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Theoretical analysis on 
thermodynamic stability of 
chignolin
Tomonari Sumi   1,2 & Kenichiro Koga   1,2

Understanding the dominant factor in thermodynamic stability of proteins remains an open challenge. 
Kauzmann’s hydrophobic interaction hypothesis, which considers hydrophobic interactions between 
nonpolar groups as the dominant factor, has been widely accepted for about sixty years and attracted 
many scientists. The hypothesis, however, has not been verified or disproved because it is difficult, 
both theoretically and experimentally, to quantify the solvent effects on the free energy change in 
protein folding. Here, we developed a computational method for extracting the dominant factor behind 
thermodynamic stability of proteins and applied it to a small, designed protein, chignolin. The resulting 
free energy profile quantitatively agreed with the molecular dynamics simulations. Decomposition of 
the free energy profile indicated that intramolecular interactions predominantly stabilized collapsed 
conformations, whereas solvent-induced interactions, including hydrophobic ones, destabilized them. 
These results obtained for chignolin were consistent with the site-directed mutagenesis and calorimetry 
experiments for globular proteins with hydrophobic interior cores.

Understanding the dominant factor behind thermodynamic stability of proteins remains a challenging issue in 
biochemistry, biophysics, and molecular biology1–3. Several theories explaining protein stability have been pro-
posed. In 1936, Pauling and Mirsky suggested that a protein achieved a uniquely defined conformation held in 
place by N-H···O hydrogen bonds between the nitrogen and oxygen atoms in the peptide chain, the interaction 
energy of each bond being approximately 5 kcal/mol4. Three years later, Bernal suggested that the hydrophilic res-
idues of a protein were exposed to the aqueous solution, whereas the hydrophobic parts were in contact with each 
other in the interior of the protein5. In 1951, Pauling’s group discovered the most important structural elements 
in globular proteins: alpha helices6 and beta sheets7. They, furthermore, pointed out that the backbone N-H and O 
forming intramolecular hydrogen bonds were approximately 2 kcal/mol more stable than those forming intermo-
lecular hydrogen bonds with surrounding water molecules7. In 1959, Kauzmann concluded in his seminal review8 
that hydrophobic attraction was a dominant factor in the thermodynamic stability of the folded conformation 
for many globular proteins. This has been supported by the following experimental observations: (i) the change 
in Gibbs energy for transferring a small nonpolar molecule from an aqueous solution to an organic solvent is 
large and negative8; (ii) the net effect of electrostatic interactions on protein stability is negligibly small9; and (iii) 
numerous nonpolar residues are indeed located in the interior of globular proteins10,11.

In the late 1980s, it became possible to examine the dominant factor behind protein stability by applying 
site-directed mutagenesis. It was shown that (1) both hydrophobic interactions12 and intramolecular hydrogen 
bonding13 contributed substantially to protein stability; (2) the enhancement of van der Waals interactions due 
to tight packing in the protein interior caused by the replacement of small hydrophobic residues with larger ones 
resulted in increased protein stability14; and (3) the effect of hydrogen bonding of peptide groups on protein sta-
bility was comparable to that of hydrogen bonding of side chains13,15. These observations suggest the importance 
of intramolecular interactions in protein stability. Nevertheless, the thermodynamic stability of proteins has been 
basically modeled according to Kauzmann’s hydrophobic interaction hypothesis (e.g., refs 16–18).

Molecular dynamics (MD) simulations are a powerful tool that enables us to investigate large conformational 
changes in proteins19–27. Generalized ensemble MD simulations have been applied to calculate temperature and 
pressure dependence of free energy profile of proteins and peptides24,25. Long equilibrium MD simulations have 
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been performed to characterize folding pathways and free energy changes26,27. In general, a free energy profile of 
a protein can be expressed as a function of a coordinate R:

μ= +F R F R R( ) ( ) ( ), (1)vac ex

where Fvac(R) is the free energy profile in vacuum and μex(R) is the excess chemical potential profile of the protein, 
i.e., the free energy change for hydration, at the coordinate R (Fig. 1a). Fvac(R) consists of intramolecular energy 
and entropy:

= − .F R E R TS R( ) ( ) ( ) (2)vac vac
intra

vac
intra

μex(R) in Eq. 1, which acts as a solvent-induced interaction on the protein, can be expressed as

