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ABSTRACT Quantitative genetic studies that model complex, multivariate phenotypes are important for both evolutionary prediction
and artificial selection. For example, changes in gene expression can provide insight into developmental and physiological mechanisms
that link genotype and phenotype. However, classical analytical techniques are poorly suited to quantitative genetic studies of gene
expression where the number of traits assayed per individual can reach many thousand. Here, we derive a Bayesian genetic sparse
factor model for estimating the genetic covariance matrix (G-matrix) of high-dimensional traits, such as gene expression, in a mixed-
effects model. The key idea of our model is that we need consider only G-matrices that are biologically plausible. An organism’s entire
phenotype is the result of processes that are modular and have limited complexity. This implies that the G-matrix will be highly structured.
In particular, we assume that a limited number of intermediate traits (or factors, e.g., variations in development or physiology) control the
variation in the high-dimensional phenotype, and that each of these intermediate traits is sparse – affecting only a few observed traits. The
advantages of this approach are twofold. First, sparse factors are interpretable and provide biological insight into mechanisms underlying
the genetic architecture. Second, enforcing sparsity helps prevent sampling errors from swamping out the true signal in high-dimensional
data. We demonstrate the advantages of our model on simulated data and in an analysis of a published Drosophila melanogaster gene
expression data set.

QUANTITATIVE studies of evolution or artificial selection
often focus on a single or a handful of traits, such as

size, survival, or crop yield. Recently, there has been an effort
to collect more comprehensive phenotypic information on
traits such as morphology, behavior, physiology, or gene ex-
pression (Houle 2010). For example, the expression of thou-
sands of genes can be measured simultaneously (Gibson and
Weir 2005; Ayroles et al. 2009; McGraw et al. 2011), together
capturing complex patterns of gene regulation that reflect
molecular networks, cellular stresses, and disease states (de
la Cruz et al. 2010; Xiong et al. 2012). Studying the quanti-
tative genetics of multiple correlated traits requires a joint
modeling approach (Walsh and Blows 2009). However, ap-
plying the tools of quantitative genetics to high-dimensional,

highly correlated data sets presents considerable analytical
and computational challenges (Meyer and Kirkpatrick 2010).
In this article we formulate a modeling framework to address
these challenges for a common quantitative genetic analysis:
estimating the matrix of additive genetic variances and co-
variances, or G-matrix (Lynch and Walsh 1998). The G-matrix
encodes information about responses to selection (Lande
1979), evolutionary constraints (Kirkpatrick 2009), and mod-
ularity (Cheverud 1996) and is important for predicting evo-
lutionary change (Schluter 1996).

The challenge in scaling classic methods to hundreds or
thousands of traits is that the number of modeling parameters
grows rapidly. An unconstrained G-matrix for p traits requires
p(p + 1)/2 parameters, and modeling environmental variation
and measurement error (Kirkpatrick and Meyer 2004) requires
at least as many additional parameters. Such large numbers of
parameters can lead to instability in parameter estimates—
analyses that are highly sensitive to outliers and have high
variance. Previous methods for overcoming this instability
include (1) “bending” or smoothing unconstrained estimates
of G-matrices, such as from pairwise estimates of genetic
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covariation (Ayroles et al. 2009; Stone and Ayroles 2009) or
moments estimators (Hayes and Hill 1981), and (2) estimat-
ing a constrained G-matrix that is low rank and is thus spec-
ified with fewer parameters (e.g., Kirkpatrick and Meyer
2004). Constraining the G-matrix has computational and
analytical advantages: fewer parameters results in more
robust estimates and lower computational requirements
(Kirkpatrick and Meyer 2004). Constrained estimators of
G-matrices include methods based on moments estimators
(Hine and Blows 2006; McGraw et al. 2011) and mixed-
effects models [e.g., the “animal model” and other related
models (Henderson 1984; Kruuk 2004; Kirkpatrick and
Meyer 2004; de los Campos and Gianola 2007)]. Mixed-
effects models are particularly powerful for studies in large
breeding programs and wild populations. These methods per-
form well on moderate-dimensional data. However, they are
computationally costly and not sufficiently robust to analyze
high-dimensional traits.

Our objective in this article is to develop a model for
estimating G-matrices that is scalable to large numbers of
traits and is applicable to a variety of experimental designs,
including both experimental crosses and pedigreed popula-
tions. We build on the Bayesian mixed-effects model of de
los Campos and Gianola (2007) and model the G-matrix
with a factor model. But, we add additional constraints by
using a highly informative, biologically motivated, prior dis-
tribution on the G-matrix. The key idea that allows us to
scale to large numbers of traits is that we believe the vast
majority of the space of covariance matrices does not con-
tain matrices that are biologically plausible as a G-matrix. In
particular, we expect the G-matrix to be sparse, by which we
mean that we favor G-matrices that are modular and low
rank. Sparsity in statistics refers to models in which many
parameters are expected to be zero (Lucas et al. 2006). By
modular, we mean that small groups of traits will covary
together. By low rank, we mean that there will be few (im-
portant) modules. We call a G-matrix with these properties
sparse because there exists a low-rank factorization (most of
the possible dimensions are zero) of the matrix with many of
its values equal to (or close to) zero. This constrains the
class of covariance matrices that we search over, a necessary
procedure for inference of covariance matrices from high-
dimensional data (Bickel and Levina 2008a,b; Carvalho et al.
2008; El Karoui 2008; Meyer and Kirkpatrick 2010; Hahn
et al. 2013). Under these assumptions, we can also interpret
the modules underlying our factorization without imposing
additional constraints such as orthogonality (Engelhardt and
Stephens 2010), something not possible with earlier mixed-
effect factor models (Meyer 2009).

The biological argument behind our assumption of a sparse
G-matrix is that the traits we measure on an organism arise
from developmental processes of limited complexity, and
developmental processes tend to be modular (Cheverud
1996; Wagner and Altenberg 1996; Davidson and Levine
2008). For gene expression, regulatory networks control
gene expression, and variation in gene expression can often

be linked to variation in pathways (Xiong et al. 2012; de la
Cruz et al. 2010). For a given data set, we make two assump-
tions about the modules (pathways): (1) a limited number of
modules contribute to trait variation and (2) each module
affects a limited number of traits. There is support and evi-
dence for these modeling assumptions in the quantitative
genetics literature as G-matrices tend to be highly structured
(Walsh and Blows 2009) and the majority of genetic variation
is contained in a few dimensions regardless of the number of
traits studied (Ayroles et al. 2009; Mcgraw et al. 2011). Note
that while we focus on developmental mechanisms underly-
ing trait covariation, ecological or physiological processes can
also lead to modularity in observed traits and our prior may
be applied to these situations as well.

Based on these assumptions, we present a Bayesian sparse
factor model for inferring G-matrices for hundreds or thou-
sands of traits which we call Bayesian sparse factor analysis of
genetic covariance matrices or BSFG. We demonstrate the
advantages of the model on simulated data and reanalyze
gene expression data from a published study on Drosophila
melanogaster (Ayroles et al. 2009). Although high-dimensional
sparse models have been widely used in genetic association
studies (Cantor et al. 2010; Engelhardt and Stephens 2010;
Stegle et al. 2010; Parts et al. 2011; Zhou and Stephens 2012)
to our knowledge, sparsity has not yet been applied to esti-
mating a G-matrix.

