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Abstract

It is becoming clearer that the impact of brain diseases is more convincingly represen-

ted in terms of co-alterations rather than in terms of localization of alterations. In this

context, areas characterized by a long mean distance of co-alteration may be consid-

ered as hubs with a crucial role in the pathology. We calculated meta-analytic trans-

diagnostic networks of co-alteration for the gray matter decreases and increases, and

we evaluated the mean Euclidean, fiber-length, and topological distance of its nodes.

We also examined the proportion of co-alterations between canonical networks, and

the transdiagnostic variance of the Euclidean distance. Furthermore, disease-specific

analyses were conducted on schizophrenia and Alzheimer's disease. The anterodorsal

prefrontal cortices appeared to be a transdiagnostic hub of long-distance co-alterations.

Also, the disease-specific analyses showed that long-distance co-alterations are more

able than classic meta-analyses to identify areas involved in pathology and symptom-

atology. Moreover, the distance maps were correlated with the normative connectivity.

Our findings substantiate the network degeneration hypothesis in brain pathology. At

the same time, they suggest that the concept of co-alteration might be a useful tool for

clinical neuroscience.
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1 | INTRODUCTION

Converging evidence is revealing that the impact of diseases on

brain structure is better appreciated not as the simple spatial distribu-

tion of lesions but as a system of interrelated alterations affecting

networks (Evans, 2013). This likely happens in neurodegenerative dis-

eases, where misfolded proteins frequently spread from one area

to another in a prion-like fashion (Goedert, Masuda-Suzukake, &

Falcon, 2017; Guest et al., 2011). This mechanism has been put for-

ward to explain the development of anatomical alterations observed

in such diseases in terms of connectivity pathways, along which path-

ological proteins (proteinopathy) or other toxic agents can propagateFranco Cauda and Lorenzo Mancuso should be considered joint first authors.
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(Mandelli et al., 2016; Manuello et al., 2018; Saxena & Caroni, 2011;

Seeley, Crawford, Zhou, Miller, & Greicius, 2009; Warren et al., 2013;

Warren, Rohrer, & Hardy, 2012). However, the network-like account of

co-alterations seems to provide insights also in clinical conditions that

do not have a neurodegenerative origin, such as schizophrenia, autism,

obsessive-compulsive disorder, depression, and chronic pain (Cauda

et al., 2014; Cauda et al., 2017; Cauda et al., 2018; Shafiei et al., 2019;

Tatu et al., 2018; Wheeler et al., 2015; Wheeler et al., 2017). Further-

more, transdiagnostic meta-analyses merging data of studies about psy-

chiatric and neurologic diseases support the following ideas: (a) the most

affected areas of the brain correspond to the hubs of the functional and

structural connectomes (Crossley et al., 2014), and (b) the distribution

and development of co-alterations are mainly explained by functional

and structural connectivity constraints (Cauda et al., 2018). Therefore,

the anatomical substrate of brain disorders might be better accounted

for by patterns of co-alterations than by the simple localization of a

series of unrelated alterations.

A relevant feature of brain organization is the physical distance

between interconnected areas. The small-world networks of the human

connectome are composed by several clusters of short-range connectiv-

ity, linked together by long-range connections (Achard et al., 2006;

Sporns & Zwi, 2004; Watts, Strogatz, & Tseng, 1998). Within an evolu-

tionary perspective, the brain evolved to match a trade-off between

minimizing wiring cost and allowing a fast, efficient, and resilient infor-

mation flow (Bullmore & Sporns, 2012; Laughlin & Sejnowski, 2003).

Nodes of long-range connectivity are to be considered central hubs of

the connectome, as they tend to be connected with many other nodes,

which makes them crucial in the interplay between segregation and

integration that shapes brain structure and function (Alexander-Bloch

et al., 2013; Bullmore & Sporns, 2012; Liao et al., 2013). As brain hubs

with high centrality are also the regions more likely to be affected by

pathology (Crossley et al., 2014), this organization is likely to be related

to the distribution patterns of neuropathological alterations. Interest-

ingly, both functional (Alexander-Bloch et al., 2013; Guo et al., 2014)

and anatomical covariance networks (Bassett et al., 2008) of certain dis-

eases, such as schizophrenia, have been associated with altered values

of physical distance. Higher order associative brain regions, which are

more prone to be damaged by diseases (Crossley et al., 2014), are char-

acterized by a long physical distance and a high centrality (Sepulcre

et al., 2010). So, if connectivity influences the development of pathology

(Cauda, Nani, Manuello, et al., 2018; He, Chen, & Evans, 2007; Mandelli

et al., 2016; Seeley et al., 2009; Zhou, Gennatas, Kramer, Miller, &

Seeley, 2012), the spatial distribution of the physical distance of

co-alterations might provide an insightful indication of how pathology

is distributed across the brain. It would also be interesting to compare

such information with a measure of centrality from a normative

connectome, to test whether there is a correlation between abnormal

distance and connectivity. This would help to clarify the relationship

between co-alteration and connectivity, as well as to better understand

the complex systems of alterations of the diseases brain. Finding a rela-

tion between co-alteration distance and connectivity would also be a

further confirmation that pathology is bonded to normal connectivity

(Cauda et al., 2019). In fact, since hubs facilitate dynamics of spread

across the brain (Miši�c et al., 2015), it is more likely that long-range co-

alterations and connectivity overlap in these regions. Thus, observing

such overlap would emphasize the importance of brain hubs in the con-

text of pathology, showing that they are not just the most damaged

regions (Crossley et al., 2014), but also that they are involved in a long-

range coupling of alterations.

Therefore, in the present study, we assessed the mean physical

distance of co-alterations and its relationship with functional degree

centrality (DC) in a meta-analytic, transdiagnostic way, so as to identify

the cerebral areas that are more involved in long-range systems of

pathological modifications. By searching in the BrainMap database, we

retrieved both voxel-based morphometry (VBM) and activation data to

be used in a meta-analytic technique based on the Patel's κ (Cauda,

Nani, Costa, et al., 2018; Mancuso et al., 2019; Patel, Bowman, &

Rilling, 2006). The κ is a Bayesian index proposed by Patel et al. (2006)

to calculate functional connectivity with activation data obtained

through a behavioral task. Previous publications of our group showed

that it could also be used in a meta-analytic fashion, both on activation

and alteration data (Cauda, Nani, Costa, et al., 2018; Mancuso

et al., 2019; Manuello et al., 2018). The transdiagnostic approach was

motivated by the assumption that the mechanisms underlying the

phenomenon of co-alteration seem to be related to normative brain

connectivity (Buckholtz & Meyer-Lindenberg, 2012; Cauda, Nani,

Costa, et al., 2018). This relation could be, at least in part, explained by

models of spread, as it seems to be in the case of neurodegenerative

diseases (Raj & Powell, 2018). However, the concordance between the

distribution of pathology and connectivity might be better understood

as a multifactorial phenomenon, involving genetics, excitotoxicity, and

trophic mechanisms too (Cauda et al., 2019). Regardless of the mecha-

nisms involved, we might expect any relation or influence of connec-

tivity on pathology to have a mostly disease-nonspecific effect.

