can predict themechanistic action along

with other metrics. Furthermore, this approach can be

adapted to state-of-the-art tissue-engineered cardiac

models, including different forms of signals (e.g., calcium

transients, micro-electrode array, and optical recordings),

and has the potential to integrate diverse output data of

multiplex systems or even those across platforms. Along

with analyses of compounds with acute cardioactive

effects, machine learning can be readily applied with

non-invasive techniques to longitudinal studies to inspect

a compound’s chronic effects. Moreover, in the future,

machine learning may be utilized on a grander scale by

incorporating past clinical data to determine the optimal

combination of in vitro and in silico data for the prediction

of drug-induced cardiotoxicity in patients.
EXPERIMENTAL PROCEDURES

hvCTS Formation
Human ventricular cardiomyocytes were differentiated from an

hES2 stem cell line with a Wnt inhibitor-based protocol as

described previously (Weng et al., 2014). Human ventricular car-

diac tissue strips (hvCTS) were then formed by mixing cardiomyo-

cytes (100,000 cells per strip) at 14–16 days post differentiation

with a solution of bovine collagen I (2 mg/mL), Matrigel

(0.9 mg/mL), and human foreskin fibroblasts (100,000 cells per

strip) as previously described (Turnbull et al., 2014). The cell-ma-

trix solution (100 mL per tissue strip) was injected into a custom

polydimethylsiloxane (PDMS) force-sensing bioreactor device

and placed in an incubator (37�C and 5% CO2). Formed hvCTSs

were fed DMEM with 10% newborn calf serum, 1% penicillin-

streptomycin, and 0.1% amphotericin B. The PDMS device con-

tains two flexible vertical end posts to which the tissue anchors,

causing the posts to deflect as the tissue beats. Contractile force

measurements were captured with a high-speed (100 fps) CCD

camera while custom LabVIEW software tracked the centroid

movement of the flexible post tips. Force was converted from the

deflection of the PDMS posts by an elastic beam-bending equation

(Serrao et al., 2012). A customMATLAB script was used to calculate

17 parameters that described the overall shape of the force traces

for each contractile event (Figure S1). Each contraction was re-

garded as an individual data point for the machine learning

analysis.
Drug Treatment
Seven to eight days post tissue formation, hvCTS were exposed

to drugs for pharmacodynamic analysis. Flecainide, lisinopril,

norepinephrine, and ramipril were provided by Pfizer, while all

other compounds were purchased form Sigma-Aldrich. Com-

pounds were initially resuspended in DMSO and subsequently

diluted in water for final concentrations of less than 0.1%

(vol/vol) DMSO. The PDMS device containing the hvCTS was
1570 Stem Cell Reports j Vol. 9 j 1560–1572 j November 14, 2017
placed onto a heated stage (37�C) under a dissecting microscope.

Before either vehicle or drug addition, the medium was replaced

with DMEM containing high glucose (4.5 g/L) and HEPES

without phenol red. Drug doses were added to a tissue in

a consecutively increasing manner up to 10 concentrations

with 3 min between measurements. Vehicle doses containing

only water were applied similarly. A pulse stimulator (AMPI

Master-9) connected to platinum wires electrically paced the

hvCTSs with a monophasic electric field of 5 V/cm and a

10 ms pulse duration.
Machine Learning
To establish the drug class model, we identified individual com-

pounds that respectively represented our defined classes. The

compounds and the corresponding tested concentrations are

listed in Table 1. To determine which concentration of a chosen

compound to add to the model, we first gauged each compound’s

level of cardioactivity by utilizing binary SVM (Figure S6) (Lee

et al., 2015). To normalize for the increasing variation seen in

hvCTS contractile behavior during the later serial additions of

the vehicle studies, the SVM was performed between each con-

centration of a compound and the vehicle data from the corre-

sponding serial addition number in which the concentration

was achieved (Figure 1A). Specific details and rationale regarding

the optimization of SVM classifiers and other implemented ma-

chine learning approaches are in the Supplemental Experimental

Procedures.

For multiclass classification, we then selected the compound

concentration that met two criteria: (1) a binary SVM accuracy

closest to 85% and (2) at least six of all screened tissue strips

were still responsive to electrical stimulation (see Supplemental

Experimental Procedures). As seen in Figure 1B, we then divided

the compounds into two groups: one used to train the multiclass

model and one to represent unknown compounds for predic-

tions. During this separation, it was ensured that each class was

at least represented by one compound within the two groups.

For training of the model, we used an error-correcting output co-

des approach with the binary learners being SVM (Dietterich,

1995). To confirm generalizability of the generated models, we

randomly pre-allocated a third of the data as a test set prior to

the training. Finally, we evaluated the multiclass model with

this test set and then asked the machine to predict the classes

of the contractile beats derived from the unknown compounds

group.
Statistics
SVM accuracies of strips exposed to a drug condition were

compared with those of the non-cardioactive benchmark by using

Student’s t test (desired a value of 0.05) with a Bonferroni correc-

tion (m, number of tests or hypotheses, was dependent on the

number of drug additions in a screen). If the adjusted p value

was statistically significant, the drug condition was considered to

have incited irregular behavior in hvCTSs and was labeled as cardi-

oactive. The Bonferroni correction was also applied when exam-

ining changes in specific parameters.

To analyze the performance of the multiclass models, confu-

sion matrices were generated for each of the 50 runs. In a



confusion matrix, M, the precision and recall rates were defined

as follows:

Precisioni =
MiiPn
j=1Mij

; Recallj =
MiiPn
i=1Mij

:

The precision and recall rates were calculated for each of the classi-

fiers. To further summarize thesemetrics, the F1 score, theharmonic

mean of precision and recall, was computed and defined as follows:

F1 scorei =
23 Precisioni 3Recalli

Precisioni +Recalli
:

A model that is perfect would achieve an F1 score of 1. If a model

were composed of s number of classes and had random classifiers,

the expected F1score would be 1=s. To assess the model as a whole,

accuracy, defined as

Accuracymodel =

Pn
i=1Mii

Pn
i=1

Pn
j=1Mij

:

was calculated. In summarizing the 50 runs of each model, all

calculated metrics were averaged and a confusion matrix contain-

ing the average number of contractile events over all runs was

provided. Contractile events were defined as the individual

twitches in the force readouts acquired from the tissue strips. All re-

ported sample sizes (n) refer to independent tissue strips (biological

replicates). All descriptive statistics are in the format of mean ± SD.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, six figures, one table, and one data file and can be

found with this article online at https://doi.org/10.1016/j.stemcr.
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