μ μ μ= +R R R( ) ( ) ( ), (3)ex nonpol pol

where μnonpol(R) is the nonpolar part of μex(R), which is calculated by omitting all partial charges on the protein 
and μpol(R) is the remaining polar part of μex(R). μnonpol(R) is expected to provide the upper limit of the contribu-
tion of the solvent-induced hydrophobic interaction to the hydrophobic collapse of the protein since μnonpol(R) 
includes the nonpolar contributions to μex(R) arising from all polar residues as well. Such a decomposition of F(R) 
should provide insights into understanding the dominant factor in the thermodynamic stability of the protein. 
Here, it can be seen that μex(R) is essentially different from the simple ensemble-average value of solvation free 
energy calculated using conformations generated under the coordinate R in the solvent. This is because μex(R) 
includes the effect of conformation relaxation during the gradual annihilation of either the protein or all the sol-
vent molecules28 (see Fig. 1a). Although the importance of the conformation entropy in Fvac(R) has widely been 
realized, the effect of conformation relaxation on μex(R) has been overlooked or simply ignored (see an example 
in the Supplementary Information); however, we have explicitly evaluated this as described below. Furthermore, 
through liquid-state DFT, it was easy to determine μex(R) and μnonpol(R) (or μpol(R)) as well as the intramolecular 
conformation entropy TS R( )vac

intra , which would have been hard if we had employed explicit-solvent all-atom MD 
simulations.

In this study, we present an efficient computational method to evaluate the free energy profile and the compo-
nents as a function of a coordinate R using a combination of continuum solvent MD simulations and a recently 
developed reference-modified density functional theory (RMDFT) for calculation of solvation free energy29–32. 
The reliability of RMDFT in calculating the solvation free energy has been demonstrated by comparing experi-
ments on organic solute molecules29,32. In contrast to continuum solvent models, the present method allows for 
hydration effects to be taken into consideration at a molecular level. We applied this method to a small, designed 
protein, chignolin, consisting of ten amino acids with the sequence GYDPETGTWG33, and revealed a dominant 
factor responsible for the thermodynamic stability as well as temperature- and pressure-induced unfolding of 
chignolin.

Figure 1.  Calculation scheme of free energy profile of a protein. The distance between alpha carbon atoms at 
the C-terminus and N-terminus (shown as yellow spheres) is introduced as the coordinate R specifying the 
dimensions of the protein. (a) Thermodynamic cycle depicting the relationship in Eq. 1 among the free energy 
profile of the protein in water, F(R), the free energy profile in vacuum, Fvac(R), and the excess chemical potential 
profile, μex(R), at a distance R. (b) Two different thermodynamic cycles, which allow for the calculation of F(R) 
and Fvac(R), if the following are obtained: free energy profile determined by the generalized Born (GB) model 
umbrella sampling MD simulations with a dielectric constant εr = 80, FGB(R), excess chemical potential profile 
of the protein in the GB model with εr = 80 (Eq. 4), μ R( )ex

GB , and free energy difference between the protein in 
water described by the GB model and that described by the RMDFT model (Eq. 7), μΔ R( )DFT

GB .
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Computational Method
We calculated the free energy profile F(R) and its components Fvac(R) and μex(R) for chignolin as a function of a 
coordinate R. The distance between the alpha carbon atoms at the C-terminus and the N-terminus was chosen as 
the coordinate R. It is not easy to determine the most suitable single reaction coordinate to characterize folding 
kinetics. However, we aimed to obtain the free energy profile F(R) as a function of the measure of the dimensions 
of chignolin, and we chose the end-to-end distance as R as it is one of the common measures of the dimensions of 
polymers. It should be noted that the free energy difference and its decomposition between folded and extended 
conformations do not depend on the pathway and depend only on the initial and final state. Thus, the conclusion 
based on the decomposed free energy differences is not affected by the choice of the coordinate parameter.