We therefore constructed two transdiagnostic networks of co-

alterations of gray matter (GM) decreases or increases comprising all the

neurological and psychiatric diseases of the BrainMap database. On

such networks, we calculated the mean Euclidean, fiber-length, and

topological distances for each brain region. Then, we compared these

distance maps with a map of meta-analytic DC of co-activations, so as

to see whether the most connected areas of the functional healthy brain

are also those with the longest co-alterations. Co-activations are known

to reflect resting-state functional connectivity (Cauda et al., 2012;

Eickhoff et al., 2010; Laird et al., 2009; Laird et al., 2013; Torta, Costa,

Duca, Fox, & Cauda, 2013), thus this map of co-activation hubness

could be taken as a proxy of functional DC. One advantage of using

such meta-analytic map is that it has been produced with a similar

method to that of mean distance of co-alteration, thus they can be

compared more easily. Furthermore, mean Euclidean distance of co-

activation, structural fiber-length, and topological distance maps were

also produced and compared to those of co-activation.

These analyses were motivated by the general hypothesis that

co-alterations are related, and possibly influenced, by normal connec-

tivity (Cauda et al., 2019). Thereby, we expected that the regional

mean of different forms of distance would correlate positively with

the measures of co-activation. Of the various distances, the Euclidean
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distance was the one we expected the most to show a good fit with

the co-activation maps, because of the aforementioned biological rel-

evance of the physical separation between brain regions. In fact, close

regions are more likely to be connected than distant ones (Bellec

et al., 2006; Salvador et al., 2005). The fiber-length and topological

distances were taken to model more accurately the spread dynamics

compared to the Euclidean distance that seems to be less theoretically

characterized than the others. More in detail, as the topological dis-

tance would express an epidemic model of contagion, we were inter-

ested in comparing it to the fiber-length, which would represent the

distance traveled by a toxic agent along the axon. We speculated that

more general models would fit better the normative connectivity

(i.e., Euclidean > topological > fiber length) because they would better

represent the multifactorial nature of pathoconnectivity.

Moreover, since we believed the transdiagnostic approach would

prevent us from drawing any conclusion about the specific disease,

first we investigated the transdiagnostic variability of each voxel and

network. Finally, taking schizophrenia and Alzheimer's disease as rep-

resentative examples of a single-pathology approach for psychiatric

and neurologic diseases, we calculated their maps of mean Euclidean

distance of co-alterations. These analyses showed that the anatomical

distribution of the mean distance can provide an insightful index of

the pathologic spread of single diseases.

2 | MATERIALS AND METHODS

2.1 | Collection of data

In the present study, the Cochrane Collaboration definition of meta-

analysis (Green et al., 2008) was adopted and the selection of articles

was conducted referring to the “PRISMA statement” international guide-

lines (Liberati et al., 2009; Moher, Liberati, Tetzlaff, & Altman, 2009).

See Figure 1 for the PRISMA flow chart. Neuroimaging experiments

eligible for the analysis were retrieved from BrainMap (http://brainmap.

org/) (Fox et al., 2005; Fox & Lancaster, 2002; Laird, Lancaster, &

Fox, 2005; Vanasse et al., 2018). BrainMap is an open access online

database constituted by over 15,000 neuroimaging experiments and

120,000 locations in stereotaxic brain space. The database has two sec-

tions for VBM and functional data sets.

The VBM BrainMap section was queried (December 2019) with

the following algorithms:

1. [Experiments Context is Disease] AND [Experiment Contrast is Gray

Matter] AND [Experiments Observed Changes is Controls>Patients];

2. [Experiments Context is Disease] AND [Experiment Contrast is Gray

Matter] AND [Experiments Observed Changes is Patients>Controls].

The first step consisted in the codification of the VBM data set

following the ICD-10 classification (World Health Organisation, 1992).

Subsequently, full-text articles were analyzed in order to verify that they

conformed with the following criteria: (a) being an original work

published in a peer-reviewed English language journal; (b) performing a

whole-brain VBM analysis technique; (c) including a matched compari-

son between a pathological group and a group of healthy subjects;

(d) reporting GM decrease/increase changes in the pathological sample;

(e) adopting a specified VBM analysis; (f) referring to a specific stereo-

taxic space (e.g., Montreal Neurological Institute space or Talairach/

Tournoux atlas) as regards GM increase/decrease changes. Basing on

these criteria, we deemed eligible 1,001 experiments for GM decreases

and 382 for GM increases. Descriptive information of interest was

extracted from each full-text article fulfilling the abovementioned

criteria. As a further specification, all the experiments not coded with F

(i.e., mental, behavioral and neurodevelopmental disorders) or G (i.e.,

diseases of the nervous system) labels were excluded from the analysis.

Moreover, studies related to codes that could not be considered as pri-

mary brain disorders (i.e., F10: alcohol-related disorders; F15: other

stimulant-related disorders; F28: other psychotic disorders not due to a

substance or known physiological condition; F91: conduct disorders;

G11: hereditary ataxia; G43: migraine; G44: other headache syndromes;

G47: sleep disorders; G50: disorders of trigeminal nerve; and G71: pri-

mary disorders of muscles) were also excluded. Articles including less

than eight subjects were excluded as well. This lower bound was chosen

in accordance with the work of Scarpazza, Tognin, Frisciata, Sartori, and

Mechelli (2015), who demonstrated that VBM experiments based on an

equivalent sample should not be biased by an increased false-positive

rate. At the end of the selection procedure, 642 remaining experiments

for the GM decreases (for 15,820 subjects and 7,704 foci) and 204

remaining experiments for the GM increases (for 4,966 subjects and

2,244 foci) were included in the analyses. We also calculated single-

disease co-alteration networks using only on the data of schizophrenia

and Alzheimer's disease (see Table S5). Furthermore, for those two

diseases, we produced the anatomical likelihood estimation (ALE)

(Eickhoff et al., 2009; Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012; Laird

et al., 2005a; Turkeltaub et al., 2012) maps of the VBM decreases and

increases to be compared to the corresponding distance maps. The

maps were thresholded at p = .05, with an FWE correction for multiple

comparison as indicated by Eickhoff et al. (2016), and a cluster volume

threshold of 100 mm. We chose these relatively lenient thresholds to

ensure that any difference between the ALE and the co-alteration maps

could not be imputed to an excessively rigorous ALE thresholding.

For the functional co-activation map, a systematic search was

conducted through the entire functional data set of BrainMap with

the following query:

[Experiments Context is Normal Mapping] AND [Experiments Activation

is Activations Only] AND [Subjects Diagnosis is Normals].

This search produced 2,376 articles, for a total of 13,148 experiments,

112 paradigm classes, and 68,152 subjects (see Figure S1 for the PRI-

SMA flowchart and Table S6). This data set represents the activations

of normal subjects across all the functional paradigms of the BrainMap

database. Finally, we converted all locations reported in MNI into

Talairach space using the Lancaster's icbm2tal transform (Lancaster

et al., 2007).
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2.2 | Modeled alteration maps

To obtain the alteration maps from the BrainMap foci, we adopted

the ALE framework (Eickhoff et al., 2009; Eickhoff et al., 2012;

Turkeltaub et al., 2012) to produce a modeled alteration (MA) map for

each experiment (Figure 2a). To build the MA maps, every focus of

each experiment is taken as the central point of a three-dimensional

Gaussian distribution of probability:

p dð Þ=
exp

−d2

2σ2

 !

σ3
ffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þ3

q

In this formula d represents the Euclidean distance between the

voxels and each considered focus, while the standard deviation σ repre-

sents the spatial uncertainty. The standard deviation is obtained through

the full-width half-maximum (FWHM) and is defined as follows:

σ =
FWHMffiffiffiffiffiffiffiffiffiffi

8ln2
p

The FWHM is calculated as proposed by Eickhoff et al. (2009):

FWHM=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
temp +

Usubjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsubjects

p
 !2

vuut

where Utemp and Usubj are the estimates of the between-subjects and

between-templates variance. This calculation is done automatically

using the GingerALE software.

