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Electroencephalography (EEG) can reveal the abnormalities of dopaminergic subcortico-
cortical circuits in patients with Parkinson’s disease (PD). However, conventional time-
frequency analysis of EEG signals cannot fully reveal the non-linear processes of neural
activities and interactions. A novel Holo-Hilbert Spectral Analysis (HHSA) was applied to
reveal non-linear features of resting state EEG in 99 PD patients and 59 healthy controls
(HCs). PD patients demonstrated a reduction of β bands in frontal and central regions,
and reduction of γ bands in central, parietal, and temporal regions. Compared with
early-stage PD patients, late-stage PD patients demonstrated reduction of β bands in
the posterior central region, and increased θ and δ2 bands in the left parietal region.
θ and β bands in all brain regions were positively correlated with Hamilton depression
rating scale scores. Machine learning algorithms using three prioritized HHSA features
demonstrated “Bag” with the best accuracy of 0.90, followed by “LogitBoost” with
an accuracy of 0.89. Our findings strengthen the application of HHSA to reveal high-
dimensional frequency features in EEG signals of PD patients. The EEG characteristics
extracted by HHSA are important markers for the identification of depression severity
and diagnosis of PD.

Keywords: electroencephalography, Holo-Hilbert spectral analysis, machine learning, Parkinson’s disease,
depression

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease affecting the brain, predominantly
pigmented nuclei in the midbrain, brainstem, cerebral cortex and olfactory tubercle (Braak
et al., 2003). Other than motor symptoms, PD also presents cognitive symptoms, which usually
occur during more advanced stages of disease or may coincide with motor symptoms if
there is a disruption of fronto-striatal circuits (Marsden, 1982; Cooper et al., 1991). Although
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the neurodegeneration of PD occurs mainly in subcortical
structures, dopaminergic cortical-subcortical circuits between the
basal ganglion, thalamus, and frontal lobes are also affected
(Alexander et al., 1986). The disruption of these circuits leads to
specific cognitive deficits in patients with PD.

The activity of cortical neurons averaged over the cortex
can be illustrated using electroencephalogram (EEG) (Nunez
et al., 2001). EEG signals can be considered as brain-computer
interface systems (BCI), as EEG-based intelligent BCI enables
the uninterrupted monitoring of fluctuations in human cognitive
states and is beneficial for healthcare support and research
in various fields. This system registers the capability of
human brain interaction with the environment and advanced
technology via machine learning algorithms. EEG signals directly
measure cortical electrical activity with high temporal resolution
(Ramadan and Vasilakos, 2016) and is the most largely used
non-invasive modality for both real-world BCIs and clinical use
(Schalk et al., 2004). With comparatively high signal quality,
reliability and mobility compared to other imaging approaches,
EEG devices collect signals in non-overlapping frequency bands,
where their powerful intra-band connection reflects distinct
behavioral states (Zhang et al., 2017), and present diverse
corresponding features and motifs. Moreover, the temporal
resolution is exceedingly high, up to the millisecond level,
with minimal risk compared to other invasive and non-invasive
modalities. Nonetheless, a drawback of the EEG is the low spatial
resolution within signals ensuing from the limited number of
electrodes. Hence, this obligates consideration of the inferior
signal-to-noise ratio since objective factors like environmental
noise and subjective factors like fatigue status could contaminate
the EEG signals. Thus, a broad category of unsupervised
learning algorithms for signal enhancement, namely blind
source separation, estimates original sources and parameters
of a mixing system and removes artifact signals, including
eye blinks and movement (Sweeney et al., 2012). Independent
component analysis (ICA) is the most widely used blind source
separation (BSS) method as it decomposes observed signals
into independent components and restructures clean signals by
eradicating independent components comprising artifacts (Gu
et al., 2021). Machine learning has been incorporated into EEG
signals’ analysis, and is a subset of computational intelligence
comprising numerous research areas. Machine learning depends
on general patterns of reasoning via computer systems to
investigate a specific task without providing obvious coded
instructions. In supervised learning, it divides the data into two
subsets during the learning process: a training set (i.e., dataset
to train a model) and a test set (i.e., dataset to test the trained
model). Supervised learning can be used for classification and
regression by applying what has been learned in the training
stage using labeled examples to test the new data (i.e., testing
data) to classify types of or predict future events. Contrariwise,
unsupervised learning is utilized when the data used for training
are neither classified nor labeled (Kasabov, 2001). In EEG-based
BCI applications, numerous model types have been used and
developed for machine learning, where prominent families of
models comprise linear classifiers, neural networks, non-linear
Bayesian classifiers, nearest neighbor classifiers, and classifier

combinations (Kotsiantis et al., 2006). To apply machine learning
algorithms to EEG data, EEG signals must be pre-processed and
their features extracted from raw data, including frequency band
power and connectivity features between two channels (Daly
et al., 2012). The training data used to train the classifier and test
data for estimating the classifier belong to the same feature space
and follow the same probability distribution (Gu et al., 2021).

Following the above, studies show that EEG is useful in
identifying alterations in electrical activity in the brains of PD
patients. Han et al. (2013) analyzed EEG signals in patients with
PD and healthy controls (HCs), and found increased powers
in θ and δ bands, and reduced powers in the α and β bands.
Benz et al. (2014) discovered significant differences in EEG
activity between patients with PD and Alzheimer’s disease (AD),
with more pronounced slowing of EEG in patients with PD
compared to AD group (Benz et al., 2014). Babiloni et al.
(2011) mapped eye-closed resting state EEG (rsEEG), and found
abnormal alterations of δ bands at central regions, as well as
θ and β bands at posterior cortical regions. Cao et al. (2021)
used event-related spectral perturbation analysis to investigate
EEG spectral dynamics induced by different walking phases
and distinguished EEG signals throughout the transition from
walking to voluntary stopping from those during the transition to
involuntary stopping caused by freezing of gait (Cao et al., 2021).
However, EEG signals in the above studies were only inspected
visually based on a set of qualitative rules with subjective
interpretations (Ebersole and Pedley, 2003). The non-linear and
non-stationary processes of neural activities and interactions
cannot be fully revealed with conventional time-frequency
analysis based on linear Fourier and Wavelet transforms (Huang
et al., 2016). Development of a new models for EEG signal
analysis is thus necessary to detect information about neuronal
firings and their interactions, including cross-scale coupling of
neural networks through synchronizations, resonance, phase
locking, and amplitude modulations (AM). Fuzzy models, which
apply fuzzy rules, fuzzy logic, and fuzzy measure theory (i.e.,
fuzzy integrals) to a fuzzy inference system, are better for
processing non-linear and non-stationary EEG signals in BCI
research (Gu et al., 2021). As such, this has been widely used
in entropy analysis to measure the dynamic complexity of
signals, and is a crucial and urgent development as the state of
complexity in humans is significantly affected by health. Cao and
Lin (2018) demonstrated that inherent fuzzy entropy (Inherent
FuzzyEn) and its multiscale version, which utilized empirical
mode decomposition (EMD) and fuzzy membership function
(i.e., exponential function), addresses the dynamic complexity in
EEG data (Cao and Lin, 2018). This method was also applied
successfully in investigating the extraction of repetitive steady-
state visual evoked potentials to investigate EEG complexity
change in patients with migraine (Cao et al., 2020).