Methods

In this section, we derive the BSFG model, by extending the
classic multivariate animal model to the high-dimensional
setting, where hundreds or thousands of traits are simulta-
neously examined. A factor model posits that a set of unobserved
(latent) traits called factors underly the variation in the observed
(measured) traits. For example, variation in gene expression
might be the downstream output of variation in the activity
of a gene regulatory network. Here, the activity of this gene
network is a latent trait, and gene expression is a very high-
dimensional set of observed traits. We use the animal model
framework to partition variation in the observed traits and the
latent factor traits into additive genetic variation and residuals.
We encode our two main biological assumptions on the G-matrix
as priors on the factors: sparsity in the number of factors that
are important, and sparsity in the number of observed traits
related to each factor. These priors constrain our estimation to
realistic G-matrices and thus prevent sampling errors from
swamping out the true signal in high-dimensional data.

Model

For a single trait the following linear mixed-effects model is
commonly used to explain phenotypic variation (Henderson
1984),

yi ¼ Xbi þ Zui þ ei; (1)

where yi is the vector of observations of the trait on n indi-
viduals; bi is the vector of coefficients for fixed effects and
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environmental covariates such as sex or age with design
matrix X; ui � Nð0;sGi

2AÞ is the random vector of additive
genetic effects with incidence matrix Z, and ei � Nð0;sRi

2 InÞ
is the residual error caused by nonadditive genetic variation,
random environmental effects, and measurement error. The
residuals are assumed to be independent of the additive
genetic effects. Here, A is the known r · r additive relation-
ship matrix among the individuals; r generally equals n, but
will not if there are unmeasured parents, or if several indi-
viduals are clones and share the same genetic background
(e.g., see the Drosophila gene expression data below).

In going from one trait to p traits we can align the vectors
for each trait in (1) to form the following multivariate model,

Y ¼ XBþ ZUþ E; (2)

where Y= [y1 . . . yp], B= [b1 . . . bp], U= [u1 . . . up] and E=
[e1 . . . ep]. U and E are therefore random variables drawn from
matrix normal distributions (Dawid 1981),

U � MNr;pð0;A;GÞ; E � MNn;pð0; In;RÞ; (3)

where the subscripts r, p and n, p specify the dimensions of
the matrices, 0 is a matrix of zeros, A and In specify the cova-
riances of each trait among individuals, and G and R specify the
additive genetic and residual covariances among traits.

We estimate the covariance matrices G and R. To do so,
we assume that any covariance among the observed traits is
caused by a number of latent factors. Specifically, we model
k latent traits that each linearly relate to one or more of the
observed traits. We specify U and E via the following hier-
archical factor model,

U ¼ FaLT þ Ea; E ¼ FrLT þ Er
Fa � MNr;kð0;A;SaÞ; Fr � MNn;kð0; In;SrÞ
Ea � MNr;pð0;A;CaÞ; Er � MNn;pð0; In;CrÞ
L � pðuÞ;

(4)

where L is a p · kmatrix called the “factor loadings”matrix.
Each column specifies the relationship between one latent
trait and all observed traits. Just as U and E partition the
among-individual variation in the observed traits into addi-
tive genetic effects and residuals in (2), the matrices Fa and
Fr partition the among-individual variation in the latent
traits into additive genetic effects and residuals. Sa and Sr

model the among-factor (within-individual) covarian-
ces of Fa and Fr, which we assume to be diagonal�
Sa ¼ Diag

�
s2
aj

�
;Sr ¼ Diag

�
s2
rj

��
. Ca and Cr are the

idiosyncratic (trait-specific) variances of the factor model
and are assumed to be diagonal.

In model (4), as in any factor model (e.g., West 2003),L is
not identifiable without adding extra constraints. In general,
the factors in L can be rotated arbitrarily. This is not an issue
for estimating G itself, but prevents biological interpretations
of L and makes assessing MCMC convergence difficult. To
solve this problem, we introduce constraints on the orienta-
tion of L through our prior distribution p(u) specified below.

However, even after fixing a rotation, the relative scaling of
corresponding columns of Fa, Fr, and L are still not well
defined. For example, if the jth column of Fa and Fr
are both multiplied by a constant c, the same model is recov-
ered if the jth column of L is multiplied by 1/c. To fix c,
we require the column variances (s2

aj and s2
rj) to sum to

one, i.e., Sa+Sr = Ik. Therefore, the single matrix
Sh2 ¼ Sa ¼ Ik 2Sr is sufficient to specify both variances.
The diagonal elements of this matrix specify the narrow-
sense heritability ðh2j ¼ s2

aj=ðs2
aj þ s2

rjÞ¼ s2
ajÞ of latent trait j.

Given the properties of thematrix normal distribution (Dawid
1981) and models (3) and (4) we can recover G and R as

G ¼ LSh2LT þCa;
R ¼ LðIk 2Sh2ÞLT þCr:

(5)

Therefore, our model for the total phenotypic covariance
P = G + R is

P ¼ LLT þCa þCr: (6)

Our specification of the BSFG model in (4) differs from
earlier methods such as the Bayesian genetic factor model of
de los Campos and Gianola (2007) in two key respects. First,
in classic factor models, the total number of latent traits is
assumed to be small (k � p). Therefore, Equation 5 would
model G with only pk + k + p parameters instead of p(p +
1)/2. However, choosing k is a very difficult, unsolved prob-
lem, and inappropriate choices can result in biased and un-
stable estimates of G and R (e.g., Meyer and Kirkpatrick
2008). In our model we allow many latent traits but assume
that the majority of them are relatively unimportant. This
subtle difference is important because it removes the need to
accurately choose k, instead emphasizing the estimation of
the magnitude of each latent trait. This model is based on
the work by Bhattacharya and Dunson (2011), which they
term an “infinite” factor model. In our prior distribution on
the factor loadings matrix L (see section Priors), we order
the latent traits (columns of L) in terms of decreasing in-
fluence on the total phenotypic variation and assume that
the variation explained by these latent traits decreases rap-
idly. Therefore, rather than attempt to identify the correct k
we model the decline in the influence of successive latent
traits. As in other factor models, to save computational effort
we can truncate L to include only its first k* , k columns
because we require the variance explained by each later
column to approach zero. The truncation point k* can be
estimated jointly while fitting the model and is flexible (we
suggest truncating any columns of L defining modules that
explain ,1% of the phenotypic variation in any observed
trait). Note that k* conveys little biological information
and does not have the same interpretation as k in classic
factor models. Since additional factors are expected to ex-
plain negligible phenotypic variation, including a few extra
columns to Lk* to check for more factors is permissible (e.g.,
Meyer and Kirkpatrick 2008).
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Second, we assume that the residual covariance R has
a factor structure and that the same latent traits underly
both G and R. Assuming a constrained space for R is un-
common in multivariate genetic estimation. For example, de
los Campos and Gianola (2007) fit an unconstrained R,
although they used an informative inverse Wishart prior
(Gelman 2006) and only consider five traits. The risk of
assuming a constrained R is that poorly modeled phenotypic
covariance (P = G + R) can lead to biased estimates of
genetic covariance in some circumstances (Jaffrezic et al.
2002; Meyer and Kirkpatrick 2008).