2.3 | Co-alteration matrix calculation

The brain was partitioned on the basis of an anatomical atlas derived

from the Talairach Daemon atlas with a resolution of 2 mm (Lancaster

et al., 2000), a co-alteration matrix resulted from all the possible couples

of brain areas. In the resulting ExR matrix, each of E row stands for an

experiment, while each of R column reports a region; in the present

study, the matrix included 642 experiments (VBM contrasts) × 1105

regions for the decrease condition, and 204 experiments × 1105 regions

for the increase condition. For each experiment, a given brain region

was considered altered if the experiment MA map showed 20% or more

of significant voxels within the region (Figure 2b). The choice of this

threshold is arbitrary, but it has already been proven that it does not

affect the results significantly (Mancuso et al., 2019) and thus the use of

F IGURE 1 PRISMA flowchart of the selection of studies
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different thresholds was not implemented in the present study. The use

of Patel's κ index (Patel et al., 2006) allowed us to evaluate the probabil-

ity of co-alteration of each couple of regions (Figure 2c). Given two

regions (a and b), we can determine all their conjoint states of alteration

as follows: (a) a and b are both altered; (b) a is altered and b is not;

(c) b is altered and a is not; (d) neither a nor b are altered. Thus, frequen-

cies of these four cases recurring in all the experiments could be

described by the following probability formulas:

F IGURE 2 Illustration of the methods. (a) For each experiment included in a given meta-analysis (decreases or increases), a modeled alteration
(MA; or activation) map is created placing a Gaussian distribution of probability around each reported focus of alteration (or activation). (b) For each
experiment, each region of the atlas is considered to be altered if the 20% of its voxels is covered by the MA corresponding to that experiment.
Thus, for each experiment, we obtain a vector of dichotomous values that represent the status of every region. (c) The Patel's κ is calculated
between each one of such vectors and all the others, obtaining a network of co-alterations (or co-activations). Here, the co-alteration matrix and
the network of the voxel-based morphometry decreases are shown. (d) Any network analysis can be computed on the resulting matrix. For
instance, a measure of distance can be associated to each edge xi,j to calculate the mean distance of each node. Otherwise, a centrality measure
such as the degree can be derived. (e) A statistical map can be produced assigning to the volumes of the atlas the values calculated for each node
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ϑ1 =P a= 1,b=1ð Þ

ϑ2 =P a= 1,b=0ð Þ

ϑ3 =P a= 0,b=1ð Þ

ϑ4 =P a= 0,b=0ð Þ

These probabilities stand for the conjoint state frequencies of a couple

of nodes (a and b) in the four possible combinations. Table 1 contains

the marginal probabilities. Obtaining these probabilities allowed us to

use the Patel's κ index to create the correlation matrix including each

couple of brain areas. Patel's κ informs about the probability that two

nodes are co-altered in opposition to the probability that they are

altered independently on each other. Patel's κ is defined as follows:

κ =
ϑ1−Eð Þ

D max ϑ1ð Þ−Eð Þ+ 1−Dð Þ

where

E = ϑ1 +ϑ2ð Þ ϑ1 + ϑ3ð Þ

max ϑ1ð Þ=min ϑ1 +ϑ2,ϑ1 +ϑ3ð Þ

min ϑ1ð Þ=max 0,2ϑ1 +ϑ2 + ϑ3−1ð Þ

D=

ϑ1−E
2 max ϑ1ð Þ−Eð Þ +0:5, ifϑ1 ≥ E

0:5−
ϑ1−E

2 E−min ϑ1ð Þð Þ , otherwise

8>>><
>>>:

The numerator of the fraction is the difference between the likelihood

that a and b are altered together and their expected joint alteration in

a condition of independence, and the denominator is a weighted nor-

malizing constant. max(ϑ1) represents the maximum value of conjoint

probability p(a, b), given p(a) and p(b), whereas min(ϑ1) represents the

minimum value of p(a, b), given p(a) and p(b). Patel's κ index returns

values ranging from –1 and 1. A value of |κ| that is close to one charac-

terizes a high co-alteration. The statistical significance of Patel's κ is

assessed by means of a simulation of a generative model of data based

on the Monte Carlo's algorithm. Specifically, the algorithm computes

an estimate of p(κ|z) by sampling a Dirichlet distribution and

determining the proportion of the samples in which κ > e. The resulting

co-alteration matrix returns values that are proportional to the statisti-

cal relationship between the patterns of brain areas' alterations taken

into account.

2.4 | Co-activation matrix

The co-activation map was obtained applying the same method for

the construction of the co-alteration matrix (i.e., Patel's κ index calcu-

lated on each couple of brain areas) to the BrainMap functional data-

base of activations of healthy subjects.

2.5 | Measurement of the mean distances and
calculation of the meta-analytic DC

For each significant statistical association between two regions a and

b in the co-alteration (or co-activation) matrix, we calculated the

respective Euclidean distance between the centroids of a and b in the

Talairach Daemon atlas (Figure 2d). The fiber-length and topological

distances were calculated on the HCP-842 DTI template released by

Yeh and colleagues (Yeh et al., 2018), which is based on 842 subjects

(age 22–35 years, M: 372 F: 470) of the 900 subject release of the

Human Connectome Project (Van Essen et al., 2013). The fiber-length

distance of each couple of areas was obtained with DSI studio (Yeh,

Badre, & Verstynen, 2016; Yeh, Liu, Hitchens, & Wu, 2017; Yeh,

Verstynen, Wang, Fernández-Miranda, & Tseng, 2013). Similarly, DSI

Studio was also used to obtain the matrix of structural connectivity.

After its binarization (which also included to set to zero all the edges

that were nonsignificant in the corresponding co-alteration map), such

matrix was used to calculate the shortest path between each couple of

nodes through the Brain Connectivity Toolbox algorithms (Rubinov &

Sporns, 2010). Then, for each form of distance, the mean distance

of the significant connections of each node was assigned to the

corresponding region of the atlas to obtain a map (Figure 2e).

To calculate the DC of co-activation, we employed the Brain Con-

nectivity Toolbox algorithms (Rubinov & Sporns, 2010). Specifically, DC

is defined as the number of edges incident upon a node. Since the κ cal-

culation already performed a statistical thresholding, the binarization of

the matrix consisted in setting all the nonzero values to one, and to cal-

culate the DC as the sum of each column. Furthermore, to obtain the

structural control maps of fiber-length and topological distance, the mean

regional values of such distances were calculated as above, except that

the edges that were nonsignificant in the κ matrix were not removed.

2.6 | Comparison between maps

In order to evaluate the similarity between the distance of the co-

alteration map and the functional DC map, the correlation between

these maps was calculated. To establish the involvement of each brain

area to the correlation between the two maps, we applied the voxels'

TABLE 1 Marginal probabilities between altered and unaltered
regions

Region a

Region b Altered Unaltered

Altered ϑ1 ϑ3 ϑ1 + ϑ3

Unaltered ϑ2 ϑ4 ϑ2 + ϑ4

ϑ1 + ϑ2 ϑ3 + ϑ4 1
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contribution to correlation (VCC) technique (Mancuso et al., 2019).