Adhering to this, recent studies systematically demonstrate
that the Holo-Hilbert spectrum analysis (HHSA) can reveal
dimensional and non-linear characteristics of EEG signals in the
domain of visual perception (Nguyen et al., 2019; Juan et al., 2021)
and working memory (Liang et al., 2021), and outperformed
conventional linear analytical methods (i.e., Fourier and Wavelet
analyses). HHSA is an innovative investigation instrument based
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on EMD and Hilbert Huang Transformation (Huang, 1998;
Huang et al., 2016) which delivers an informational and high-
dimensional frequency illustration of data from non-stationary
and non-linear processes. This comprehensive method permits
the investigation of the carrier and AM frequencies, as well
as their interactions in neuronal oscillations. This approach is
particularly important to further elucidate differences in non-
linear neural processing of the envelope in AM signals in PD
patients and HCs, thus providing potential neurodegenerative
signals within the cortex of patients with PD.

Through this analysis, we desire to detect a decrease in higher
frequency and increase in lower frequency powers, as indicated in
previous reports (Tanaka et al., 2000; Kotini et al., 2005; Bosboom
et al., 2006; Moazami-Goudarzi et al., 2008). Differences in the
rsEEG of PD patients could also yield an impact on their cognitive
or psychiatric status (Soikkeli et al., 1991; Caviness et al., 2007).
Hence, in this study, we analyzed eye opening and closing rsEEG
in age- and sex-matched patients with PD and HCs using the
HHSA as this method can divulge the non-linear and non-
stationary processes of neural activities and interactions of the
rsEEG in both groups. We then looked for whether there were any
association of the rsEEG with clinical assessments in both groups,
and correlated the HHSA results with clinical and psychiatric
scale scores. The HHSA features extracted from EEG signals were
further analyzed by machine learning algorithms to generate a
predictive model to distinguish between PD patients and HCs.

MATERIALS AND METHODS

Patient Recruitment
This is a cross-sectional study were patients were recruited during
2018/07/01 to 2020/12/31 in Chang Gung Memorial Hospital-
Linkou Medical Center in Taiwan. Patients were diagnosed
with PD according to the UK Brain Bank criteria for PD
Demographic information, Levodopa Equivalent Daily Dose
(LEDD) (Tomlinson et al., 2010), the Unified Parkinson’s Disease
Rating Scale (UPDRS) (Goetz, 2003) and Hoehn and Yahr
(H&Y) stage (Hoehn and Yahr, 1967) were recorded for each
patient. All patients underwent a battery of neuropsychological
assessments including the Mini-Mental State Examination
(MMSE) (Tombaugh and McIntyre, 1992), Montreal Cognitive
Assessment (MoCA) (Nasreddine et al., 2005), Clinical Dementia
Rating (CDR) (Morris, 1993), Beck Depression Inventory II
(BDI-II) (Beck et al., 1996), Hamilton Depression Rating Scale
(HAM-D) (Hamilton, 1986), Activities of Daily Living (ADL)
(Lawton and Brody, 1969), the Parkinson’s Disease Questionnaire
(PDQ-39) (Jenkinson et al., 1995), and Neuropsychiatric
Inventory Questionnaire (NPI) (Cummings, 1997). Patients
with PD (H&Y stage 1–2) were defined as those in early
stage (EPD), while those with H&Y stage greater than 2 were
classified as those in late stage (LPD). Sex- and age-matched
HCs were randomly recruited from neurology outpatient clinics.
All subjects had no systemic infection, chronic renal failure,
cardiac or liver dysfunction, malignancies, autoimmune diseases,
stroke, or neurodegenerative diseases other than PD. Diagnoses
were determined by two experienced neurologists in movement

disorders (K. H. Chang and C. M. Chen) who were blinded to
both EEG and neuropsychiatric results.

Electroencephalography Acquisition
Protocol
Electroencephalography data acquisition was performed using
the Brain Products GmbH amplifier (Brain Amp) with a 32-
channel EEG cap (EASYCAP) according to the international
10–20 system. Both caps were saturated with Ag/AgCl gel and
placed on all participants’ heads. The whole 10-min for both eye-
closed and eye-opened resting EEG were digitized at a 2,500 Hz
(5 PD) and 5,000 Hz (59 HCs, 95 PD) sampling rate without
any online filters. The reference was the average of electrodes at
the two sides of the mastoid (A1 and A2) or POZ. Two pairs of
bipolar electrodes were also mounted to detect eye movements
with the VEOU and VEOL electrodes placed above and below
the left eye, respectively, with the HEOR and HEOL electrodes
positioned adjacent to the canthus of each eye. The impedances
of all channels were maintained below 5 k�.

Electroencephalography Recording,
Preprocessing, and Denoising
Electroencephalography recordings were all downsampled to
2500 Hz and re-referenced to the frontal cephalic (Fz) channel,
and further standardized to 26 channels (FP1, FP2, F7, F3,
Fz, F4, F8, FC1, FC2, FC5, FC6, C3, Cz, C4, CP1, CP2, CP5,
CP6, P3, P7, Pz, P4, P8, O1, Oz, O2). The data were then
fragmented into consecutive epochs of 8000 ms. EEG epochs
with ocular, muscular, and other artifacts were preliminarily
identified and excluded by a computerized automatic procedure
using ICA. The HHSA was then used to compute the power
spectrum of each trial.