However, constraining R is necessary in high-dimensional
settings to prevent the number of modeling parameters from
increasing exponentially, and we argue that modeling R as
we have done is biologically justified. Factor models fitting
low numbers of latent factors are used in many fields be-
cause they accurately model phenotypic covariances. Rea-
sonable constraints on R have been applied successfully in
previous genetic models. One example is in the direct esti-
mation of genetic principle components model of Kirkpatrick
and Meyer (2004). These authors model only the first mE

eigenvectors of the residual covariance matrix. Our model
for R is closely related to models used in random regression
analysis of function-valued traits (e.g., Kirkpatrick and Heckman
1989; Pletcher and Geyer 1999; Jaffrezic et al. 2002; Meyer
2005). In those models, R is modeled as a permanent envi-
ronmental effect function plus independent error. The per-
manent environmental effect function is given a functional
form similar to (or more complex than) the genetic function.
In Equation 4, Fr is analogous to this permanent environ-
mental effect (but across different traits rather than the
same trait observed through time), with its functional form
described by L, and Er is independent error. Since both Fa
and Fr relate to the observed phenotypes through L, the
functional form of the model for the residuals (ei) is at least
as complex as the genetic functional form (and more com-
plex whenever h2j ¼ 0 for some factors).

The biological justification of our approach is that the
factors represent latent traits, and just like any other trait
their value can partially be determined by genetic variation.
For example, the activity of developmental pathways is
determined by the internal and external environment but
can also have a genetic basis. The latent traits determine the
phenotypic covariance of the observed traits, and their herita-
bility determines the genetic covariance. In genetic experi-
ments, some of these latent traits (e.g., measurement biases)
might be variable, but not have a genetic component. We ex-
pect that some factors will contribute to R but not G, so R will
be modeled with more factors than G (Meyer and Kirkpatrick
2008).

We examine the impact of our prior on R through simu-
lations below, including cases when the true R is not low
rank. When our assumptions regarding R do not hold, the
prior may lead to biased estimates. For example, measure-
ment biases might be low dimensional but not sparse, and
some studies have estimated the phenotypic covariance P to

be full rank (e.g., McGuigan and Blows 2007). However, we
expect that for many general high-dimensional biological
data sets this model will be useful and can provide novel
insights. In particular, by directly modeling the heritability of
the latent traits, we can predict their evolution.

Priors

Modeling high-dimensional data requires some prior specifica-
tion or penalty/regularization for accurate and stable parameter
estimation (Hastie et al. 2003; West 2003; Poggio and Smale
2003). For our model this means that constraints on G and R
are required. We impose constraints through a highly informa-
tive prior onL. Our prior is motivated by the biological assump-
tion that variation in underlying developmental processes such
as gene networks or metabolic pathways gives rise to genetic
and residual covariances. This implies:

1. The biological system has limited complexity: a small num-
ber of latent traits are relevant for trait variation. This means
that the number of important factors is low (k* � p).

2. Each underlying latent trait affects a limited number of
the observed traits. This means the factor loadings (col-
umns of L) are sparse (mostly near zero).

We formalize the above assumptions by a prior on L that
imposes sparsity (formally, shrinkage toward zero) and low
effective rank (Bhattacharya and Dunson 2011). This prior
is specified as a hierarchical distribution on each element lij
of L:

lij
��fij; tj � N

�
0;f21

ij t21
j

�
; i ¼ 1 . . . p; j ¼ 1 . . . k

fij � Gaðn=2; n=2Þ;
tj ¼

Qm
l¼1

dl

d1 � Gaða1; b1Þ; dl � Gaða2; b2Þ for l ¼ 2 . . . k:
(7)

The hierarchical prior is composed of three levels:

a. We model each lij (specifying how observed trait i is re-
lated to latent trait j) with a normal distribution.

b. Based on assumption 2, we expect most lij � 0. A normal
distribution with a fixed variance parameter is not suffi-
cient to impose this constraint. We model the the pre-
cision (inverse of the variance) of each loading element
lij with the parameter fij drawn from a gamma distribu-
tion. This normal–gamma mixture distribution (condi-
tional on tj) is commonly used to impose sparsity (Neal
1996; Tipping 2001) as the marginal distribution on lij
takes the form of Student’s t-distribution with v degrees
of freedom and is heavy tailed. This forces the lij’s to be
concentrated near zero, but permits occasional large
magnitude values. This prior specification is conceptually
similar to the widely used Bayesian Lasso (Park and Casella
2008).

c. The parameter tj controls the overall variance explained by
factor j by shrinking the variance toward zero as m / N.
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The decay in the variance is enforced by increasing the
precision of lij as j increases so that |lij| / 0. The se-
quence {tj, j = 1 . . . k} is formed from the cumulative
product of the sequence {dj, j = 1 . . . k}, where each
element is modeled with a gamma distribution, and will
be stochastically increasing as long as a2 . b2. This means
that the variance of lij will stochastically decrease and
higher-indexed columns of L will be less likely to have
any large magnitude elements. This decay ensures that it
will be safe to truncate L at some sufficiently large k*
because columns k . k* will (necessarily) explain less
variance.

The prior distribution on tj (and therefore the sequence
{d1, . . ., dj}) is a key modeling decision as tj controls how
much of the total phenotypic variance we expect each suc-
cessive factor to explain. Based on assumption 1, we expect
that few factors will be sufficient to explain total phenotypic
variation, and thus {tj} will increase rapidly. However, rel-
atively flat priors on dm, m = 2 . . . k (e.g., a2 = 3, b2 = 1),
which allow some consecutive factors to be of nearly equal
magnitude, appear to work well in simulations.

The prior on the heritability of each of latent factor trait is
a discrete set of values in the unit interval. This specification
was selected for computational efficiency and to give h2j ¼ 0
positive weight in the prior. We find the following discrete
distribution works well,

ph2j
ð0Þ ¼ 0:5;

ph2j
ðl=nhÞ ¼ 1

2ðnh 2 1Þ; for l ¼ 1 . . . ðnh 21Þ;
(8)

where nh is the number of points to evaluate h2j . In analyses
reported here, we set nh = 100. This prior gives equal
weight to h2j ¼ 0 and h2j . 0 because we expect several factors
(in particular, those reflecting measurement error) to have no
genetic variance. In principle, we could place a continuous
prior on the interval [0, 1], but no such prior would be conju-
gate, and developing a MCMC sampler would be more difficult.

We place inverse gamma priors with parameters aa, ba
and ar, br on each diagonal element of Ca and Cr, respec-
tively. Priors on each element of B are normal distributions
with very large (.106) variances.

Implementation

Inference in the BSFG model uses an adaptive Gibbs sampler
for which we provide detailed steps in the appendix. The
code has been implemented in Matlab and can be found at
the website (http://www.stat.duke.edu/�sayan/bfgr/index.
shtml) together with code to replicate the simulations and
gene expression analyses reported here.

Simulations

We present a simulation study of high-dimensional traits
observed in the offspring of a balanced paternal half-sib
breeding design. We examined 10 scenarios (Table 1), each
corresponding to different parameters for the matrices G

and R to evaluate the impact of the modeling assumptions
specified by our prior. For each scenario we simulated trait
values of individuals from Equation (2) with Z = In, B = 0p,
and X a single column of ones representing the trait means.