This leave-one-out procedure recursively computes the correlation

between each couple of maps, subtracting one voxel at every run (the

same voxel for both the maps). To create a map showing the contribu-

tion of each voxel to the correlation, the difference between the cor-

relation value calculated in the whole maps and the correlation value

obtained after the exclusion of each couple of voxels is associated

to the singular voxel. Therefore, it is possible to visualize the extent

to which the correlation value decreases or increases depending on

the subtraction of each couple of corresponding voxels from the

calculation. The normalized version of this map (transformed in

order to range from –1 to 1) represents the stability of correlation

and describes the contribution of each voxel to the correlation. This

procedure allows to characterize voxels as positive or negative.

The former contribute positively to the correlation, as their removal

decreases the correlation value; the latter contribute negatively to the

correlation, as their removal increases the correlation value.

2.7 | Leave-one-pathology-out

The leave-one-pathology-out is a validation technique used to evalu-

ate both the variability and generalizability of measurements. The pro-

cedure for the calculation of the mean Euclidean distance described

above was performed several times, each run excluding one of the

26 pathologies included in the study. For all the outcomes resulting

from each measurement, the voxel-wise standard deviation was calcu-

lated to verify the degree of variability and consistency of the differ-

ent measurements with regard to each pathology.

3 | RESULTS

3.1 | Maps of mean distance

The map of the mean Euclidean distance of co-alterations related to

GM decreases shows higher peaks in the dorsal and anterior regions

of the left prefrontal cortex (PFC) and the bilateral medial temporal

lobe (MTL). Left posterior insula, left postcentral gyrus, right

precentral gyrus, and clusters in the bilateral temporal and occipital

lobes are also involved. The map of GM increases is characterized by

more extreme values compared to that of GM decreases; thus,

despite the low magnitude of many voxels, certain areas reach higher

values than those observed in the other map. These areas are the

bilateral precentral and postcentral gyri, the right anterior PFC, an

inferior cluster in the bilateral occipital cortex, and the left medial

cuneus (Figure 3).

The sensorimotor network, the default mode network (DMN), the

salience network (SN), the dorsal attention network (DAN), and the

thalamus and basal ganglia are the systems where both GM increases

and GM decreases show long distance co-alterations. GM decreases

show longer distance co-alterations than the GM increases in the

auditory network and the cerebellum (Figure 4).

The maps of mean fiber-length and topological distance of

co-alteration present both a certain similitude to those of Euclidean dis-

tance. Taken together, they highlight the importance of the sensorimo-

tor cortices, the unilateral dorsal anterior PFC (left for the decreases,

right for the increases), the occipital cortices, and the temporal lobe

(Figure 3). The involvement of the canonical networks in the fiber-length

co-alteration maps present some similarities to that showed by the

Euclidean maps, although the DMN, the orbitofrontal cortex (OFC), and

the Visual Network 1 (V1) present relatively longer mean distance in the

fiber-length map. The networks involved in the topological maps are not

so different from those of the Euclidean distance maps, but all the visual

networks appear to be co-altered with more distant regions, and, for

what concerns the decreases, the cerebellum shows shorter distance

(Figure 4).

For each area, we also assessed if it tends to be co-altered with

regions belonging to the same functional network or to different ones.

Specifically, for each area, we assessed its “network-betweenness” as

the ratio between its internetwork edges and its total number of edges.

The same pattern emerges both with decreases and increases: the asso-

ciative areas tend to be more within-network co-altered, while the pri-

mary regions are those more likely to co-alter with different networks

(Figure 4). Exceptions to this trend are the DAN, which shows many

internetwork edges, V3, and the sensorimotor network, which show the

opposite pattern. The network-betweenness for each network is pres-

ented in Table 3. Overall, the internetwork patterns of co-alterations

tend to be similar between decreases and increases (Figure 5, Table 3).

The network-betweenness of each network was tested against that of

1,000 null Maslov–Sneppen networks (Maslov & Sneppen, 2002), calcu-

lated with the Brain Connectivity Toolbox (Rubinov & Sporns, 2010).

For what concerns the decreases, all networks were significantly less

inter-co-altered than the null model (p = .01), with the exception

of V1 that was not different from the null model at p = .05. Concerning

the increase condition, V1 and V2 were not different from the null

model at p = .05. The remaining networks were significantly less inter-

co-altered than the null model (p = .01). It is important to stress that

such relatively low network-betweenness of co-alteration do not con-

flict with a finding of long physical distance. In fact, for large network

such as the DMN or the SN, a low network-betweennes is perfectly

consistent with a high physical distance, and even a high topological

one, if we consider that a long-range network could be divided in

submodules.

The within-co-alteration of the cerebellum and thalamus-basal-

ganglia are other examples of unexpected network-betweenness. In

fact, the prevalence of within-network co-alterations in these regions

seems to be in contradiction with their supposed low level in the func-

tional hierarchy, as well as with their long mean distances. As for the

thalamus-basal-ganglia network, it must be observed that it consists in

many nodes, therefore it can have enough long-distance inter-network

edges to have long mean distances, and many relatively shorter distance

intra-network edges to result in a low network-betweenness. Regarding

the cerebellum, many of its nodes form a closed system that does not

co-alter with other networks, explaining its strong within-co-alteration.

However, a relative minority of its regions is co-altered with many
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external nodes, especially belonging to the thalamus-basal-ganglia and

OFC, justifying its mean long distance (Figure 5).

3.2 | Comparison with the map of functional DC

The co-activation DC map reveals the presence of normative hubs in

the bilateral superior temporal cortex, bilateral occipital cortex, right

temporoparietal junction, and right inferior prefrontal gyrus. The sys-

tems that present the higher DC of co-alterations are the sensorimo-

tor network, the SN, and the auditory network. The correlations

between the values of functional DC and those of GM decreases and

increases mean Euclidean distance are r = .54 and r = .42, respectively.

The VCC analyses report a high concordance between the functional

degree map and both the GM increases and decreases mean distance

co-alteration maps in most of the voxels, except for those belonging

F IGURE 3 Parametric mapping of the mean distances of co-alterations, divided for decreases and increases. Higher values indicate increasing
mean distance. Axial slices are in radiological convention
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F IGURE 4 Top left panel: Surface mapping of the co-activation degree centrality and mean Euclidean distance. Top right panel: Radar chart
comparing the average values of mean Euclidean distances of decreases and increases, mean Euclidean distance, and degree centrality of co-
activation for each of the following networks: visual networks 1, 2 and 3 (V1, V2, and V3), orbitofrontal cortex (OFC), cerebellum, dorsal
attentional network (DAN), thalamus and basal ganglia, auditory network, premotor network, salience network, default mode network (DMN),
ventral attentional network (VAN), and sensorimotor network. Middle left panel: Surface mapping of the mean fiber-length and structural
topological distances. Middle right panel: Radar chart comparing the average values of mean fiber-length and topological distances of decreases,
increases, and structural connectivity for each canonical network. Bottom left panel: Surface mapping of the network-betweenness (between-
network edges/total number of edges. Bottom right panel: Mean network-betweenness for each canonical network
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to the right PFC and the left middle frontal gyrus (MFG) in the GM

decreases map, and those belonging to the left PFC, right MFG, and

bilateral temporal cortices in the GM increases map (Figure 6).

The map of co-activation mean distance presents hubs in the

bilateral superior temporal cortex, in the bilateral occipital cortex, and

in the right precentral and postcentral gyri. The mean distance distri-

bution across canonical networks resembles that of the functional

DC. The correlation between the values of co-activation mean dis-

tance and those of GM decrease and increase are r = .50 and r = .30,

respectively. The VCC results are overall similar to those obtained

with the DC map, but they present less concordance. In particular, the

VCC map with the increases reveals strong differences in the superior

temporal cortices (Figure 6).