There are steep energy barriers associated with structural changes involving cleavage of intramolecular 
hydrogen bonding, which make it difficult to directly calculate the free energy profile in vacuum, Fvac(R), using 
umbrella sampling. In fact, exchange of the intramolecular hydrogen bonding in vacuum is very rarer than in 
water due to the higher energy barriers since no water molecules are surrounding chignolin. We thus chose an 
alternative approach: first, we calculated the free energy profile FGB(R) in a continuum solvent with a dielectric 
constant of water (εr = 80), FGB(R), using implicit-solvent generalized Born (GB) umbrella sampling MD simula-
tions (Fig. 1b), which are much faster than explicit-solvent all-atom umbrella sampling MD simulations; second, 
as shown later, we obtained Fvac(R) from FGB(R).

The excess chemical potential profile for the GB model, μ R( )ex
GB , was calculated by the free energy perturbation 

method as follows:

∑μ μ μ= Δ − Δε
ε

ε
ε

= +

+R R R( ) [ ( ) ( )]/2, (4)a
n

ex
GB

0 a
a

a
a

1
1

with

μ ε εΔ = − 
− Δ − Δ 

ε
ε

ε
R k T G G k T( ) ln exp ( ( ) ( ))/ ,

(5)B solv j solv i B
R

GB GB
j
i

i

where n is the number of intermediate states between εr = 1 (vacuum) and 80 (liquid water), ε
 R

i represents the 
ensemble average of conformations generated by GB MD simulations with a dielectric constant of εi, in which the 
coordinate is fixed at R, and εΔG ( )solv i

GB  is the solvation free energy of chignolin calculated from the dielectric con-
stant εr = εi. It should be noted that the solvation free energy given for each conformation serves as a potential 
energy term in the effective Hamiltonian of GB MD simulations. Thus, the solvation free energy appears in Eq. 5 
instead of the protein-water interaction energy that usually appears in explicit-solvent all-atom MD free energy 
perturbation calculations (Appendix A in the Supplementary Information). As shown in Fig. 1b, the free energy 
profile in vacuum, Fvac(R), can be obtained from

μ= − .F R F R R( ) ( ) ( ) (6)vac exGB
GB

An interval of ΔR = 0.1 nm was employed, and thus, steep changes in Fvac(R), included within an interval less 
than ΔR, were fully or partially omitted. However, this was not problematic because we focused on the overall 
profile of Fvac(R).

The GB model is computationally favorable, but it is less accurate and tends to underestimate solvation of 
polar groups34–36. To obtain a more reliable free energy profile, we calculated the free energy difference between 
the solute in water described by the GB model and that described by the RMDFT model,

μ εΔ = − 
− Δ − Δ = 


ε =

R k T G G k T( ) ln exp ( ( 80))/ ,
(7)B hyd solv r B

RDFT
GB DFT GB 80r

where ΔGhyd
DFT is the hydration free energy according to the RMDFT model and includes the effects of tempera-

ture and pressure32. Finally, the free energy profile in water, F(R), and the excess chemical potential profile, μex(R), 
were obtained from

μ= + ΔF R F R R( ) ( ) ( ) (8)GB DFT
GB

and

μ μ μ= + ΔR R R( ) ( ) ( ), (9)ex ex
GB

DFT
GB

respectively (Fig. 1b). It is noted that we can use the free energy perturbation by Eq. 7 to calculate F(R) at high 
pressures, if the ensemble average ε =

 R
80r  includes enough conformations that becomes important at the high 

pressures. The validity is all the free energy perturbation calculations used above should be assessed by the stand-
ard error. We were now able to evaluate separately the two components of the free energy profile, namely the 
purely intramolecular part, Fvac(R), and the solvent-induced part, μex(R). These were further decomposed as dis-
cussed below.

Results
Decomposition of the free energy profile.  The curves in Fig. 2a represent the free energy profiles F(R) 
and FGB(R) at 298 K. The distance R = 0.5 nm corresponds to the native state, and these free energy profiles are 
plotted, so that the value becomes zero at this distance. The misfolded state37–41 is found at distances around 
R = 0.6 nm (see Fig. S1 in the Supplementary Information) due to inaccurate force field parameters for glycine 
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backbone39. The free energy profile corrected by the RMDFT method, F(R), sharply increases and then reaches a 
plateau as the distance R increases from 0.5 nm, whereas FGB(R) gradually increases. There are some small min-
ima in the plateau region of F(R) (e.g., R = 1.8, 2.1, and 2.6 nm). A similar plateau in F(R) has been reported by 
a generalized-ensemble all-atom MD simulation with explicit solvent by Okumura25. The free energy difference 
between the native and denatured states was determined by Okumura to be 4.6 kBT. This value is quantitatively 
consistent with the 4.9 kBT observed at the minimum on the plateau region of F(R). This quantitative agreement 
shows the validity of the present method, at least, for chignolin. In contrast, the free energy profile of the GB 
model, FGB(R), increased with increasing R for R > 1.3 nm. This substantial difference indicates the necessity of 
using the RMDFT method to describe the solvation of chignolin in water.