Scenarios a–c tested the accuracy of the model given in-
creasing numbers of latent traits. G and P were simulated
based on 10, 25, or 50 important factors, respectively, for
100 traits. Heritabilities ðh2j Þ of latent factors j = 1 . . . 5,
1 . . . 15, or 1 . . . 30, respectively, were set to 0.5 and con-
tributed to both G and R. Heritabilities of the remaining fac-
tors (j = 6 . . . 10, 16 . . . 25, or 31 . . . 50, respectively) were
set to 0.0 and contributed only to R. For each latent factor,
loadings lij were drawn from independent standard normal
distributions. To make the covariance matrices biologically
reasonable, we forced each factor to be sparse: 75–97% of
the lij were set to zero. The idiosyncratic variances Ca and
Ce were set to 0.2 · Ip. Therefore, trait-specific heritabilties
ranged from 0.0 to 0.5, with the majority toward the upper
limit. Each simulation included 10 offspring from 100 unre-
lated sires.

Scenarios d–e tested the accuracy of the model when the
true R was neither sparse nor low rank, since inappropriately
modeled residual variances can lead to biased estimates of
G (e.g., Jaffrezic et al. 2002; Meyer and Kirkpatrick 2007).
Scenarios were identical to a except the R matrix did not
have a sparse factor form. In scenario d, R was constructed
with a factor structure with 10 factors, but 5 of these factors
(j = 6 . . . 10, i.e., those with h2j ¼ 0:0) were not sparse (i.e.,
all factor loadings were nonzero). This might occur, for ex-
ample, if the nongenetic factors were caused by measure-
ment error. In scenario e, R was drawn from a central
Wishart distribution with p + 1 degrees of freedom and
therefore was full rank and did not follow a factor structure
at all.

Scenarios f–g tested the accuracy of the model given in-
creasing numbers of observed traits. Both scenarios were
identical to scenario a except scenario f had 20 observed
traits and scenario g had 1000.

Scenarios h–j tested the accuracy of the model given
experiments of different size and given different latent trait
heritabilities. Simulations were identical to scenario a except
that the five genetic factors in each simulation were assigned
h2j ¼ 0:9; 0:7; 0:5; 0:3, and 0.1 for j = 2, 4, 6, 8, 10, the
number of sires was set to 50, 100, or 500, and the number
of offspring per sire was set to 5 (for simulation h only).

To fit the simulated data, we set the hyperparameters in
the prior to: n = 3, a1 = 2, b1 = 1/20, a2 = 3, b2 = 1. We
ran our Gibbs sampler for 12,000 iterations, discarded the
first 10,000 samples as burn-in, and collected 1000 posterior
samples with a thinning rate of two.

We calculated a number of statistics from each simulation
to quantify the estimation error of the BSFG model. For each
statistic, we compared the posterior mean of a model
parameter to the true value specified in the simulation.

First, as a sanity check, we compared the accuracy of our
method to a methods of moments estimate of G calculated
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as Gm = 4(B 2 W)/n, where B and W are the between- and
within-sire matrices of mean squares and cross products and
n is the number of offspring per sire. We compared the
accuracy of the moments estimator Gm to the posterior mean
Ĝ from our model by calculating the Frobenius norm of the
errors: |Gm 2 G|F and jĜ2GjF.

The Frobenius norm measure above quantifies the total
sum of square error in each pairwise covariance estimate.
However, the geometry of G is more important for predicting
evolution (Walsh and Blows 2009). We evaluated the accuracy
of each estimated G matrix by comparing the k-dimensional
subspace of ℝp with the majority of the variation in G to the
corresponding subspace for the posterior mean estimate Ĝ.
We used the Krzanowski subspace comparison statistic
(Krzanowski 1979; Blows et al. 2004), which is the sum of
the eigenvalues of the matrix S ¼ cGk

TGkGT
k
cGk, where cGk

is the subspace spanned by the eigenvectors with the k largest
eigenvalues of the posterior mean of G, and Gk is the corre-
sponding subspace of the true (simulated) matrix. This statis-
tic will be zero for orthogonal (nonoverlapping) subspaces
and will equal k for identical subspaces. The accuracy of
the estimated P was calculated similarly. For each compari-
son, k was chosen as the number of factors used in the con-
struction of the simulated matrix (Table 1), except in scenario
e with the Wishart-distributed Rmatrix. Here, we set the k for
P at 19, which was sufficient to capture .99% of the varia-
tion in most simulated P matrices.

We evaluated the accuracy of latent factor estimates in
two ways. First, we calculated the magnitude of each factor
as |lj|2 where |�| is the L2-norm. This quantifies the phe-
notypic variance across all traits explained by each factor.
We then counted the number of factors that explained
.0.1% of total phenotypic variance. Such factors were
termed “large factors.” Second, for each simulated factor j,
we calculated the error in estimated factor identity by finding
the estimated factor j* with trait loadings vector lj* that had
the smallest vector angle with the true factor trait loadings

vector lj. Smaller angles correspond to more accurately iden-
tified factors. For scenarios d and e, error angles could be
calculated only for the genetically variable factors (factors
1–5) because the residual factors for these scenarios were
not well defined. In scenario d, factors 6–10 were not sparse
and thus were identifiable only up to an arbitrary rotation by
any matrix H such that HHT = I (Meyer 2009). In scenario e,
the residual matrix did not have a factor form.

Gene expression analysis

We downloaded gene expression profiles and measures of
competitive fitness of 40 wild-derived lines of Drosophila
melanogaster from ArrayExpress (accession E-MEXP-1594)
and the Drosophila Genetic Reference Panel (DGRP) website
(http://dgrp.gnets.ncsu.edu/) (Ayroles et al. 2009). A line’s
competitive fitness (Knight and Robertson 1957; Hartl and
Jungen 1979) measures the percentage of offspring bearing
the assay line’s genotype recovered from vials seeded with
a known proportion of adults from a reference line. We used
the BSFG model to infer a set of latent factor traits under-
lying the among-line gene expression covariance matrix for
a subset of the genes and the among-line covariance be-
tween each gene and competitive fitness. These latent fac-
tors are useful because they provide insight into what genes
and developmental or molecular pathways underlie varia-
tion in competitive fitness.