The mean fiber-length distance map presents long-distance hubness

especially in the occipital lobe and OFC (Figure 4). The correlations

between the regional values of this map and the decrease and increase

mean fiber-length distances are r = .63 (decrease) and r = .51 (increase).

The correlations of the decrease and increase mean fiber-length dis-

tance with the co-activation DC were much lower (r = .15 and r = .17

respectively). Indeed, the VCC maps show less concordance with such

map than the Euclidean distance (Figure 6). Nonetheless, they are dis-

tributed in a similar way, with the notable differences that the prefrontal

patterns seem to be reversed across the hemispheres for increases and

decreases, and that the superior temporal cortices are regions of discor-

dance in this case.

The mean topological distance map presents higher values in the

temporal and parietal lobe, and in the inferior frontal gyrus (IFG)

(Figure 4). The values of this map correlate with the values of the same

measure on the co-alteration networks with r = .86 for the decreases

and r = .72 for the increases. The topological distance produced much

higher correlations (r = .42 and r = .44) with the co-activation DC than

with the fiber-length distance. Despite that, the regions of discordance

appear to be much more widespread, with high concordances focused

in the thalamus and basal ganglia. Specifically, it seems that a large part

of the concordance between the decreases mean topological distance

and the co-activation DC is concentrated in the caudate, other than in

the occipital lobe (Figure 6).

Table 2 presents all the correlations between the co-alteration

and co-activation maps. All the correlations were significant at p = .01.

Since the Euclidean distance seemed to be the one that performed

better, overall, the subsequent analyses were conducted on such

measure.

3.3 | Leave-one-pathology-out analysis

The regions with the highest variability across diseases are the bilat-

eral (but especially right) IFG, the bilateral insula, the bilateral temporal

lobe, and the bilateral occipital lobe for the map of GM decreases; the

right precentral and postcentral gyri, the left MFG, the left angular

gyrus, and the right occipital lobe for the map of the GM increases

(Figure 7). The two maps involve different systems, especially the sen-

sorimotor network, the DMN, the SN, the auditory network, and the

thalamus and basal ganglia for the GM decreases, and the sensorimo-

tor network and V1 for the GM increases (Figure 7).

3.4 | Schizophrenia and Alzheimer's disease

With regard to the map of Euclidean distance of decreases of schizo-

phrenia (Figure 8), the left auditory cortex shows the longest mean

distance co-alterations (and, albeit less strongly, the right auditory

F IGURE 5 Two-dimensional representation of the decreases and increases co-alteration networks, organized according to the belonging of
each node to each one of the following resting-state networks: visual networks 1, 2, and 3 (V1, V2, and V3), orbitofrontal cortex (OFC),
cerebellum, dorsal attentional network (DAN), thalamus and basal ganglia, auditory network, premotor network, salience network, default mode
network (DMN), ventral attentional network (VAN), and sensorimotor network
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cortex is also involved). Small clusters can be found in the right superior

temporal sulcus (STS). The bilateral insula is widely involved, as well as

the left IFG (especially in its posterior portion), the bilateral anterior cin-

gulate cortex (ACC), the bilateral OFC and the ventromedial PFC, the

MTL (especially the left one), and the bilateral caudate. The ALE map of

decreases shows overall comparable results, but it seems to be less

sensitive. Significant clusters can be found in the left amygdala, bilateral

insula, right caudate head, left posterior IFG, bilateral dorsal ACC and

left anterior/ventral ACC, and bilateral OFC (Figure 8). The map of GM

increases shows long distance co-alterations mainly in the basal ganglia,

especially in the left putamen. The ALE of increases presents only

a small cluster in the left putamen. The correlations between the

ALE maps and the corresponding distance maps were r = .15 for the

decrease condition and r = .07 for the decrease condition (calculated

with the use of a brain mask; both correlations resulted significant,

however, because of the voxel-wise nature of the ALE map, it was not

possible to calculate them region by region as the previous ones. Thus,

the test results depend on the large number of voxels).

F IGURE 6 Top panel: Scatter plots of co-activation and co-alteration values of each area of the Talairach Daemon atlas. Bottom panel:
Parametric mapping of the voxels' contribution to correlation analysis between the functional meta-analytic degree centrality map and the
functional meta-analytic mean distance map with the mean distance co-alteration maps of decreases and increases. Positive values indicate areas
of concordance between the maps, negative values indicate discordance. Axial slices are in radiological convention
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With regard to the map of GM decreases of Alzheimer's disease

(Figure 9), long Euclidean distance co-alterations characterize the cau-

date (principally the left one), the MTL (especially the left one), the

PCC, the left temporoparietal junction, the left orbital cortex, certain

clusters in the bilateral anterior insula, and a cluster in the STS. In turn,

the map of GM increases shows long distance co-alterations just in

the bilateral MTL (particularly the left one). The correlations between

the ALE maps and the corresponding distance map were r = .19 for

the decrease condition and r = .38 for the increase condition (calcu-

lated with the use of a brain mask; they both resulted significant,

however they were calculated voxel-wise).

4 | DISCUSSION

4.1 | Spatial distribution of the mean distance
of co-alterations

This study investigates, for the first time, the spatial distribution of

the distance of co-alterations and highlights the capacity of this type

of measurement to provide insightful indications about the distribu-

tion patterns of GM alterations related to brain diseases. Findings

show that the spatial distribution of the mean distance of trans-

diagnostic co-alterations varies between areas in interesting and

meaningful ways.

For instance, an intriguing observation is that the left dorsal and

anterior PFC tend to co-alter with distant areas in all the decreases

maps. This is confirmed by the high network-betweenness of those

areas, as well as the surprisingly high network-betweenness of the

DAN compared to other associative cortices (Figure 4, Table 3). In

addition, the lateral parts of PFC show low transdiagnostic variance

(Figure 7), which means that they present long-range co-alterations

related to GM decreases in a wide range of pathologies. This is consis-

tent with the low mean distance variability exhibited by the DAN

(Figure 7), as well as with the clinical and anatomical observation of

executive functions deficits in many diseases (Goodkind et al., 2015;

McTeague, Goodkind, & Etkin, 2016). On the contrary, the left medial

anterior PFC, and especially a part of the left medial dorsal PFC, dis-

play high variance, thus suggesting that the medial PFC, despite its

low mean transdiagnostic distance, may still be involved in long-range

co-alterations in several disorders.

It is interesting to observe that all the three maps of mean dis-

tance of co-alterations related to the GM increases show higher

values in the right hemisphere than in the left, in spite of the left prev-

alence of the map related to the GM decreases. This difference is par-

ticularly evident in the aforementioned dorsal and anterior lateral PFC

(Figure 3), and it indicates an intriguing asymmetry in the pathological

involvement of the left and right hemispheres, as the two appears to

show more global or local patterns of co-alterations in the opposite

form of volumetric abnormalities.

The MTL shows long-range co-alterations related to GM decreases,

both with Euclidean and topological distance. Given its involvement in

memory and learning, it is likely to be co-altered with many other asso-

ciative areas in a variety of diseases, causing symptoms of memory loss,

for instance in neurodegenerative conditions such as Alzheimer's dis-

ease, or symptoms of inappropriate memory and limbic responses

that are frequently observed in the ruminations characterizing depres-

sion (Sheline et al., 2009). Significantly, the MTL is part of the DMN

(Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010; Buckner,

Andrews-Hanna, & Schacter, 2008), which is one of the most involved

brain networks in long-range GM decreases (Figure 4).