Holo-Hilbert Spectral Analysis for
Electroencephalography Recordings
Holo-Hilbert spectral analysis is an analytical method derived
from Hilbert-Huang Transform (HHT) for analyzing complex
signals such as EEG (Huang et al., 1998, 2016; Nguyen et al.,
2019; Liang et al., 2021). HHT was achieved by using EMD and
estimating instantaneous frequency by Hilbert transform. The
EMD decomposed data into a finite number [∼log2 (length
of data)] of intrinsic mode functions (IMFs) and generated
a high-resolution time-frequency spectral representation
(Figures 1A–E).

In EMD, each IMF is obtained by a sifting process with the
following properties: (1) the number of local extrema (including
local maxima and local minima) and the number of zero-
crossings must either be equal or differ by up to 1; and (2) the
mean value of the envelope estimated by local maxima and local
minima should be zero. Based on EMD, the advanced HHSA is
achieved using a process of two-layer EMD of natural signals
and high-dimensional spectral representation. In the current
study, both the first and second layer EMD were performed
using an improved complete ensemble EMD with adaptive noise
(CEEMDAN) method for obtaining the first and second layer
IMFs (Colominas et al., 2012, 2014; Tsai and Liang, 2021).
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FIGURE 1 | Holo-Hilbert Spectral Analysis (HHSA) for the EEG recordings. Diagram of two-layer ensemble empirical mode decomposition (EEMD) of resting EEG
data. (A) Raw EEG signal from a single subject at a single channel. (B) The first layer EEMD decomposes the raw signal into 12 intrinsic mode functions (IMFs).
(C) The instantaneous frequency distribution of first layer IMFs denoting the frequency ranges represented by each IMF. (D) To illustrate the second layer EEMD, the
envelope of IMF7 was extracted. (E) Subsequent application of EEMD on the IMF7 envelope produces the second layer IMFs. (F) Instantaneous frequency
distribution of the second layer IMFs designating the frequency ranges represented by each IMF. (G) Holo-Hilbert spectrum of the carrier wave modulated by the
envelopes. (H) Summated topographical maps of AMs of the carrier wave (0.5–64 Hz) by envelopes (1–128 Hz) frequencies. EC, eye closing; EO, eye opening.
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Compared with the original EMD or ensemble EMD method,
the improved CEEMDAN method has characteristics of less
mode-mixing, lower reconstruction error (i.e., the noise residual
within IMFs) (Wu and Huang, 2009), and higher consistency of
frequency distribution ranges in the order of IMFs for different
noisy signals (Colominas et al., 2014; Tsai and Liang, 2021). The
steps of the two-layer CEEMDAN are described as follows:

Apply the first layer CEEMDAN to data of each EEG channel
to decompose the data into a collection of IMFs (Figure 1B). The
first layer EMD can be expressed as:

x (t) =
n∑

j=1

cj (t)+ rn =

n∑
j=1

aj (t) cos θj (t)+ rn,

in which the signal x (t) is decomposed into n IMFs, and the
jth IMF, cj(t), is further expressed as aj (t) cos θj (t) , where aj (t)
is the amplitude function (AF) achieved using a cubic spline
algorithm, θj (t) is the phase function (PF) obtained using a direct
quadrature (DQ) transform (Huang et al., 2009), and rn is the
final residue (i.e., trend) without any oscillatory characteristics.
The instantaneous frequency (IF) of the jth IMF is obtained by
taking the time derivative of the phase function, θj (t).

Perform the second layer CEEMDAN on the AF (i.e.,
envelope) of each IMF acquired from the first layer EMD (see
Figures 1D,E), given as:

aj (t) =
l2∑

k=1

ajk (t) cos 2jk (t)+ Rjl2 ,

where the jth first layer IMF’s AF, aj (t), is decomposed into
l2 second layer IMFs, and each second layer IMF is further
expressed as ajk (t) cos 2jk (t) , where ajk (t) is the second layer
AF, 2jk (t) is the second layer PF, and Rjl2 is the second layer final
residue without rhythmic characteristics. Therefore, these second
layer IMFs expand each first layer AF in terms of rhythmic AMs
from small to large time scales. The nested form of the entire
two-layer CEEMDAN are:

x (t) =
n∑

j=1

 l2∑
k=1

ajk (t) cos 2jk (t)+ Rjl2

 cos θj (t)+ rn.

By taking the time derivative of the second layer PF, 2jk (t),
we obtained the instantaneous “AM frequency” (Figure 1F). To
highlight the concept of instantaneous “AM frequency” derived
from the second layer CEEMDAN, the original IF obtained from
the first layer CEEMDAN will be referred to as the instantaneous
“carrier frequency” when it is represented in a spectrum.

Given that all the oscillatory information was obtained, such
as the first and second layers of AF, instantaneous frequency, and
instantaneous AM frequency (including instantaneous phase,
and instantaneous AM phase), the spectral representation can be
achieved as follows:

(A) The AM power (i.e., square of the second layer AF) of each
second layer IMF for every specific time point is projected
to the spectrum according to the instantaneous AM

frequency of the second layer IMF, and the instantaneous
frequency of its corresponding first layer IMF, resulting
in the 3D HHS. The coordinate of “carrier frequency” is
consistent with the frequency coordinate in conventional
time-frequency spectrograms.

(B) Take the marginal sum/mean of the 3D HHS (1) over
the AMF axis (or a specific range of the AMF axis,
Figure 1E); (2) over the time axis (or a specific window
of the time axis); or (3) over the carrier frequency axis (or
a specific range of the carrier frequency axis, Figure 1C).
This will result in the 2D time-carrier frequency, carrier-
AM frequency, or time-AM frequency marginal HHS,
respectively. This optional step could be tailored to specific
research interests. For the current resting EEG study, the
marginal sum is taken over the entire time axis to produce
the 2D carrier-AM frequency marginal HHS.