We first normalized the processed gene expression data
to correspond to the analyses of Ayroles et al. (2009) and
then selected the 414 genes identified in that article as hav-
ing a plausible among-line covariance with competitive fit-
ness. In this data set, two biological replicates of male and
female fly collections from each line were analyzed for
whole-animal RNA expression. The competitive fitness
measurements were the means of 20 competitive trials per-
formed with sets of flies from these same lines, but not the
same flies used in the gene expression analysis. Gene expres-
sion values for the samples measured for competitive fitness

Table 1 Simulation parameters

No. factors R type No. traits Sample size

a b c d e f g h i j

G and R
No. traits 100 100 100 100 100 20 1000 100 100 100
Residual type SFa SF SF Fb Wishartc SF SF SF SF SF
No. factors 10 25 50 10 5 10 10 10 10 10
h2 of factorsd 0.5 (5) 0.5 (15) 0.5 (30) 0.5 (5) 1.0 (5) 0.5 (5) 0.9–0.1 (5)

0.0 (5) 0.0 (10) 0.0 (20) 0.0 (5) 0.0 (5) 0.0 (5)
Sample size

No. sires 100 100 100 100 100 100 100 50 100 500
No. offspring/sire 10 10 10 10 10 10 10 5 10 10

Eight simulations were designed to demonstrate the capabilities of BSFG. Scenarios a–c test genetic and residual covariance matrices composed of different numbers of
factors. Scenarios d–e test residual covariance matrices that are not sparse. Scenarios f–g test different numbers of traits. Scenarios h–j test different sample sizes. All
simulations followed a paternal half-sib breeding design. Each simulation was run 10 times.
a Sparse factor model for R. Each simulated factor loading (lij) had a 75–97% chance of equaling zero.
b Factor model for R. Residual factors (those with h2j ¼ 0) were not sparse (lij 6¼ 0).
c R was simulated from a Wishart distribution with p + 1 degrees of freedom and inverse scale matrix 1

p I p. Five additional factors were each assigned a heritability of 1.0.
d In each column, factors are divided between those h2 . 0 and those with h2 = 0. The number in parentheses provides the number of factors with the given heritability.
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and competitive fitness values for the samples measured for
gene expression were treated as missing data (see Appendix).
We used our model to estimate the covariance of line effects.
Following the analyses of Ayroles et al. (2009), we included
a fixed effect of sex and independent random effects of the
sex:line interaction for each gene. No sex or sex:line effects
were fit for competitive fitness itself as this value was mea-
sured at the level of the line, not on individual flies.

We set the prior hyperparameters as above and ran our
Gibbs sampler for 40,000 iterations, discarded the first
20,000 samples as a burn-in period, and collected 1000
posterior samples of all parameters with a thinning rate of 20.

Results

Simulation example

The BSFG model’s estimates of genetic covariances were
considerably more accurate than estimates based on unbi-
ased methods of moments estimators. In scenario a, for ex-
ample, the mean Frobenius norm was 13.9 for the moments
estimator and 6.3 for the Bayesian genetic sparse factor
model’s posterior mean, a 54% improvement.

The BSFG model accurately estimated subspaces con-
taining the majority of variation in both G and P. Figure 1
shows the distribution of Krzanowski’s subspace similarity
statistics ðPlsiÞ for G in each scenario (subspace statistics for
P are shown in supporting information, Figure S1). Krzanowski’s
statistic corresponds approximately to the number of eigen-
vectors of the true subspace recovered in the estimated sub-
space and in our simulations rarely differed even one unit
from the true value of k for either G and P. The exceptions
for G were mostly in scenarios h–j, where the fifth genetic
factor (factor 10) was assigned a heritability of 0.1 and the
subspace spanned by the first five eigenvectors of estimated
G matrices often did not include this vector. This effect was
exacerbated at low sample sizes. The Krzanowski error for G
(relative to k) also increased slightly for larger numbers of
factors (Figure 1A), if R was full rank (Figure 1B), if few
traits were observed (Figure 1C), or if the sample size was
small (Figure 1D). Some simulations with nonsparse latent
factors of R also caused slight subspace errors (scenario d,
Figure 1B). Krzanowski’s statistics for P followed a similar
pattern to those for G (Figure S1), except that the errors for
full-rank R or for different numbers of traits were more pro-
nounced (Figure S1B).

Even though the number of latent factors is not an
explicit parameter in the BSFG model, the number of “large
factors” fit in each scenario was always close to the true
number of simulated factors (Table 2, except in scenario e
where R was full rank). Factor identity estimates were also
accurate. Figure 2 shows the distribution of error angles
between the true factors and their estimates for each sce-
nario. Median error angles were generally around 3�, but
occasionally as large 5�–10� when there were more true
latent factors (Figure 2A), if R was full rank (scenario e,

Figure 2B), or if the sample size was small (small numbers
of individuals or small numbers of traits, scenarios f and h;
Figure 2, C and D).

Finally, the genetic architectures of the unobserved latent
traits (factors) and the observed traits were accurately
estimated. As expected, latent factor heritability estimates
were more accurate for scenarios with larger sample sizes
(Figure 3), but there was little difference in h2 estimates for
factors with nonzero heritability across scenarios with dif-
ferent numbers of factors, different residual properties, or
different numbers of traits (Figure S2). With small sample
sizes (scenario h), larger numbers of factors (scenarios b–c),
or fewer traits (scenario f), there was increasing error in h2

for factors with true h2 = 0 (Figures 3 and Figure S2).
Similarly, sample size had the greatest effect on the quality
of h2 estimates for the 20–1000 traits in each scenario (Figure
4). Surprisingly, the most accurate trait heritability estimates
were recovered when R had a factor structure but was not

Figure 1 BSFG recovers the dominant subspace of high-dimensional G-
matrices. Each subplot shows the distribution of Krzanowski’s statistics
(
P

lsi , Krzanowski 1979; Blows et al. 2004) calculated for posterior mean
estimates of G across a related set of scenarios. Plotted values are
k2

P
lsi so that statistics are comparable across scenarios with different

subspace dimensions. On this scale, identical subspaces have a value of
zero and values increase as the subspaces diverge. The value of k used in
each scenario is listed inside each box plot. The difference from zero
roughly corresponds to the number of eigenvectors of the true subspace
missing from the estimated subspace. Different parameters were varied in
each set of simulations as listed below each box. (A) Increasing numbers
of simulated factors. (B) Different types of R matrices. SF, a sparse-factor
form for R. F, a (nonsparse) factor form for R. Wishart, R was sampled
from a Wishart distribution. (C) Different numbers of traits. (D) Different
numbers of sampled individuals. Note that in scenarios h–j, factor h2’s
ranged from 0.0 to 0.9. Complete parameter sets describing each simu-
lation are described in Table 1.
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sparse (scenario d, Figure 4B), probably because the true
range of h2 values was greater. Heritability estimates were
also more accurate with increasing complexity of G and R
(Figure 4A), but were not strongly affected by the number
of traits studied (Figure 4C), or by full-rank R (Figure 4B).

Gene expression example

Our estimate of the G-matrix from the Drosophila gene ex-
pression data was qualitatively similar to the original esti-
mate (Figure 5B, and compare to Figure 7a in Ayroles et al.
2009). Estimates of the broad-sense heritability of each gene
were also similar (r = 0.74). While a direct comparison of
the dominant G-matrix subspace recovered by our model
and the estimate by Ayroles et al. (2009) was not possible
because individual covariances were not reported, we could
compare the two estimates of the underlying structure. Us-
ing the modulated modularity clustering (MMC) algorithm
(Stone and Ayroles 2009), Ayroles et al. (2009) identified 20
modules of genetically correlated transcripts post hoc. Our
model identified 27 latent factors (Figure 5, D–F), of which
13 were large factors (explaining .1% variation in 2+

genes). The large factors were consistent (r . 0.95) across
three parallel chains of the Gibbs sampler. Many factors
were similar to the modules identified by MMC (Figure
5E). Some of the factors were nearly one-to-one matches
to modules (e.g., factor 10 with module 8, and factor 14
with module 12). However, others merged together two or
more modules (e.g., factor 1 with modules 7 and 9, and
factor 2 with modules 4, 13, 16–20). And some entire mod-
ules were part of two or more factors (e.g., module 17 was
included in factors 2 and 4, and module 18 was included in
factors 2 and 16).