Other areas of long-distance co-alterations related to the maps of

GM increases (and, to a lesser extent, to those of decreases) are the

precentral and postcentral gyri, particularly within the right hemi-

sphere. Indeed, the sensorimotor network is one of the most involved

systems in the map of GM increases (Figures 3, 4). However, these

TABLE 2 Pearson's r values for all the comparisons between
co-alteration and co-activation network measures

Co-alteration network Control network Pearson's r

Mean Euclidean

distance—decrease

Degree centrality—
co-activation

.54

Mean Euclidean

distance—co-activation

.50

Mean fiber-length

distance

.36

Mean topological distance .38

Mean Euclidean

distance—increase

Degree centrality .44

Mean Euclidean distance .30

Mean fiber-length

distance

.29

Mean topological distance .31

Mean fiber-length

distance—decrease

Degree centrality .15

Mean Euclidean distance .14

Mean fiber-length

distance

.63

Mean topological distance .50

Mean fiber-length

distance—increase

Degree centrality .17

Mean Euclidean distance .11

Mean fiber-length

distance

.51

Mean topological distance .40

Mean topological

distance—decrease

Degree centrality .42

Mean Euclidean distance .22

Mean fiber-length

distance

.75

Mean topological distance .86

Mean topological

distance—increase

Degree centrality .44

Mean Euclidean distance .17

Mean fiber-length

distance

.61

Mean topological distance .72

Note: All the correlations are significant at p = .01.
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regions are also characterized by high transdiagnostic variance

(Figure 7). Therefore, the sensorimotor network exhibits long-distance

co-alterations, but its involvement is not consistent across diseases, in

contrast to the anterodorsal lateral PFC.

The three different measures of distance produced similar but dis-

tinct results. Overall, they all tend to highlight the importance of the

dorsolateral PFC, sensorimotor cortices, and, at a certain degree, the

occipital lobe. Their relationship is easier to be commented through an

analysis of the mean distances of canonical functional networks. For

instance, the longer mean distance of the areas belonging to the DMN

in the fiber-length and Euclidean maps compared to the topological one

(Figure 4) might be explained by the fact that such network cover a vast

area of the brain. Thus, a spread within this network, seemingly happen-

ing in the Alzheimer disease (Buckner, 2005; Buckner et al., 2009;

Iturria-Medina & Evans, 2015), would range across a long physical dis-

tance despite travelling along short paths. On the contrary, the longer

mean fiber-length distance of the VN1, which has not a particularly large

volume, might be better accounted for by a between-network spread.

This hypothesis is confirmed by their proportion of intra-network

edges. In fact, the DMN is one of those networks with a strong

between-network co-alteration, and the VN1 co-alters more within itself

(Figure 4). However, its size seems to be not the only explanation for the

“network-betweenness” of co-alteration. In fact, the networks with an

associative function tend to be more within-network co-altered, while

the areas with primary functions tend to show the opposite trend. Any-

way, the size of a network, as well as its placement, is not the result of a

case, since they were probably fine-tuned by the evolution to minimize

the brain wiring cost (Bullmore & Sporns, 2012). The DMN, for instance,

appears to be located so as to be equidistant from primary cortices

(Margulies et al., 2016). In any case, beside this global trend of high

network-betweenness for high-hierarchy networks, some intriguing

inconsistencies emerge. In particular, the DAN, associated to top-down

attention, presents high network betweenness while the opposite is true

for the ventral attention network (VAN), associated to bottom-up atten-

tion (Corbetta & Shulman, 2002). This is also confirmed by the fact that

the DAN has a longer mean distance than the VAN with each of the

measures and both in increases and decreases. Such observation pro-

vides support for the finding of long-distance hubness of the dorsal PFC.

The network-level analysis allows to highlight the general similar-

ity between the maps of decrease and increase obtained with a given

measure of distance, although some exceptions stand out. In fact,

the cerebellum and the auditory network tend to have longer mean

distance in the decrease maps than in the increase maps. Thus, these

areas seem to have the tendency to be co-altered with a set of

regions beyond those they are functionally associated. This observa-

tion might indicate that the relation between pathology and connec-

tivity can be stricter or relaxed in different part of the brain, and those

regions that do not co-alter in accordance with connectivity are those

in which the models of spread are less explicative.

4.2 | Comparison of the co-activation and
co-alteration maps

The investigation of the relationship between functional centrality and

anatomical distance provides evidence for a good convergence between

F IGURE 7 Top panel: Surface mapping of the transdiagnostic variance of the mean Euclidean distance maps of decreases and increases.
Higher values indicate higher variance, that is, the voxels whose value in the mean distance map is more variable across pathologies
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the map of co-activation DC and those of Euclidean and topological

distance of co-alteration. This strongly suggests that brain functional

hubs are also the regions whose mean distance of co-alteration is lon-

ger. Save for the right PFC, most of the cortical areas contribute posi-

tively to the correlation between functional DC and co-alteration

distance. It should be observed that the frontal voxels in the dorsal and

anterior PFC displaying low convergence are not those characterized by

long transdiagnostic distance. On the contrary, the dorsal and anterior

PFC show high convergence between co-activation centrality and co-

alteration distance in the left hemisphere for the GM decreases, as

well as in the right hemisphere for the GM increases, where long-

distance co-alterations are found. In general, regions of long-distance

co-alteration, such as the precentral and postcentral gyri and the insula,

exhibit high consistency with the map of co-activation centrality

(Figure 4). Of note, precentral and postcentral gyri were recently found

to be hubs of long-distance connectivity when short-rage connections

are subtracted from the connectome (Esfahlani, Bertolero, Bassett, &

Betzel, 2019). The values of co-alteration distance are also correlated

with those of co-activation distance, highlighting the relation between

pathology and connectivity. This can be seen as a further confirmation

of the pathoconnectivity model (Cauda et al., 2019), suggesting that the

distribution of the anatomical anomalies could somewhat depend on the

normal brain connections.

One of the fundamental issues in the study of co-alterations is to

understand the responsible mechanism for morphological covariations

of specific sets of areas in relation to a pathological process. Our

analyses provide evidence of an interesting association between the

distance of co-alterations and the functional DC. As brain hubs are sup-

posed to be preferentially targeted by pathological alterations (Buckner

et al., 2009; Crossley et al., 2014; de Haan, Mott, van Straaten,

F IGURE 8 Top panel: Parametric mapping of the mean Euclidean distance of co-alterations in schizophrenia, divided for decreases and
increases. Higher values indicate increasing mean distance. Bottom panel: Parametric mapping of the anatomical likelihood estimation of
decreases and increases of schizophrenia. Axial slices are in radiological convention
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Scheltens, & Stam, 2012), the finding of a convergence between func-

tional DC distribution and long-distance co-alteration areas suggests

that brain regions which are more likely to be affected by diseases are

also more likely to be co-altered with distant areas. A possible explana-

tion might be that such regions are more susceptible to metabolic stress

in virtue of their numerous connections and intense work of integration

of different information (Crossley et al., 2014). Although capable of

explaining the high rate of damage undergone by hubs, this model alone

fails to explain our findings: it remains unclear why areas of high meta-

bolic stress should be co-altered with other distant regions. Conversely,

the transneuronal spread hypothesis (Zhou et al., 2012), which accounts

for the pathologic progression with the diffusion of toxic agents such as

misfolded proteins, seems to be more up to the task.