The curves in Fig. 2b show the free energy profile in vacuum, Fvac(R), the excess chemical potential profile, 
μex(R), and the nonpolar part of μex(R), μnonpol(R), at 298 K. μex(R) decreases with increasing R, whereas Fvac(R) 
increases. Thus, μex(R), namely, the solvent-induced part of F(R), appears to stabilize the unfolded state. Indeed, 
earlier theoretical studies on small peptides42,43 and several proteins44–46 predicted a lower solvation free energy 
for unfolded conformations than for folded ones. In addition, the nonpolar part μnonpol(R) also decreases with 
increasing R, indicating that the solvent-induced hydrophobic interaction μnonpol(R), which gives the upper limit 
of the hydrophobic contribution of μex(R), also stabilizes the unfolded state rather than the folded state. This 

Figure 2.  Free energy profiles of chignolin in water at 298 K. All profiles are shown in kBT and are 
shifted vertically, so that the value becomes zero at a distance of R = 0.5 nm, which corresponds to the 
native state. (a) Free energy profile calculated according to the GB model, FGB(R), and that corrected by 
the RMDFT method, F(R). (b) Free energy profile in vacuum, Fvac(R), excess chemical potential profile, 
μex(R), and nonpolar part of μex(R), μnonpol(R), calculated by removing all partial charges on chignolin (see 
Computational Details). (c,d) These free energy differences from the native state (R = 0.5 nm) are shown 
for the misfolded state at R = 0.6 nm, the transition state (TS) at R = 1.0 nm, and an unfolded state (UFS) at 
R = 1.8 nm. The numbers beside the legends in (b) indicate the vertically shifted value for these profiles. Here 
and hereafter, the error bars for all profiles indicate the standard error. The shown ternary structures are for 
the native state from the Protein Data Bank database (PDB: 1UAO), misfolded state obtained at R = 0.6 nm, 
and unfolded state obtained at R = 1.8 nm. The yellow and red spheres depict the alpha carbon atoms at the 
C-terminus and N-terminus, respectively. In the misfolded state, the relative position of Try-9 compared with 
Try-2 is different from that of the native state because of rotation in backbone torsion angle ψ for Gly-739.
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result qualitatively agrees with MD simulations of peptides by Kokubo et al.43 A similar solvent-induced repulsive 
force has also been shown for large hydrophobic molecules (e.g., fullerene C60) in water44,45. The obtained results 
for chignolin indicate that the intramolecular interactions including van der Waals and electrostatic forces are a 
dominant factor in the collapse of chignolin because the intramolecular-force-driven collapse slightly conquers 
the solvent-induced expansion. This observation is consistent with large-scale molecular dynamics simulations 
for multi-peptide aggregations that are predominantly caused by both van del Waals and Coulomb interactions 
between hydrophobic amino acids46. Furthermore, it is implied that a subtle balance between the competitive 
factors, i.e., the intramolecular interactions and the solvent-induced interactions determines the conformation of 
the native state. These results are inconsistent with Ben-Naim’s theory where hydrophilic interactions play more 
important role on protein stability rather than hydrophobic ones2,47,48; however, we agree with him in terms of the 
importance of electrostatic interactions in protein stability.

Figure 2c,d plot the free energy differences from the native state (R = 0.5 nm) for the misfolded state 
(R = 0.6 nm), transition state (R = 1.0 nm), and unfolded state (R = 1.8 nm). Fvac(R) and μex(R) are respec-
tively increased and decreased at the misfolded state, implying that the relative stability between the native and 
misfolded state is determined as a result of the competition between the intramolecular interactions and the 
solvent-induced interactions. From the comparison with the unfolded state at R = 1.8 nm, the elevation of F(R) at 
R = 1.0 nm is attributable to the reduced stabilization in the solvent-induced interactions for the transition state.