In the 2D carrier-AM frequency marginal HHS, AMF should
be lower than carrier frequency (i.e., d2jk

dt <
dθj
dt ) because

for any given IMF the rhythmic amplitude variations (i.e.,
AMs) should be slower than its corresponding carrier wave.
Therefore, AM power can only exist below the carrier-AM
frequency “equi-frequency” line on the HHS (Figure 1G). In
the present study both the carrier and AM frequencies are
log2-scaled. The lowermost AM frequency bin, denoted as
“trendAM ,” is positioned at the bottom of the HHS, separated
from other higher AM frequency bins. The spectral power in
the trendAM bin signifies the “unmodulated” power estimated
by the trend (i.e., the last component) of each second-layer
EMD. Both AM and carrier frequency bins are categorized
according to physiological frequencies as following: low δ (0.5–
1 Hz), δ1 (1–2 Hz), δ2 (2–4 Hz), θ (4.0–8.0 Hz), α (8–
16 Hz), β (16–32 Hz), low γ (32–64 Hz), and high γ (64–
128 Hz) (Buzsáki and Watson, 2012). The topography of
the amplitude-frequency modulation is then plotted using the
summation of overall activities at all sensors for respective
bands of carriers and AM frequencies (Figure 1H). All
HHSA analyses were performed using customized MATLAB
(MathWorks) scripts.

Statistical Analysis
For results visualization, the time dimension of the spectral
power was summed to produce a two-dimensional Holo-Hilbert
spectrum (AM frequency bins × carrier frequency bins). In
this spectrum, the y-axis represents AM frequency and the
x-axis refers to carrier frequency. All trials were then averaged
and the data from each group were merged as one dataset.
Subsequently, the averaged and merged data of each group was
rescaled by the log ratio to the average of all timepoints to
elevate the homogeneity to fit a normal distribution for further
statistical analysis.

For statistical comparisons, differences of the eye-closed and
eye-open condition within groups were examined using paired
t-test, whereas differences between groups were examined using
independent t-tests. A two-tailed cluster-based non-parametric
permutation test (CBnPP test under p < 0.05 with 5,000
permutations) was conducted on the multichannel HHSA spectra
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TABLE 1 | Clinical characteristics of patients with Parkinson’s disease (PD) in early (EPD) and late (LPD) stages, and healthy controls (HC).

HC PD

(n = 59) EPD (n = 80) LPD (n = 19) Total (n = 99)

Sex (female/male) 31/28 39/41 9/10 48/51

Age (years) 66.59 ± 8.03 65.26 ± 10.76 72.42 ± 9.38 66.65 ± 10.85

Duration (years) 5.88 ± 8.20 13.5 ± 5.52 7.37 ± 8.30

Hoehn and Yahr stage 1.58 ± 0.54 2.89 ± 0.46 1.84 ± 0.75

LEDD (mg) 467.09 ± 435.39 1351.63 ± 659.26 642.16 ± 599.59

Antidepressants (%) 1 (1.69) 2 (2.50) 1 (5.79) 3 (3.03)

Antipsychotics (%) 1 (1.69) 0 2 (10.53) 2 (2.02)

UPDRS-total 1.63 ± 2.20 28.92 ± 16.93* 79.20 ± 39.88*# 40.18 ± 28.68*

UPDRS-part III 0.56 ± 1.26 17.51 ± 9.33* 41.79 ± 15.78*# 22.21 ± 14.47*

MMSE 29.64 ± 9.06 27.36 ± 3.85* 22.11 ± 6.66*# 26.35 ± 4.94*

CDR 0.22 ± 0.25 0.32 ± 0.24 0.66 ± 0.37*# 0.38 ± 0.3*

ADL 99.92 ± 0.65 99.63 ± 1.55 70.0 ± 28.28*# 93.94 ± 16.92*

MoCA 27.86 ± 2.39 24.53 ± 5.73* 18.0 ± 8.67*# 23.27 ± 6.85*

BDI-II 1.68 ± 2.89 6.23 ± 4.83* 16.21 ± 7.14*# 8.14 ± 6.62*

HAM-D 1.63 ± 2.73 5.05 ± 3.62* 10.89 ± 6.40*# 6.17 ± 4.84*

PDQ-39 6.10 ± 8.24 23.20 ± 18.25* 68.11 ± 33.69*# 31.82 ± 28.16*

NPI 0.54 ± 1.72 1.89 ± 2.71* 7.58 ± 7.47*# 2.98 ± 4.61*

*Statistically significantly different in comparison with HC.
#Statistically significantly different in comparison with PD in early stage.
ADL, Activities of Daily Living; BDI-II, Beck Depression Inventory II; CDR, Clinical Dementia Rating; HAM-D, Hamilton Depression Rating Scale; LEDD, Levodopa Equivalent
Daily Dose; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; NPI, Neuropsychiatric Inventory Questionnaire; PDQ-39, Parkinson’s Disease
Questionnaire; UPDRS, Unified Parkinson’s Disease Rating Scale.

(channels × AM frequency bins × carrier frequency bins)
for multiple comparisons correction (Maris and Oostenveld,
2007). The neighboring distance between two EEG sensors was
defined as 75 mm with 5000 permutations for each test. Though
unconventional compared to the Bonferroni or false discovery
rate (FDR), it is recognizably efficient for multiple comparison
errors (Maris and Oostenveld, 2007). This was done for both NC
and PD groups, and further for EPD and LPD groups.

Pearson’s correlation analysis was performed to analyze the
linear dependence between two variables. Sex distribution was
analyzed using a χ2 test. Each set of data was expressed as
mean ± standard deviation. All P-values were two-tailed, and
P < 0.05 was considered significant.

Classification, Feature Extraction and
Selection for Machine Learning
Electroencephalography components were extracted from each
AM of 26 electrodes, where the ratio between two EEG
components was used as a feature. The total number of features
was 172,640. Afterward, a correlation analysis was conducted
on features, which retained one distinct feature from a cluster
of features with a correlation greater than 0.95. Subsets of
100 features from the tens of thousands of remaining features
were applied to the LogitBoost algorithm to select the three
most prioritized features from every subset. This procedure was
iterated until the number of features was reduced to 3, crucial
for the function in the final model. In this study, seven common
algorithms were employed: LogitBoost, Bagging (Bag), Gentle
adaptive boosting (GentleBoost), Decision tree (Tree), support

vector machine (SVM), Naïve Bayes and K-Nearest Neighbor,
all of which were implemented via the MATLAB software.
The models’ performance estimation was further analyzed using
receiver operating characteristic (ROC) curves to determine the
area under the ROC curve (AUC), and values of sensitivity,
specificity, precision, F1 measure, and accuracy.