The idea that misfolded proteins are responsible for the pathologi-

cal spread has found several supporting evidence in studies about neu-

rodegenerative diseases (Ahmed et al., 2016; Goedert et al., 2017;

Guest et al., 2011; Iturria-Medina, Sotero, Toussaint, & Evans, 2014; Raj,

Kuceyeski, & Weiner, 2012; Raj & Powell, 2018; Seeley et al., 2009;

Warren et al., 2012; Warren et al., 2013; Zhou et al., 2012), but this has

also been putatively extended to psychiatric conditions. Indeed, GM loss

was recently found to be dependent from connectivity in patients with

schizophrenia (Shafiei et al., 2019). In fact, insoluble aggregates of

disrupted-in-schizophrenia 1 (DISC1) were associated to sporadic cases

of schizophrenia, bipolar disorder, and depression (Korth, 2012; Leliveld

et al., 2008). In addition, in vitro studies have demonstrated that aggre-

gates of DISC1 are able to transfer between cells via tunneling nano-

tubes (Zhu, Abounit, Korth, & Zurzolo, 2017). These aggregates can

selectively affect dopaminergic brain functioning at presynaptic and

postsynaptic level (Dahoun, Trossbach, Brandon, Korth, & Howes, 2017;

Tropea, Hardingham, Millar, & Fox, 2018), and, as they are related to

oxidative stress (Trossbach et al., 2016), the transneuronal spread

hypothesis is not incompatible with the metabolic stress model. On the

contrary, both pathological mechanisms might be necessary for a hub

to be damaged (Saxena & Caroni, 2011). According to this view, brain

hubs are more vulnerable to deterioration, and in turn they can spread

the alterations to the connected areas. Furthermore, given their high

degree of connectivity and their role of integration of different clusters,

hubs are generally linked to many distant regions, and this makes them

ideal for spreading pathological alterations along several long-range

connections.

F IGURE 9 Top panel: Parametric mapping of the mean Euclidean distance of co-alterations in Alzheimer's disease, divided for decreases and
increases. Higher values indicate increasing mean distance. Bottom panel: Volumetric mapping of the anatomical likelihood estimation of
decreases and increases of schizophrenia. Axial and coronal slices are in radiological convention
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It has also been suggested that alterations could propagate

by means of a trophic factor release failure (Fornito, Zalesky, &

Breakspear, 2015). In other words, the areas connected to the damaged

region might suffer morphological GM decreases because they cease to

receive trophic factors from them (Chao, 2003), or they might reduce

their activity because of the lack of inputs, which could disrupt their

activity-dependent synthesis and release of trophic factors (Blöchl &

Thoenen, 1995; Gall & Isackson, 1989; Kohara, Kitamura, Morishima, &

Tsumoto, 2001), thus leading to a cascade of anatomical decreases.

A disruption of the balance of the trophic mechanism, in form of an

enhanced trophic release or a lack of growth-inhibitory signals (Perlson,

Maday, M meng, Moughamian, & Holzbaur, 2010), may also account for

the generations of networks of GM increases. Of course, the effect of

morphometric increase might be of iatrogenic nature (Hafeman, Chang,

Garrett, Sanders, & Phillips, 2012; Navari & Dazzan, 2009), although this

general explanation does not consider the similarity between hubs of

long-distance increase to that of FC. Thus, we suggest that a mixture of

metabolic stress, toxic spread, trophic factor release disruption, and

shared vulnerability to genetic and environmental factors influence the

distribution of both decrease and increase co-alteration along connectiv-

ity pathways (Cauda et al., 2019). Therefore, brain hubs might be not

only extremely vulnerable to disorders but also substantially responsible

for the long-range spread of morphological changes.

The comparison of the three maps of mean distance suggests some

interesting speculations. First of all, the Euclidean and topological maps

are more consistent with the co-activation DC map than the fiber-length

distance, which correlates poorly with the regional hubness (Figure 6).

We interpret this observation as the incapability of the fiber-length dis-

tance to recapitulate all the factors explaining the co-alterations. While

the Euclidean distance is known to have an effect on connectivity

(Bellec et al., 2006; Salvador et al., 2005) and the topological distance

reflects an epidemiologic approach to the spread (Raj & Powell, 2018),

the fiber-length distance might be unable to model several aspects of

pathology. This is in contrast with the findings of Pandya et al. (2019),

who report that fiber-length and Euclidean distance are both correlated

the Parkinson's disease atrophy. It might be that the fiber-length dis-

tance, although not completely adequate to explain many diseases that

constitute our database, is proficient to model neurodegenerative disor-

ders. In fact, we found the fiber-length distance of co-alteration to be

strongly correlated with the fiber-length distance of co-activation. We

interpret this observation as a close correspondence between that part

of the co-alteration that can be accounted for by the axonal length

(i.e., the toxic spread factor) and normative connectivity.

In fact, we do not postulate that the co-alterations are influenced

only by the toxic spread model, nor that they exactly replicate the nor-

mal connectivity, because they could be modulated by genetic and

environmental factors as well. Thus, the good concordance of the co-

alteration Euclidean distance with the co-activation DC could indicate

that a more general measure of distance, which does not imply a con-

cept of spread rigidly, makes the model more fit to describe the multifac-

torial model that might underlie our transdiagnostic “pathoconnectome”.

4.3 | Analyses of schizophrenia and Alzheimer's
disease

With regard to schizophrenia (Figure 8), areas with long-distance

co-alterations of GM decreases have auditory and linguistic roles, a

TABLE 3 Network-betweenness and total number of edges for each network, in the decrease and increase condition

Decreases Increases

Network-betweenness Number of edges Network-betweenness Number of edges

V1 1 20 1 2

V2 0.89* 35 0.92 13

V3 0.62* 164 0.53* 71

OFC 0.42* 1056 0.41* 722

Cerebellum 0.49* 202 0.73* 113

DAN 0.71* 386 0.79* 244

Thalamus ganglia 0.20* 1097 0.21* 799

Auditory 0.87* 95 0.81* 26

PreMot 0.79* 14 0.83* 12

Salience 0.40* 432 0.44* 226

DMN 0.37* 1098 0.49* 403

VAN 0.52* 513 0.67* 255

Sensorimotor 0.29* 352 0.33* 299

Total 0.58* 5464 0.63* 3185

Note: An asterisk indicate the network-betweennesses significantly inferior than the null model at p = .01. The network-betweenness is calculated as the

ratio between the number of internetwork edges and the total number of edges. Similarly, the total network-betweenness is calculated as the ratio

between all the internetwork edges and the total number of edges.

Abbreviations: DAN, dorsal attention network; DMN, default mode network; OFC, orbitofrontal cortex; V1, Visual Network 1; VAN, ventral attention network.

CAUDA ET AL. 3893



finding that is in accordance with the auditory hallucinations affecting

a portion of these patients (García-Martí et al., 2008; Modinos

et al., 2009; Neckelmann et al., 2006; Plaze et al., 2006). Also the cau-

date and the MTL, as well as other SN regions, exhibit long-distance

co-alterations, which is in line with the involvement of this network in

the disease (Cauda, Nani, Costa, et al., 2018; Guo et al., 2014;

Kapur, 2003; Liddle et al., 2016; Manoliu et al., 2014; Palaniyappan,

2019; Palaniyappan & Liddle, 2012; Palaniyappan, White, & Liddle,

2013; Uddin, 2015; White, Joseph, Francis, & Liddle, 2010). The ALE

was able to replicate the alterations in the SN regions but failed to

return clusters in the auditory cortices as well as in the caudate. This

supports the notion that the distance of co-alteration is more able to

individuate clinically relevant regions than the localization of alteration.

Long co-alterations of GM increases are found especially in the left

putamen, which is coherent with a study that found an increased puta-

men characterized by leftward asymmetry in schizophrenic patients

(Okada et al., 2016) and with our ALE results.