Effect of temperature.  The red solid curve in Fig. 3a shows the RMDFT free energy profile F(R) at 373 K. 
The relative stability of unfolded conformations compared with that of the native state is lower at 373 K than at 
298 K. The free energy change from the folded to unfolded state, ΔFu, was experimentally determined by Honda 
et al.33 to be 0.5 kBT at 298 K and −2.2 kBT at 373 K. Not only the RMDFT method but also the 
generalized-ensemble all-atom MD simulation by Okumura25 estimated the ΔFu higher than the experimental 
values at both temperatures. On the other hand, the relative stabilization of the unfolded state by heating, 
Δ = Δ − ΔF F k T F k T(373 K)/ (298 K)/T u u uB B , where the former and latter were obtained as −0.1 and 2.7, respec-
tively, was, thus, estimated by RMDFT to be −2.8, if we assume the sum of the state probabilities at R = 0.5 and 
0.6 nm as the probability of the folded state. This value is comparable with the experimental value, −2.7.

Figure 3b shows the difference in the free energy profile between 373 K and 298 K, Δ =F R F R( ) ( , 373 K)/T
−k T F R k T( , 298 K)/B B , and the corresponding differences for the two components, Δ F R( )T vac  and μΔ R( )T ex , 

where μΔ = Δ + ΔF R F R R( ) ( ) ( )T T vac T ex . μΔ R( )T ex  increases with increasing R mainly because of the increase in 
the electrostatic part of μΔ R( )T ex , μΔ R( )T pol , as shown in Fig. 3c. This result shows that the electrostatic part of the 

Figure 3.  Comparison of free energy profiles for chignolin in water at 298 K and 373 K. (a) Free energy profile 
calculated according to the GB model, FGB(R), and that corrected by the RMDFT method, F(R). (b) Difference 
between the free energy profiles at 373 K and 298 K, Δ = −F R F R k T F R k T( ) ( , 373 K)/ ( , 298 K)/T B B  and the 
corresponding differences for the two components, Δ F R( )T vac  and μΔ R( )T ex , where ∆ = ∆ +F R F R( ) ( )T T vac

R( )T exμΔ . (c) Nonpolar part and polar part for μΔ R( )T ex , μΔ R( )T nonpol  and μΔ R( )T pol , respectively, where 
μ μ μΔ = Δ + ΔR R R( ) ( ) ( )T ex T nonpol T pol . (d) Free energy profile in vacuum, Fvac(R), and its energy part, E R( )vac

intra , at 
298 K and 373 K. The difference between Fvac(R) and E R( )vac

intra  corresponds to the entropic term of Fvac(R), 
− = −TS R F R E R( ) ( ) ( )vac

intra
vac vac

intra  (see Eq. 2).
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solvent-induced interaction significantly suppresses the high-temperature unfolding. In contrast, Δ F R( )T vac  
decreases with increasing R, as seen in Fig. 3b, indicating that the stabilization of the unfolded state at high tem-
perature is attributable to the intramolecular free energy Fvac(R). In Fig. 3d, we show a comparison between 
Fvac(R) and the energy part of Fvac(R), E R( )vac

intra , at 298 K and 373 K. E R( )vac
intra  is similar at 373 K and 298 K, whereas 

the intramolecular free energy Fvac(R) for the unfolded conformations is lower at 373 K than at 298 K. We, there-
fore, conclude that the dominant factor in high-temperature unfolding is intramolecular conformation entropy, 
−TS R( )vac

intra  (see Eq. 2), because the intramolecular-conformation-entropy-driven unfolding slightly overcomes 
the solvent-induced collapse.

Effect of pressure.  Figure 4a shows the pressure dependence of F(R) at 298 K. The unfolded state becomes 
more stable than the folded state with increasing pressure, although the barrier at R = 1.1 nm is somewhat raised 
by the pressurization. High-pressure unfolding of chignolin has previously been observed by FT-IR and FRET 
experiments49 and a similar behavior for F(R) has also been obtained by the generalized-ensemble all-atom MD 
simulations by Okumura25. The partial molar volume change from the folded to unfolded state, 
Δ = ∂Δ ∂V F P( / )u T, which is a crucial thermodynamic quantity that characterizes the pressure-induced unfold-
ing, was obtained by RMDFT as −5.3 cm3/mol in the same manner as the heat denaturation. This value is com-
parable with the all-atom MD simulation value obtained by Okumura, −5.6 cm3/mol25. Both the values are 
slightly larger than the experimental value, −8.8 cm3/mol49.