RESULTS

Demographic Features of Parkinson’s
Disease Patients
This study recruited 99 patients with PD and 59 cognitively
normal subjects as HCs (Table 1). Patients with PD demonstrated
significantly higher scores in CDR (PD: 0.38 ± 0.3, HC:
0.22± 0.25, P = 0.001, Cohen’s d = 0.58), BDI-II (PD: 8.14± 6.62,
HC: 1.68 ± 2.89, P < 0.001, Cohen’s d = 1.26), HAM-D (PD:
6.17 ± 4.84, HC: 1.63 ± 2.73, P < 0.001, Cohen’s d = 1.16),
PDQ-39 (PD: 31.82 ± 28.16, HC: 6.10 ± 8.24, P < 0.001,
Cohen’s d = 1.24), and NPI (PD: 2.98 ± 4.61, HC: 0.54 ± 1.72,
P < 0.001, Cohen’s d = 0.70), compared with HCs. MMSE
(PD: 26.35 ± 4.94, HC: 29.64 ± 9.06, P < 0.001, Cohen’s
d = 0.45) and MoCA (PD: 23.27 ± 6.85, HC: 27.86 ± 2.39,
P < 0.001, Cohen’s d = 0.90) were significantly lower in PD
patients compared with HCs. LPD patients were older (EPD:
65.26 ± 10.76 years, LPD: 72.42 ± 9.38 years, P = 0.002, Cohen’s
d = 0.71), had a longer disease duration (EPD: 5.88 ± 8.20 years,
LPD: 13.5 ± 5.52 years, P < 0.001, Cohen’s d = 1.10), greater
scores for UPDRS (EPD: 28.92 ± 16.93, LPD: 79.20 ± 39.88,
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FIGURE 2 | Electroencephalography power difference between PD and HC using Holo-Hilbert Spectrum Analysis (HHSA). Holo-Hilbert topography (HHT) in the
eyes-closed minus the eyes-open condition based on cluster-based non-parametric permutations in the (A) HC, (B) PD, and (C) PD minus HC. The color bar
denotes t-statistics ranging from blue (–3.5) to red (+3.5).

P < 0.001, Cohen’s d = 2.17) and Hoehn and Yahr stage
(EPD: 1.58 ± 0.54, LPD: 2.89 ± 0.46, P < 0.001, Cohen’s
d = 2.61), and greater LEDD (EPD: 467.09 ± 435.39 mg/d,
LPD: 1351.63 ± 659.26 mg/d, P < 0.001, Cohen’s d = 1.58)
compared with EPD patients. CDR (EPD: 0.32 ± 0.24, LPD:
0.66 ± 0.37, P < 0.001, Cohen’s d = 1.09), BDI-II (EPD:
6.23 ± 4.83, LPD: 16.21 ± 7.14, P < 0.001, Cohen’s d = 1.64),
HAM-D (EPD: 5.05 ± 3.62, LPD: 10.89 ± 6.40, P < 0.001,
Cohen’s d = 1.12), PDQ-39 (EPD: 23.20 ± 18.25, LPD:
68.11 ± 33.69, P < 0.001, Cohen’s d = 1.66), and NPI (EPD:
1.89 ± 2.71, LPD: 7.58 ± 7.47, P < 0.001, Cohen’s d = 1.01)
were significantly greater in patients with LPD compared to
those with EPD. Patients with LPD displayed lower MoCA
scores (EPD: 24.53 ± 5.73, LPD: 18.0 ± 8.67, P < 0.001,
Cohen’s d = 0.89) and ADL scores (EPD: 99.63 ± 1.55,
LPD: 70.0 ± 28.28, P < 0.001, Cohen’s d = 1.48) compared
to those with EPD. Antidepressants were prescribed in three
(3.03%) patients with PD and one (1.69%) HC, respectively. Two
(2.02%) patients with PD and one (1.69%) HC were treated
with antipsychotics.

Electroencephalography Features of
Parkinson’s Disease Patients by
Holo-Hilbert Spectral Analysis
Holo-Hilbert spectral analysis showed significant differences in
spectral powers between the PD and HC group (Figure 2 and
Supplementary Table 1). In the HC group, θ and β bands were
dispersed from frontal to occipital regions. Reduced γ bands
were observed at frontal and occipital regions (Figure 2A).
Although PD group demonstrated spread of energy into θ

bands in frontal, central, parietal, and occipital regions similar
to HC (Figure 2B), the increased power of θ bands were
dispersed to pre- and lateral-frontal regions (Figure 2C). δ2
bands spreading to central, parietal, temporal, and occipital
regions were also noted in the PD group. Compared to the HC
group, PD patients demonstrated reductions of β bands in frontal
and central regions (Figure 2C and Supplementary Table 1).
Reduced γ bands, particularly in relatively high amplitude
frequencies, were also seen in central, parietal, and temporal
regions of PD patients. These results suggest an increase of
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slowing resting state brain activity into θ and δ2 frequency
domains, and reduction of brain activity in β and γ frequency
domains, in PD patients.

Electroencephalography Features
Between Early- and Late-Stage
Parkinson’s Disease Patients
Holo-Hilbert spectral analysis showed significant differences
between the EPD and LPD group (Figure 3 and Supplementary
Table 2). Compared with HCs, EPD patients demonstrated
dispersed θ and δ bands particularly in relatively low AM
frequencies from lateral frontal to occipital regions, and reduced
β and γ bands in central and temporal regions (Figure 3A).
LPD patients demonstrated increased θ bands from the central
frontal to occipital regions, dispersed δ bands in occipital
regions, decreased α bands in central and temporal regions,
decreased β bands in central, parietal, and occipital regions, and
reduced γ bands in the central region (Figure 3B). Compared
with EPD group, LPD patients demonstrated reduction of β

bands in the posterior central region, and increased θ and δ2
bands in left parietal region (Figure 3C and Supplementary
Table 2). These results suggest that LPD patients showed
further reduction of fast resting state brain activity in β

frequency domains, and an increase of slowing resting state
brain activity in θ and δ2 frequency domains, as compared
with EPD patients.