Each factor represents a sparse set (or “module”) of genes
that may be coregulated by a common developmental pro-
cess. Using the Database for Annotation, Visualization and
Integrated Discovery (DAVID) v. 6.7 (Huang et al. 2009a,b),
we identified several factors that were individually enriched
(within this set of 414 genes) for defense and immunity,
nervous system function, odorant binding, and transcription
and cuticle formation. Similar molecular functions were

identified among the modules identified by Ayroles et al.
(2009). By inferring factors at the level of phenotypic vari-
ation, rather than the among-line covariances, we could di-
rectly estimate the broad-sense heritability (H2) of these
latent traits themselves. Figure 5D shows these H2 estimates
for each latent trait. Several of the factors have very low
(,0.2) or very high (.0.75) H2 values. Selection on the
later latent traits would likely be considerably more efficient
than the former.

Finally, we estimated the among-line correlation between
the expression of each gene and competitive fitness (Figure
5C). Roughly 15% (60/414) of the 95% highest posterior
density (HPD) interval estimates of the among-line correla-
tions did not included zero. We also estimated the genetic
correlation between competitive fitness and each of the la-
tent traits defined by the 27 factors (Figure 5F). Most factors
were not genetically correlated with competitive fitness.
However, the genetic correlations between competitive fit-
ness and factors 2 and 16 were large and highly significant,
suggesting intriguing genetic relationships between these
two latent traits and fitness.

Discussion

The BSFG model performs well on both simulated and real
data and opens the possibility of incorporating high-
dimensional traits into evolutionary genetic studies and

Table 2 Number of large factors recovered in each scenario

Scenario Expected Median Range

No. factors a 10 10 (10,10)
b 25 25 (23,25)
c 50 49 (48,50)

R type d 10 10 (10,10)
e NAa 56 (44,66)

No. traits f 10 9 (8,11)
g 10 10 (10,10)

Sample size h 10 10 (10,10)
i 10 10 (10,10)
j 10 10 (10,10)

Each scenario was simulated 10 times. Factor magnitude was calculated as the L2-
norm of the factor loadings, divided by the total phenotypic variance across all traits.
Factors explaining .0.1% of total phenotypic variance were considered large.
a In scenario e, the residual matrix did not have a factor form.

Figure 2 BSFG successfully fits trait loadings on latent factors. The esti-
mated factors were matched to the true latent traits in each simulation by
calculating the vector angle between the trait loadings of each true factor
and the most similar estimated factor (column of L). The median error
angle across factors was calculated for each simulation. Box plots show
the distribution of median error angles by scenario. Two identical vectors
have an angle of zero. Completely orthogonal vectors have an angle of
90�. (A) Increasing numbers of simulated factors. (B) Different types of R
matrices. Angles are shown only for the genetically variable factors in
scenarios d and e (factors 1–5, see Methods). (C) Different numbers of
traits. (D) Different numbers of sampled individuals.
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breeding programs. Technologies for high-dimensional phe-
notyping are becoming widely available in evolutionary
biology and ecology so methods for modeling such traits are
needed. Gene expression traits in particular provide a way to
measure underappreciated molecular and developmental
traits that may be important for evolution, and technologies
exist to measure these traits on very large scales. Our model
can be applied to other molecular traits (e.g., metabolites or
protein concentrations), high-dimensional morphological
traits (e.g., outlines of surfaces from geometric morphomet-
rics), or gene–environment interactions (e.g., the same trait
observed in multiple environments).

Scalability of the method

The key advantage of the BSFG model over existing methods
is its ability to provide robust estimates of covariance param-
eters for data sets with large numbers of traits. In this study, we
demonstrated high performance of the model for 100–1000
simulated traits and robust results on real data with 415.
Similar factor models (without the genetic component) have
been applied to gene expression data sets with thousands of
traits (Bhattacharya and Dunson 2011), and we expect the
genetic model to perform similarly. The main limitation will
be computational time, which scales roughly linearly with
the number of traits analyzed (assuming the number of im-
portant factors grows more slowly). As an example, analyses
of simulations from scenario g with 1000 traits and 1000
individuals took about 4 hr to generate 12,000 posterior
samples on a laptop computer with a 4-core 2.4-GHz Intel
Core i7, while analyses of scenario a with 100 traits took
�45 min. Parallel computing techniques may speed up anal-
yses in cases of very large (e.g., 10,000+) numbers of traits.

The main reason that our model scales well in this way is
that under our prior, each factor is sparse. Experience with
factor models in fields such as gene expression analysis,
economics, finance, and social sciences (Fan et al. 2011), as
well as with genetic association studies (e.g., Engelhardt and
Stephens 2010; Stegle et al. 2010; Parts et al. 2011) dem-
onstrates that sparsity (or shrinkage) is necessary to perform
robust inference on high-dimensional data (Bickel and Levina

2008a,b; El Karoui 2008; Meyer and Kirkpatrick 2010). Oth-
erwise, sampling variability can overwhelm any true signals,
leading to unstable estimates. Here, we used the t-distribution
as a shrinkage prior, following Bhattacharya and Dunson
(2011), but many other choices are possible (Armagan et al.
2011).

Applications to evolutionary quantitive genetics

The G-matrix features prominently in the theory of evolu-
tionary quantitative genetics, and its estimation has been
a central goal of many experimental and observational
studies (Walsh and Blows 2009). Since the BSFG model is
built on the standard “animal model” framework, it is flex-
ible and can be applied to many experimental designs. And
since the BSFG model is Bayesian and naturally produces

Figure 3 BSFG accurately estimates the heritability of la-
tent traits. Distributions of factor h2 estimates for scenarios
h–j. These scenarios differed in the number of individuals
sampled. Ten latent traits with h2’s between 0.0 and 0.9
were generated in each simulation. After fitting our factor
model to each simulated data set, the estimated factors
were matched to the true latent traits based on the trait-
loading vector angles. Each box plot shows the distribu-
tion of h2 estimates for each simulated factor across 10
simulations. Note that the trait loadings for each factor
differed in each simulation; only the h2 values remained
the same. Thin horizontal lines in each column show the
simulated h2 values. Colors correspond to the scenario,
and solid boxes/circles are used for factors with h2 . 0.0.

Figure 4 BSFG estimates of individual trait heritability are accurate. The
heritability of each individual trait was calculated as h2i ¼ Gii=Pii .

RSME ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=pÞPp

i¼1ðĥ
2

i 2h2i Þ2
q

was calculated for each simulation. Box

plots show the distribution of RMSE values for each scenario. (A) Increas-
ing numbers of simulated factors. (B) Different types of R matrices. (C)
Different numbers of traits. (D) Different numbers of sampled individuals.
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estimates within the parameter space, posterior samples
provide convenient credible intervals for the G-matrix itself
and for many evolutionarily important parameters, such as trait-
specific eritabilities or individual breeding values (Sorensen and
Gianola 2010).