Figure 4b shows the difference in the free energy between 8000 bar and 1 bar, Δ =F R F R( ) ( , 8000 bar)/P
−k T F R k T( , 1 bar)/B B , which is identical to the difference in the excess chemical potential profile μΔ R( )P ex  

because Fvac(R) is independent of pressure. The maximum of μΔ R( )P ex  at a distance of R = 1.1 nm indicates that 
the conformations near the transition state have a larger excess partial molar volume than the other conforma-
tions including the native ones. This is because there would exist many narrow spaces that prevent water mole-
cules from accessing the protein surface. It is remarkable that both the polar part of μΔ R( )P ex , μΔ R( )P pol , and the 
nonpolar part, μΔ R( )P nonpol , are lower by 3~4 at a distance of R = 3.0 nm. The unfolded state, therefore, is stabi-
lized at high pressure by both the nonpolar part50 and electrostatic part of the solvent-induced interaction. The 
decrease in the polar part, μΔ R( )P pol , with increasing R under high pressure is consistent with the mechanism of 
high-pressure unfolding of proteins proposed by Chalikian and Macgregor51.

Figure 4.  Effect of pressure on the free energy profile F(R). (a) Pressure dependence of the free energy profile at 298 K. 
(b) Difference in the free energy between 8000 bar and 1 bar, ∆ = −F R F R k T F R k T( ) ( , 8000 bar)/ ( , 1 bar)/P B B . 
Shown are the excess chemical potential difference, μΔ R( )P ex , the nonpolar part μΔ R( )P nonpol , and the electrostatic 
part, μ μ μΔ = Δ − ΔR R R( ) ( ) ( )P pol P ex P nonpol , resulting from the independence of Fvac(R) on pressure.
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Concluding Remarks
Kauzmann’s hydrophobic interaction hypothesis rests on the following assumption: either there is a precise com-
pensation in the interaction energy between dehydration of polar groups and intramolecular hydrogen-bond 
formation or the effect of electrostatic interactions on protein stability is negligibly small. For chignolin, which is 
thought to possess both intramolecular hydrogen bonds and potential hydrophobic bonds in the native state33, 
it was shown that neither the nonpolar part nor the polar part of the solvent-induced interaction plays a pre-
dominant role in the collapse of chignolin. In fact, the solvent-induced interaction rather stabilizes the unfolded 
conformations mainly due to the electrostatic part of μex(R). Therefore, the dominant factor in the collapse of 
chignolin is the intramolecular interactions including van der Waals and electrostatic forces. Furthermore, the 
conformation of the native state is determined by the subtle balance between competitive factors, i.e., the intra-
molecular interactions and the solvent-induced interactions. It is remarkable that these results obtained for chi-
gnolin are consistent with the conclusions of previous studies on site-directed mutagenesis of globular proteins 
with interior hydrophobic cores13,14.

It has been demonstrated by calorimetry experiments that thermal unfolding of globular proteins is an endo-
thermic and entropy-driven process, where TΔSu = ΔHu > 0, if ΔGu = 0, and where ΔGu, ΔHu, and ΔSu are 
change in Gibbs energy, enthalpy, and entropy due to unfolding, respectively52,53. In contrast, low-temperature 
unfolding is, therefore, an exothermic and entropy-reduction process, while such an observation is limited due 
to freezing of protein solutions. Therefore, widely observed protein folding from high-temperature unfolded 
states is an exothermic process with a decrease in entropy. The intramolecular-force-driven collapse hypothesis 
extracted from chignolin is consistent with the exothermic behavior upon protein folding, even though chignolin 
has no hydrophobic interior cores. This hypothesis can also provide a proper explanation for the exothermic 
aggregation generally observed for heat-denatured proteins53,54. However, these arguments as well as the results 
obtained for chignolin do not necessary guarantee the validity of this hypothesis on the thermodynamic stability 
of general proteins, thus we need further investigations for several larger proteins to assess the general validity of 
this conclusion.