Correlations Between
Electroencephalography and
Clinical/Neuropsychiatric Features
We further correlated HHSA features with clinical and
neuropsychiatric scale scores, where significant results were
shown with HAM-D scores (Figure 4). HAM-D scores were
significantly positively correlated with β bands in central, parietal,
and occipital regions in PD patients, with an r value up to
and more than 0.7 (Figure 4B). A subgroup analysis showed
HAM-D was significantly positively correlated with δ1 and δ2
bands in central regions of EPD patients (Figure 4C). HAM-D
and activity from θ to β bands in most of brain regions were
significantly positively correlated in LPD patients (Figure 4D).
These correlations were not observed in HCs (Figure 4A). Other
clinical and neuropsychiatric scales were not correlated with
HHSA features of EEG. These results showed fast and slow brain
activities, particularly in central, parietal, and occipital regions,
could be associated with depressive moods of patients with PD.

Machine Learning Classification Using
Electroencephalography and
Neuropsychiatric Features in Parkinson’s
Disease Patients
We further selected the three most prioritized HHSA features
(FZ, AM frequency 1–2 Hz, Carrier frequency 128–256 Hz;
F8, AM frequency 2–4 Hz, Carrier frequency 4–8 Hz; C3,
AM 8–16 Hz, Carrier frequency 32–64 Hz) that demonstrated
significant differences between PD and HC to 7 machine learning

algorithms. The sample sizes were 94 for training (PD: 59,
HC: 35), with 10-fold cross validation, and 64 for testing
(PD: 40, HC: 24). Figure 5 shows the results of applying the
training data to each algorithm, with the best result appearing
in the “Bag” algorithm with an AUC of 0.90, followed by
“LogitBoost” with an AUC of 0.89, and “GentleBoost” with an
AUC of 0.88, and AUC of other algorithms were all greater than
0.7. The application of each algorithm to testing data showed
that “Bag” demonstrated the highest level of accuracy (0.81),
followed by “Tree” (0.80), “LogitBoost” (0.79) and “SVM” (0.74)
(Table 2). These results support the potential of implementing
machine learning algorithms with HHSA features of EEG as
diagnostic tools for PD.

DISCUSSION

Using the HHSA, we decomposed the EEG signals to produce
frequency bands that reflect the natural rhythmic activity of
large neural populations. PD patients demonstrated a reduction
of β bands in frontal and central regions, and reduction of
γ bands in central, parietal, and temporal regions. Compared
with EPD patients, LPD patients demonstrated further reduction
of β bands in the posterior central region, and increased θ

and δ2 bands in left parietal regions. Fast and slow resting
state brain activity in the central parietal and occipital regions
were positively correlated with HAM-D scores. Machine learning
algorithms using three prioritized HHSA features demonstrated
good performance when differentiating between PD and HCs,
strengthening the application of HHSA in PD diagnosis.

The concept of fuzzy sets (Zadeh, 1965) reliably addresses
complexity via the FuzzyEn measure (Chen et al., 2007, 2009)
and hence delivers stronger relative reliability and more accurate
complexity compared to other entropy-based evaluations (Chen
et al., 2009), validating its powerful application to short
time series with noise impurity. As EEG signals typically
display complex variabilities, indefinite disruption, and great
levels of non-linearity and non-stationarity, and other dynamic
information (Costa et al., 2005), studying dynamic complexity
via entropy better elucidates complex systems (Chen et al.,
2007) and potentiates its application clinically (Yang et al.,
2013). Patients with Alzheimer’s disease exhibit EEG slowing,
reduced complexity of EEG signals, and perturbations in
EEG synchrony (Dauwels et al., 2010). These results submit
dynamic complexity as a potential bio-signature to monitor
health conditions. With high non-linear and non-stationary
brainwaves in EEG, especially superimposed trends in signals,
the estimation of entropy-based analysis could impact the
data by increasing its standard deviation. Thus, to eliminate
trend oscillations, the inherent functions (i.e., IMFs) extracted
from the EMD are deemed an effective filter for reducing
superimposed trends in signals (Huang et al., 1998), as seen
in the HHSA. Similarly, the HHSA establishes its advantage
in its ability to adapt to EEG signals in time sequences. The
HHSA method complements the deficits of traditional spectral
analysis and provides a complete informational illustration
of non-linear and non-stationary data via the nested EMD
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FIGURE 3 | Electroencephalography power difference between PD at early (EPD) and late stage (LPD) using Holo-Hilbert Spectrum Analysis (HHSA). Holo-Hilbert
topography (HHT) in the eyes-closed minus the eyes-open condition based on cluster-based non-parametric permutations in the (A) EPD minus healthy control
(HC), (B) LPD minus HC, and (C) LPD minus EPD. The color bar denotes t-values ranging from blue (–3.5) to red (+3.5).

and Hilbert–Huang transform (HHT) approach to identify
intrinsic amplitude and frequency modulations within non-
linear systems (Huang et al., 2016). For non-linear processes,
the data contains both amplitude and frequency modulations
(intra-mode and inter-mode) engendered via two processes:
linear additive or non-linear multiplicative processes. To handle
multiplicative processes, extra dimensions in the spectrum are
necessary to account for disparities in both the amplitude and
frequency modulations concurrently. The HHSA competently
accommodates both the additive and multiplicative processes,
intra- and inter-mode, stationary and non- stationary, linear and
non-linear interactions (Huang et al., 2016). The spectral analysis
divulges time-dependent fluctuations and explicitly a measure
of the degree of non-linearity within each IMF through the
intra-wave frequency variations (Huang, 2014). A core benefit
for decomposing the time series into IMFs is that all additive
and multiplicative interactions can be separated, extracted and
quantified by the first and second layer EMD and HHSA (Huang
et al., 1998, 2016; Wu and Huang, 2009). The HHSA can thus

methodically define, elucidate and enumerate the linear and non-
linear intra- and inter-mode interactions and unfetters spectral
analysis from restrictions imposed by Fourier, wavelet or HHT.
Since EEG complexity can distinguish patients from health
controls, the HHSA is also a promising application for healthcare
solutions in the real world.