An important use of the G-matrix is to predict the
response of a set of traits to selection (Lande 1979). Apply-
ing Robertson’s second theorem of natural selection, the re-
sponse in �y will equal the additive genetic covariance
between the vector of traits and fitness ðD�y ¼ sAðy; �wÞÞ
(Rausher 1992; Walsh and Blows 2009). This quantity can
be estimated directly from our model if fitness is included as
the p* = (p + 1)th trait,

D�y ¼ L=p*L
T
p* ;

where L=p* contains all rows of L except the row for fitness,
and Lp* contains only the row of L corresponding to fitness.
Similarly, the quantity 12cap* =Gp*; p* equals the percentage
of genetic variation in fitness accounted for by variation in
the observed traits (Walsh and Blows 2009), which is useful
for identifying other traits that might be relevant for fitness.

On the other hand, our model is not well suited to
estimating the dimensionality of the G-matrix. A low-rank
G-matrix means that there are absolute genetic constraints
on evolution (Lande 1979). Several methods provide statis-
tical tests for the rank of the G-matrix (e.g., Kirkpatrick and
Meyer 2004; Mezey and Houle 2005; Hine and Blows
2006). We use a prior that shrinks the magnitudes of higher
index factors to provide robust estimates of the largest fac-
tors. This will likely have a side effect of underestimating the

total number of factors, although this effect was not ob-
served in our simulations. However, absolute constraints ap-
pear rare (Houle 2010), and the dimensions of the G-matrix
with the most variation are likely those with the greatest
effect on evolution in natural populations (Schluter 1996;
Kirkpatrick 2009). Our model should estimate these dimen-
sions well. From a practical standpoint, preselecting the
number of factors has plagued other reduced-rank estima-
tors of the G-matrix (e.g., Kirkpatrick and Meyer 2004; Hine
and Blows 2006; Meyer 2009). Our prior is based on an
infinite factor model (Bhattacharya and Dunson 2011),
and so no a priori decision on k is needed. Instead, the
parameters of the prior distribution on {tj} become impor-
tant modeling decisions. In our experience, a relatively dif-
fuse prior on dl with a2 = 3, b2 = 1 tends to work well.

Biological interpretation of factors

Genetic modules are sets of traits likely to evolve together.
We assume that the developmental process is modular and
model a set of latent traits that each affect a limited number
of observed traits. A unique feature of the BSFG model is
that the genetic and environmental factors are estimated
jointly, instead of separately as in classic multilevel factor
models (e.g., Goldstein 2010). If each factor represents a true
latent trait (e.g., variation in a developmental process), it is
reasonable to decompose variation in this trait into genetic
and environmental components. We directly estimate the
heritability of the latent traits and, therefore, can use our
model to predict their evolution.

Other techniques for identifying genetic modules have
several limitations. The MMC algorithm (Stone and Ayroles

Figure 5 Among-line covariance of
gene expression and competitive fitness
in Drosophila is modular. (A–C) Genetic
(among-line) architecture of 414 gene
expression traits measured in adult flies
of 40 wild-caught lines (Ayroles et al.
2009). (A) Posterior mean broad-sense
heritabilities (H2) of the 414 genes. (B)
Heat map of posterior mean genetic
correlations among these genes. (C)
Posterior mean estimates and 95%
highest posterior density (HPD) intervals
for genetic correlations between each
gene and competitive fitness. For com-
parison, see Ayroles et al. (2009, Figure
7a). (D–F) Latent trait structure underly-
ing gene expression covariances. (D)
Posterior mean H2 for each estimated
latent trait. (E) Heat map of posterior
mean L matrix showing gene loadings
on each latent trait. (F) Posterior mean
estimates and 95% HPD intervals for
genetic correlations between each la-
tent trait and competitive fitness. The
right axis of E groups genes into mod-
ules inferred using modulated modular-
ity clustering (Ayroles et al. 2009; Stone
and Ayroles 2009).
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2009; Ayroles et al. 2009) does not infer modules in an ex-
plicit quantitative genetic framework and constrains each ob-
served trait to belong to only one module. A common strategy
(e.g., McGraw et al. 2011) is to treat each major eigenvector of
G or P itself as a module. These eigenvectors can be modeled
directly (e.g., Kirkpatrick and Meyer 2004), but their biological
interpretation is unclear because of the mathematical con-
straint that the eigenvectors be orthogonal (Hansen and Houle
2008). Classic factor models (such as proposed by Meyer 2009
or de los Campos and Gianola 2007) assume a form of mod-
ularity, but since the latent factors are not identifiable (Meyer
2009), the identity of the underlying modules is unclear. In
contrast, under our sparsity prior, the modules we identify are
identifiable (up to a sign-flip: the loadings on each factor can
be multiplied by21 without affecting its probability under the
model, but this does not change which traits are associated
with each factor). In simulations and with the Drosophila gene
expression data, independent MCMC chains consistently iden-
tify the same dominant factors. Therefore the observed traits
associated with each factor can be used to characterize a de-
velopmental module.

Extensions

Our model is built on the classic mixed effect model in
quantitative genetics (Henderson 1984). It is straightfor-
ward to extend to models with additional fixed or random
effects (e.g., dominance or epistatic effects) for each trait.
The update equation for h2j in the Gibbs sampler described in
the Appendix does not allow additional random effects in the
model for the latent factors themselves, although other for-
mulations are possible. A second extension relates to the
case in which the relationship matrix among individuals
(A) is unknown. Here, relationship estimates from genotype
data can be easily incorporated. As such, our model is re-
lated to a recently proposed sparse factor model for genetic
associations with intermediate phenotypes (Parts et al.
2011). These authors introduced prior information on ge-
netic modules from gene function and pathway databases,
which could be incorporated in our model in a similar way.

Conclusions

The BSFG model we propose provides a novel approach to
genetic estimation with high-dimensional traits. We anticipate
that incorporating many diverse phenotypes into genetic studies
will provide powerful insights into evolutionary processes.
The use of highly informative but biologically grounded
priors is necessary for making inferences on high-dimensional
data and can help identify developmental mechanisms un-
derlying phenotypic variation in populations.
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Appendix: Posterior sampling
We estimate the posterior distribution of the BSFG model with an adaptive partially collapsed Gibbs sampler (van Dyk and
Park 2011) based on the procedure proposed by Bhattacharya and Dunson (2011). The value k* at which columns in L are
truncated is set using an adaptive procedure (Bhattacharya and Dunson 2011). Given a truncation point, the following
conditional posterior distributions are sampled in order:

1. The full conditional posterior distribution of the truncated factor loading matrixLk* is dependent on the parameters B, Ea,
F = Fa + Fr, and Cr ¼ DiagðcrjÞ. The full density factors into independent multivariate normal densities (MVNs) for each
row of Lk* :

p
�
lj
��yj;bj; eaj ; F;crj

�
� N

�
c21
rj C21FT

�
yj2Xbj2Zeaj

�
;C21

�
;

where C ¼ c21
rj FTFþ Diag

�
fijtj

�

To speed up the MCMC mixing, we partially collapse this Gibbs update step by marginalizing over Ea � N(0, A, Ca). Let
Ca ¼ DiagðcajÞ,

p=eaj

�
lj
��yj;   bj;   F;   caj ;   crj

�
� N

�
C*21FT

�
crj In þ cajZAZ

T
�21�

yj2Xbj
�
;C*21

�
;

where C* ¼ FTðcrj In þ cajZAZ
TÞ21Fþ DiagðfijtjÞ.