The thermodynamic stability mechanism presented on the basis of the competition between the intramo-
lecular interactions and the solvent-induced interactions may underlay the remarkable successes of the protein 
tube-like model55,56 and the Go-like model57,58. Furthermore, the competition between these opposing factors 
would also provide a new insight into self-assembly of bio/soft materials; especially, the physical origin of their 
softness in aqueous solutions may be attributed to the solvent-induced interactions because amphiphilic polymers 
such as poly(N-isopropylacrylamide) that are solid in vacuum due to direct intramolecular and intermolecular 
interactions become soft and swollen when immersed in water.

In our previous study32, based on an effective energy defined as the sum of intramolecular interaction energy 
and solvation free energy of each conformation generated by MD simulations in water, we had obtained qualita-
tively equivalent results for the thermodynamic stability of chignolin, which, though, had significantly overesti-
mated the stability of folded conformations [see the argument at the beginning of the Supplementary Information 
as well as ref.32]. Thus, in the present work, we developed the computational method on the direct free energy 
decomposition for flexible protein molecule and applied it to chignolin again. The direct free energy decom-
position demonstrates that we can apply the effective energy analysis to determine the predominant factor in 
the thermodynamic stability of proteins instead of using the time-consuming direct free energy decomposition. 
Investigating whether the competition mechanism holds in the thermodynamic stability of proteins with hydro-
phobic interior cores as well, using these methods or more improved ones with respect to conformation sampling, 
is our future important project.

Computational Details
Molecular simulations.  Isothermal MD simulations59 were performed using the Gromacs 5.0.7 suite60 with 
the generalized Born (GB)/surface area (SA) continuum solvent model61 and the Amber99SB force field62. The 
time step in the MD simulations was 1.0 fs. All intramolecular bonds were constrained using the LINCS algo-
rithm63. Non-bonded interactions were not truncated. In all the GB MD simulations for the coordinate R except 
for umbrella sampling, the distance between the alpha carbon atoms at the C- and N-terminus was fixed by a 
constraint.

Umbrella sampling.  The free energy profile for the unfolding of chignolin in a continuum solvent described 
by the GB model, FGB(R), was calculated from a set of umbrella sampling MD simulations using the weighted 
histogram analysis method (WHAM)64. A harmonic potential with a force constant of 1875 kJ mol−1 nm−2 was 
applied for the distance between the alpha carbon atoms at the C-terminus and N-terminus. The histogram of 
the force on these atoms was obtained from a 50-ns simulation for every window. The spacing of the windows 
along the coordinate R was 0.0125 nm and the number of windows was 208. The standard deviation of FGB(R) was 
estimated by a bootstrap analysis64.

RMDFT calculations.  The hydration free energy of the RMDFT model, ΔGhyd
DFT, was calculated for 5000 

conformations generated by a 50-ns GB MD production run after a 10-ns equilibration at each R. The details of 
the RMDFT model are given in Appendix C of the Supplementary Information and our previous study32. The 
standard deviation of μΔ R( )DFT

GB  was evaluated by decomposing the 5000 conformations into five equal blocks.

Excess chemical potential of the GB model, μ R( )ex
GB .  Twelve intermediate states, εr = 40, 20, 10, 5, 4.2, 

3.5, 2.9, 2.4, 2.0, 1.7, 1.4, and 1.2 were considered when calculating μ R( )ex
GB . The GB MD simulations of the inter-

mediate states were performed sequentially. The conformation obtained at the end of the simulation with one step 
higher εr value was used as the initial conformation of the simulation at one step lower εr value. An equilibration 
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run was performed for 10 ns, and the data of 5000 conformations generated by the following 50-ns production 
run were used to calculate μΔ ε

ε R( )
j
i  for every intermediate state. The standard deviation of μΔ ε

ε R( )
j
i  was evaluated 

in the same manner as for μΔ R( )DFT
GB .

Nonpolar part of μex(R), μnonpol(R).  μΔ R( )80
1  and μΔ R( )1

80  were calculated from 5000 conformations gen-
erated by 50-ns production run without all partial charges on chignolin using the dielectric constants εr = 1 (in 
vacuum) and εr = 80 (with only the nonpolar SA term), respectively. μnonpol(R) is given as the sum of 

μ μΔ − ΔR R[ ( ) ( )]/280
1

1
80  and μΔ R( )DFT

GB , as given by Eq. 7.
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