Overall, the results we obtained concur with previous reports
(Tanaka et al., 2000; Kotini et al., 2005; Bosboom et al.,
2006; Moazami-Goudarzi et al., 2008) as PD patients exhibited
generalized EEG slowing. Recently, Cao et al. (2020) revealed
the adaptability of the brain to its environment during visual
stimulation using multiscale inherent fuzzy entropy (Cao et al.,
2020). The behavioral features of brain electrical activity that
decreases in response due to repeated visual stimulation is
defined as habituation, and reflects robustness of the brain
system (Thompson and Spencer, 1966; Groves and Thompson,
1970). By computing brain complexity in its habituation toward
SSVEPs (Cao et al., 2020), they objectively estimated the
complexity measure of physiological signals that reveals the
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FIGURE 4 | Correlation between powers of Holo-Hilbert Spectrum Analysis (HHSA) and Hamilton Depression Rating Scale (HAM-D). The contrasted HHSA for
correlation between HAM-D and (A) healthy controls, (B) patients with Parkinson’s disease (PD), (C) PD patients at early stage (EPD), (D) PD patients at late stage
(LPD). The white circles indicate that contrast on those EEG channels is statistically significant (P < 0.05, cluster permutation test, two-tailed). Color notations depict
the r value of correlations (shown up to 0.05 for easier visualization purposes).

FIGURE 5 | Receiver operating characteristic curves from training stage with 10-fold cross validation. Each ROC curve represents a candidate algorithm (the AUC of
all algorithms are higher than 0.7).
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TABLE 2 | Performance evaluation of classification algorithms deploying PD and HC using features extracted via different analytic methods.

LogitBoost Bag GentleBoost Tree SVM Naïve Bayes K-Nearest Neighbor

Sensitivity 0.85 0.85 0.90 0.80 0.60 0.20 0.65

Specificity 0.70 0.75 0.60 0.75 0.87 0.95 0.80

Precision 0.70 0.75 0.70 0.80 0.80 0.80 0.79

F1 measure 0.74 0.80 0.77 0.80 0.69 0.32 0.70

Accuracy 0.79 0.81 0.79 0.80 0.74 0.60 0.70

robustness of brain systems (Gao et al., 2021) with an essential
measure in the crucial features of non-linear neuro-dynamics
(Gao et al., 2011). Diseased systems are known to show lower
entropy values compared to healthy systems (Takahashi et al.,
2010; Cao and Lin, 2018; Cao et al., 2019) and decreased
complexity may epitomize reduced brain system integrity, while
elevated complexity strongly correlates with stable and accurate
behavioral performance (Lippé et al., 2009). Cao et al. (2020)
found that EEG complexity increases with increasing visual
stimulus times, postulating a strong ability of the brain to tolerate
perturbations that ensues in functional or structural systemic
modification (Cao et al., 2020). Humans are also able to stop
reacting to a stimulus that is no longer biologically relevant
(Thompson and Spencer, 1966; Groves and Thompson, 1970),
but rather habituate to repeated visual stimulus that no longer
have effects. This habituation performance is a form of adaptive
behavior, and reflects the robustness of brain systems. In our
results using the HHSA, the differences between controls and
patients plausibly agree with Cao et al. (2020), as the slowing
of EEG in PD patients during the resting state also indicates
decreased complexity (Babiloni et al., 2011; Yang et al., 2013).
Thus, PD patients may also have decreased habituation since the
robustness of their brain systems are compromised.

Parkinson’s disease patients largely exhibited a reduction in
higher frequency β and γ bands. This occurred with increment
in lower frequency θ and δ bands. In patients with PD, the
extensive decline of dopamine leads to abnormal oscillatory
activity within the thalamus, further affecting oscillations within
the cortex (French and Muthusamy, 2018). The pathophysiologic
oscillations of the thalamus (i.e., thalamocortical dysrhythmia)
(Jeanmonod et al., 2001), occurs due to thalamic over-inhibition.
The lack of dopamine input to the basal ganglion causes
the globus pallidus output nucleus to be abnormally active
(Levy et al., 2000), and exerts over-inhibition on the ventral
lateral and ventral anterior nucleus, through the pallido–
thalamic tract (Magnin et al., 2000; Anderson et al., 2003). This
overinhibition results in hyperpolarization and deactivation of
calcium T-channels in thalamic neurons, and generates low-
threshold calcium spike bursts in an inter-burst frequency of
∼4 Hz (Steriade et al., 1990; Jeanmonod et al., 1996; Llinás, 2014).
The anatomical and functional coupling between the thalamus
and cortex produces high coherence between these structures
(Van Horn and Sherman, 2007), yielding overproduction of θ

activity in the cortex. Our study consistently showed increased
θ bands in the cortex of patients with PD (Figure 2C). The
increased brain activity in δ bands, particularly in LPD patients
(Soikkeli et al., 1991; Figure 3C), denotes further widespread

slowing of activity in PD, which is a marker of bradyphrenia
(Brown, 2003; Rowland et al., 2015) as well as cognitive
decline and dementia (Bosboom et al., 2006; Stoffers et al.,
2007).

The consistent finding of reduced β and γ bands in
frontal, central, parietal, and temporal regions in patients
with PD (Figure 2C), probably originates from the unilateral
sensorimotor cortex (Stancák and Pfurtscheller, 1996; Doyle
et al., 2005). This spreads to bilateral sensorimotor regions at
movement onset (Neuper et al., 2006), starting from 1000 ms
prior to movement onset. This suppression of β bands is
likely sustained if the effector is moving (Wheaton et al.,
2009). Notably, treating PD patients with levodopa significantly
increases β bands, suggesting abnormal β bands (Melgari
et al., 2014) as a possible biomarker of motor impairment in
patients with PD. A prominent γ band provides a signature of
engaged networks. In the sensory cortex, γ bands increase with
sensory drive (Henrie and Shapley, 2005), and with a broad
range of cognitive phenomena, including perceptual grouping
(Tallon-Baudry and Bertrand, 1999) and attention (Fries et al.,
2001). The role of reduced γ bands in patients with PD
warrants further study.