The matrix sum crj In þ cajZAZ
T can be efficiently inverted each MCMC iteration by precalculating a unitary matrix U and

a diagonal matrix S such that ZAZT = USUT. Thus, ðcrj In þ cajZAZ
TÞ21 ¼ U Diagð1=ðcrj sii þ cajÞÞUT, which does not require

a full matrix inversion.

2. The full conditional posterior distribution of the joint matrix ½BT   ET
a �T is dependent on the parameters F, L, Ca, and Cr.

The full density factors into independent MVNs for each column of the matrix,

p

�	
bj
eaj



j yj;lj;   F;caj ;crj

�
� N

�
c21
rj C21WT

�
yj2 FlT

j

�
;C21

�
;

where W andC are defined as

W ¼ ½X Z�

C ¼
"
0 0

0 c21
aj A21

#
þ c21

rj WTW:

The precision matrix C can be efficiently inverted each MCMC iteration by precalculating the unitary matrix U and diagonal
matrices S1 and S2 as the generalized singular value decomposition of the Cholesky decomposition of the two components of
C such that C21 ¼ U Diagð1=ðcaj s1ii þ crj s2iiÞÞUT, which does not require a full matrix inversion.

3. The full conditional posterior distribution of the latent factor heritabilities, Sh2 ¼ Diagðh2j Þ, is dependent on F and Fa. The
density factors into independent distributions for each h2j , each of which has the form of a multinomial distribution since
the prior on this parameter is discrete. This update step can be partially collapsed by marginalizing over Fa � Nð0;A;SaÞ.
The partially collapsed density is normalized by summing over all possibilities of h2j ,

p=faj

�
h2j ¼ h2

��f j� ¼
N
�
f j
���0; h2ZAZT þ �12 h2

�
In
�
ph2

j

�
h2
�

Pnh
l¼1N

�
f j
���0; h2l ZAZE þ �12 h2l

�
In
�
ph2

j

�
h2l
�
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where N(x|m, S) is the MVN with mean m and variance S, evaluated at x, h2l ¼ l=nh, and ph2j
ðh2Þ is the prior probability that

h2j ¼ h2. Given this conditional posterior, h2j is sampled from a multinomial distribution. The MVN densities can be calculated
efficiently with the diagonalization matrices given in step 1.

4. The full conditional posterior distribution of the genetic effects on the factors, Fa, depends on F and Sa. This distribution
factors into independent MVNs for each column faj ; j ¼ 1 . . . k* st h2j 6¼ 0,

p
�
faj
���f j; h2j � � N

��
12h2j

�21
C21ZFj;C21

�
;

where C ¼ ð12h2j Þ21ZZT þ ðh2j Þ21A21.

The precision matrix C can be efficiently inverted each MCMC iteration in the same manner as in step 2.

5. The residuals of the genetic effects on the factor scores, Fr, can be calculated as F 2 Fa. The full conditional posterior
distribution of F is a matrix variate normal distribution that depends on L;   B;   Ea;Sh2 and Cr:

pðFjY;L;B;Ea;Sh2 ;CrÞ � MNn;k*

��
ðY2XB2ZEaÞC21

r Lk* þ ZFaðIk*2Sh2Þ21
�
C21; In;C21

�
;

where C ¼ LT
k*C

21
r Lk* þ ðIk*2Sh2Þ21:

6. The conditional posterior of the factor loading precision parameter fij for trait i on factor j is

p
�
fij
��tj; lij� � Ga

 
n þ 1
2

;
n þ tjl

2
ij

2

!
:

7. The conditional posterior of dm, m = 1 . . . k* is as follows. For d1,

p
�
d1jf; tð1Þl ;L

�
� Ga

0@a1 þ pk*

2
; b1 þ 1

2

Xk*
l¼1

t
ð1Þ
l

Xp
j¼1

fjll
2
jl

1A
and for dh; h$ 2;

p
�
dhjf; tðhÞl ;L

�
� Ga

0@a2 þ p
2

�
k*2 hþ 1

�
; b2 þ 1

2

Xk*
l¼h

t
ðhÞ
l

Xp
j¼1

fjll
2
jl

1A;

where t
ðhÞ
l ¼

Xl

t¼1;t 6¼h
dt:

The sequence {tj} is calculated as the cumulative product: fQj
m¼1dmg.

8. The conditional posterior of the precision of the residual genetic effects of trait j is

p
�
c21
aj

���eaj� � Ga
�
aa þ r

2
; ba þ 1

2
eTajeaj

�
:

9. The conditional posterior of the residual precision of model residuals for trait j is

p
�
c21
ej

���2� � Ga

 
ar þ n

2
; br þ 1

2

Xn
i¼1

�
yij2xðiÞbj2fðiÞlT

j 2zðiÞeaj
�2!

:

10. If missing observations are present, values are drawn independently from univariate normal distributions parameterized
by the current values of all other parameters,
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p
�
yijj2

� � N
�
xðiÞbj þ fðiÞlT

j þ zðiÞeaj ;cj

�
;

where yij is the imputed phenotype value for the jth trait in individual i. The three components of the mean are: x(i), the row
vector of fixed effect covariates for individual i times bj, the jth column of the fixed effect coefficient matrix; f(i), the row
vector of factor scores on the k* factors for individual i times lT

j , the row of the factor loading matrix for trait j; and z(i), the
row vector of the random (genetic) effect incidence matrix for individual i times eaj , the vector of residual genetic effects for
trait j not accounted for by the k* factors. Finally, cj is the residual variance of trait j. All missing data are drawn in a single
block update.

Other random effects, such as the line · sex effects modeled in the gene expression example of this article can be
incorporated into this sampling scheme in much the same way that the residual genetic effects, Ea, are included here.
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Figure S1. P-matrix subspaces were accurately recovered. This figure is identical
to Figure 1 but for P. Each subplot shows the distribution of Krzanowski’s statistics
(
∑
λsi) calculated for posterior mean estimates of P across a related set of scenarios. The

value of k used in each scenario is listed inside each boxplot. The simulation parameter
varied in each set of simulations is described at the bottom. (A) Increasing numbers
of simulated factors. (B) Different properties of the R matrix. “SF”: a sparse-factor
form for R. “F”: a (non-sparse) factor form for R. “Wishart”: R was sampled from
a Wishart distribution. In scenario e, the residual matrix did not have a factor form.
We set k = 19 for the Krzanowski’s statistics because the corresponding eigenvectors of
the true P each explained > 1% of total phenotypic variation. (C) Different numbers of
traits. (D) Different numbers of sampled individuals. Complete parameter sets describing
each simulation are described in Table 1.
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Figure S2. Latent factor heritabilities were accurately recovered. Distributions
of factor h2 estimates by simulation scenario. Each simulated factor was matched to the
estimated factor with the most similar trait-loadings as in Figure ??. Thin horizontal
lines in each column show the simulated h2 values. Red boxes show the distribution of
factor h2 estimates across 10 simulations for all factors with h2 = 0.5 or 1.0. Black boxes
show the distribution of factor h2 estimates across the same 10 simulations for all factors
with h2 = 0.0. Scenarios differed by: (A) Increasing numbers of simulated factors. (B)
Different types of R matrices. (C) Different numbers of traits.
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