With regard to Alzheimer's disease (Figure 9), long-distance co-

alterations of GM increases and GM decreases are found especially in

the left hippocampal formation, which is consistent with the assump-

tion that the hippocampus may be the pathological epicenter, as well

as with the observation that the left hemisphere is more affected than

the right one (Braak, Braak, & Bohl, 1993; Buckner, 2005; Janke

et al., 2001; Loewenstein et al., 1989; Manuello et al., 2018; Pievani,

de Haan, Wu, Seeley, & Frisoni, 2011; Thompson et al., 2001; Thomp-

son et al., 2003; Thompson et al., 2007). This leftward lateralization

was confirmed by the ALE maps; however, the distance maps showed

much more areas, such as the PCC and the temporoparietal junction.

Those regions are nodes of the DMN, known to be involved in

the disease (Buckner, 2005; Buckner et al., 2009; Iturria-Medina &

Evans, 2015). Other regions with long-distance co-alterations of GM

decreases are the caudate and the insula, with a major involvement in

the left hemisphere. The finding that the left MTL is involved in long-

distance co-alterations both of GM increases and of GM decreases is

intriguing, and might be putatively explained by the effect of compen-

sation, as if this region, in a certain stage of the disease, could be

engaged in a system of increases that tries to counteract the damages

induced by the disease.

In light of these considerations, the measurement of the mean

distance of co-alterations can identify clinically relevant areas, as they

are associated with typical symptoms of brain disorders, and even the

epicenters of pathological diffusion. In this regard, it should be empha-

sized that our analysis showed to be more able than a canonical ALE

to detect significant effects in those areas. Therefore, our findings

advocate in favor of the co-alteration pathoconnectome as a useful

tool in the understanding of brain pathology.

4.4 | Limitations

A possible limitation of our analyses is that nodes were defined on the

basis of an anatomical atlas; therefore, they may fail to account for

more fine-grained distinctions in heterogeneous regions. This choice

aimed to achieve a higher statistical power, as a voxel-wise technique

may leave some voxels uncovered by a sufficient number of samples.

It could be argued that in a parcellation, the size of the regions of

interest (ROIs) determines the minimum spatial resolution for the

detection of a hub, but the use of a parcellation with small volumes

would have reduced the statistical power in underrepresented brain

regions. We therefore chose to use an atlas that previously proved

to fit the functional connectivity better than artifactual parcellations

(Mancuso et al., 2019). Still, choosing a different anatomical atlas

might have produced slightly divergent results.

Another possible consequence of the use of an anatomical atlas

compared to a homogeneous parcellation is that the centroid of a

large region will be more distant from its neighbor than that of a small

region. However, we decided to favor the realism of the network

rather than to avoid a bias in the distance of neighbor nodes. Another

bias that might affect the co-alteration of neighboring regions comes

from the possibility that if a focus of alteration falls on the border

between two volumes, both areas will appear as altered. This can be

seen as a desired effect in the sense that it would represent the case

in which an alteration is shared between two regions. However, it

might be argued that, in some circumstances, it could be a rather sim-

plistic model, inducing artifactual close-distance co-alterations. Never-

theless, it must be kept in mind that our study averages the distance

of all the significant edges of a node, thus any possible bias in neigh-

boring co-alterations could have only a tenuous effect on the results.

Our research relies only on the VBM BrainMap database, so the

generalizability of the results might be limited by any shortcoming of

the VBM technique. For instance, the predominance of the hippocam-

pus in the Alzheimer's disease maps might depend on such methodo-

logical issue. Although small posteromedial cortical clusters can be

appreciated in the map of GM decreases (Figure 9), the absence of

large significant neocortical clusters might be due to the modest sensi-

tivity of VBM to changes in the cortical ribbon compared to those in

the hippocampal region (Diaz-De-Grenu et al., 2014). Future studies

using, for instance, cortical thickness, might extend the validity of the

present findings. Another limitation concerns the practical unfeasibility

to derive from the BrainMap repository data about the medication sta-

tus of the large database of patients that entered this meta-analysis.

Moreover, our search did not differentiate between gender and age.

Therefore, analyses were unable to evaluate the effects of such vari-

ables on measuring the mean physical distance of co-alterations.

Given the effect of some psychotropic drug of GM volume (Hafeman

et al., 2012; Navari & Dazzan, 2009), and that age and sex have been

recently reported to be associated with asymmetries in cortical thick-

ness (Guadalupe et al., 2017; Kong et al., 2018), it could be worth

investigating how the symmetry of the maps of mean physical distance

of co-alterations related to GM increases and GM decreases can differ

with respect to these variables.

Finally, we chose the Euclidean distance as main measure in our

research, although, such distance between two adjacent cortical areas

would cut across an eventual sulcus dividing them, thus underestimating

their distance. Such problem could be overcome using geodesic dis-

tance; however, this metric will dramatically overestimate the distance
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between distant areas. Moreover, the Euclidean distance has been pre-

viously used to assess the impact of distance on functional connectivity

(Sepulcre et al., 2010), thus we preferred to implement a method in line

with this previous research.

4.5 | Future directions

The theoretical position underlying the present study was that the

anatomical modifications induced by a disease were better accounted

for if seen as interconnected between each rather than as isolated

phenomena. Our claims are supported by the better sensitivity our

method has, compared to the ALE, to individuate clinically relevant

brain regions in the disease-specific analyses. Therefore, future

research might adopt a co-alteration approach, using measures such

as the mean distance to investigate the anatomical patterns of brain

pathology. For instance, the meta-analytic co-alteration hubs can be

used as ROIs in a study with native data, observing if the GM alter-

ations in such hubs might be a better predictor of clinical or functional

deficits than that of other regions.

Additionally, confirming the hypothesis that the hubs of co-

alteration distance were consistent with those of co-activation, this

research further substantiated a model of network degeneration. Fur-

thermore, it provided some evidence in favor of a multifactorial

approach to pathoconnectivity, highlighting the fact that the simple

spread of toxic agents is not sufficient to account for the distribution

of alterations. Thus, future studies might focus on disambiguating

the contribution of toxic spread, trophic failure, metabolic stress, and

shared vulnerability of different diseases. For instance, neurodegenera-

tive damages might be better explained by models of spread, and

thus fit better normative connectivity, while neurodevelopmental

alterations might be more easily explained by co-occurrences of gene

expressions.

5 | CONCLUSION

The theoretical and methodological aim of this article was to substan-

tiate the network degeneration hypothesis and to suggest the useful-

ness of the notion of co-alteration. Nonetheless, it also produced a

series of concrete findings about brain pathology.

First, it showed that, when the brain is affected by a pathological

process, the anterior and dorsal PFC tend to be involved long-distance

and inter-network co-alterations, thereby this region is to be consid-

ered as a key hub of pathology. Second, it illustrated that long-range

associative functional networks, with the notable exception of the

DAN, tend to constitute paths of intra-network co-alterations. Third,

areas of the left hemisphere were revealed to be prevalently co-

altered in GM decreases, while areas of the right hemisphere appear

to be more co-altered in GM increases. This suggests that the two

sides of the brain are differently affected by pathological processes.

Thus, the present work provides evidence that brain hubs are

involved in long-range co-alterations. However, it also shows that the

areas whose alterations are coupled with those of distant regions are

not the same in all the diseases, suggesting that the patterns of co-

alteration might be pathology specific. The mean physical distance of

co-alteration, therefore, proves itself to be a useful index capable of

providing new insights into the distribution patterns of morphological

alterations caused by brain disorders.
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