Correlation analyses with clinical scales revealed significant
strong positive correlations only in HAM-D. No other correlation
was found between θ bands with overall PD severity (UPDRS,
H&Y stage), or cognitive examinations (CDR, MMSE, MoCA).
Further studies will be needed to explore the pathophysiological
and clinical roles of δ activity in patients with PD. As for
the correlation with depression, this is largely reflected by
activities in the thalamocortical and cortico-cortical circuits due
to altered EEG oscillations (Fingelkurts and Fingelkurts, 2015).
In the resting state, depression is associated with increased β

bands. Increased β and θ bands are also reported in depressed
patients with attentional deficits (Li et al., 2016). Our study
identified a positive correlation between β bands and HAM-D
scores, clarifying a role of β bands in the severity of depression
(Figure 4B). We also found that patients with PD in different
stages may demonstrate different correlations between EEG
signals and the severity of depression. A positive correlation
between δ bands in the central region and HAM-D scores were
observed in EPD patients (Figure 4C), while global θ and β bands
were positively correlated with HAM-D scores in LPD patients
(Figure 4D). These findings indicate different pathophysiological
mechanisms of depression present in patients with PD at different
stages. Given that LEDD in LPD patients was significantly
higher compared to EPD patients, effects of anti-parkinsonian
medications on EEG patterns should be considered.
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The introduction of machine learning algorithms in EEG
analysis provides a potentially easy, accessible, and affordable
technique to support the diagnosis of PD. However, the
measurement protocols, number of channels, data preprocessing,
and feature selection remain inconsistent. Vanneste et al.
(2018) applied SVM subsequent to EEG signals processing with
standardized low-resolution brain electromagnetic tomography,
and found nine featured EEG signals in 31 PD patients and
264 HCs and found an accuracy of 0.94. However, the model
performance may have been overestimated due to the imbalance
of patients with PD and HCs. Yuvaraj et al. (2018) extracted
13 features in eyes-closed EEG signals in 20 PD patients and
20 HCs by high order spectra. Utilizing the SVM according
to these features achieved an accuracy greater than 0.99.
However, the relatively small number of subjects raise concerns
of overfitting and inadequate generalization. Our method of
machine learning considered the fact that EEG signals are
irregular and mobile, hence exhibits unpredictability during
the classification performance (Abbass et al., 2014). Transfer
learning can manage data that violate this hypothesis through
manipulating knowledge acquired while learning a given task for
solving a different but related task. This obliterates the need to
calibrate from the initiating point, yields less noise for transferred
information, and depends on prior usable data to proliferate
dataset size. By using fuzzy-rule based classification systems,
sensible rules can be developed to process EEG activities based
on knowledge of neurophysiology and neuroscience, and are
therefore explicable. The extraction of intrinsic EEG activities
from a neuro-fuzzy model similar to ours considers the fact
that EEG signals are non-linear and non-stationary (Jang et al.,
2005). A fuzzy inference system (FIS) automatically extracts
fuzzy “If-Then“ rules from the data and describes which input
feature values correspond to which output category (Fabien
et al., 2007), permitting the advantage of flexible boundary
conditions for BCI applications, EEG pattern classification, and
interpreting what the FIS has learned (Sugeno, 1993). Hence,
this provides better domain accommodation interpretability and
signal processing capability that are particularly advantageous for
handling non-linear and non-stationary EEG signals. In PD, Oh
et al. (2020) proposed an EEG-based deep learning approach with
a convolution neural network (CNN) architecture as a computer-
aided diagnostic system and established its possibility in clinical
usage for PD detection (Oh et al., 2020). Dunne et al. (2016)
presented a specific class of recurrent neural network (RNN)
structure termed echo state networks (ESNs) to differentiate EEG
signals collected from patients with random eye movement sleep
behavioral disorder who ultimately developed PD or Lewy Body
Dementia and healthy controls (Dunne et al., 2016). Cao et al.
(2020) used inherent fuzzy entropy to study repetitive SSVEPs
for analyzing EEG complexity change between migraine phases,
while employing the AdaBoost classification with an accuracy
of 0.81 ± 0.06 and AUC of 0.87 for differentiating interictal
and preictal phase of migraine (Cao et al., 2020). In our study,
a relatively large number of patients and HCs were recruited,
and limited features were selected to avoid overfitting, adding to
the consideration that we incorporated features from the second
layer EMD into our method, additional features that can be used

for the classification are introduced. The specific electrodes were
F8 (AM 2–4 Hz with FM 4–8 Hz), FZ (AM 1–2 Hz with FM
128–256 Hz) and C3 (AM 8–16 Hz with FM 32–64 Hz). The
Bag algorithm demonstrated the best accuracy (0.81) compared
with other algorithms (Table 2), while the ROC showed an AUC
of 0.90 by Bag, followed by 0.79 by GentleBoost and LogitBoost
(Figure 5). These findings suggest the potential application of
HHSA in preprocessing EEG signals for further diagnosis of
PD by machine learning algorithms. Further validation by larger
cohorts and refinement of feature extraction methods would be
important to improve the performance of these models.

Although our study consolidates the role of HHSA in
identification of EEG features in patients with PD, there are some
limitations. The numbers of LPD and PDD patients are relatively
small. The EEG signals could be affected by use of medications,
such as anti-parkinsonian, antidepressants, and anti-psychotics.
The single-center nature of our studies lacks external validity.
Future multi-center studies with a large number of patients will
be required to incorporate our findings into clinical practice.

CONCLUSION

Our HHSA method for decomposing and characterizing PD EEG
signals permitted the differentiation between matched normal
controls and PD patients. Furthermore, the HHSA was sensitive
in detecting tendencies toward depression corresponding with
a hyperstable regulation of arousal. Features extracted from the
HHSA also enabled the distinction of PD from normal controls,
specifically in the F8, FZ and C3 electrodes. Further validation
will be needed using larger cohorts to refine feature extraction
methods to improve the performance of these models, especially
to differentiate between the different stages and existence of PD
induced dementia.
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