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Hibernators dramatically lower metabolism to save energy while fasting for months.
Prolonged fasting challenges metabolic homeostasis, yet small-bodied hibernators
emerge each spring ready to resume all aspects of active life, including immediate
reproduction. The liver is the body’s metabolic hub, processing and detoxifying
macromolecules to provide essential fuels to brain, muscle and other organs throughout
the body. Here we quantify changes in liver gene expression across several distinct
physiological states of hibernation in 13-lined ground squirrels, using RNA-seq to
measure the steady-state transcriptome and GRO-seq to measure transcription for the
first time in a hibernator. Our data capture key timepoints in both the seasonal and
torpor-arousal cycles of hibernation. Strong positive correlation between transcription
and the transcriptome indicates that transcriptional control dominates the known
seasonal reprogramming of metabolic gene expression in liver for hibernation. During
the torpor-arousal cycle, however, discordance develops between transcription and the
steady-state transcriptome by at least two mechanisms: 1) although not transcribed
during torpor, some transcripts are unusually stable across the torpor bout; and 2)
unexpectedly, on some genes, our data suggest continuing, slow elongation with a
failure to terminate transcription across the torpor bout. While the steady-state RNAs
corresponding to these read through transcripts did not increase during torpor, they did
increase shortly after rewarming despite their simultaneously low transcription. Both of
these mechanisms would assure the immediate availability of functional transcripts upon
rewarming. Integration of transcriptional, post-transcriptional and RNA stability control
mechanisms, all demonstrated in these data, likely initiate a serial gene expression
program across the short euthermic period that restores the tissue and prepares the
animal for the next bout of torpor.
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INTRODUCTION

Hibernation is an adaptive strategy that enables survival of
prolonged food deprivation. Each fall, 13-lined ground squirrels
cease activity and disappear into their hibernacula. The animals
do not eat or drink for several months, instead fueling their
metabolism with endogenous stores, largely fat, that were
acquired during the previous summer. Metabolic and heart rates
are profoundly reduced, allowing body temperature (Tb) to fall to
just above freezing where it remains for many days. By spending
most of the fall and winter in this depressed metabolic state
known as torpor, the animals save up to 90% of the energy they
would have needed to remain active throughout their half year of
hibernation. Paradoxically, however, the majority of the energy
budget for the season of hibernation is consumed when torpor
is periodically interrupted for an interbout arousal (IBA); after
several days to even weeks in torpor, hibernating ground squirrels
spontaneously reactivate metabolism to restore euthermic Tb for
approximately 12 h. Thus, hibernation is not a static quiescent
state, but rather a dynamic pattern of seasonal heterothermy
accompanied by prolonged fasting (Figure 1, see also Carey et al.,
2003; van Breukelen and Martin, 2015, for review). These rapid
and dramatic shifts in temperature as well as oxygen delivery and
utilization – and thus metabolism – present multiple challenges to
the maintenance of homeostasis at every level of the hibernator’s
biological organization.

The purpose of the energetically expensive arousals from
torpor is not known, although, at least in lemurs, they appear
to be compelled only in animals exhibiting torpid Tb < 30◦C
(Dausmann et al., 2004). Clearly rates of biochemical reactions
slow as Tb decreases during torpor, and differences in the thermal
sensitivity of various reactions throughout the body leads to
widespread changes, both increases and decreases, in the relative
abundances of metabolites, transcripts and proteins across the
torpor bout; the short, warm arousal periods are also highly
dynamic, with changes between initial rewarming through the
beginning of cooling when the next bout of torpor begins (Nelson
et al., 2009; Epperson et al., 2011; Hindle et al., 2011, 2014;
Jani et al., 2012; Grabek et al., 2015a; Bogren et al., 2017;
D’Alessandro et al., 2017; Regan et al., 2019; Rice et al., 2020).
While rewarming restores the slowed cellular processes and
biochemical reaction rates of torpor in every system in the body,
the detailed molecular mechanisms orchestrating these dynamics
remain to be fully elucidated (see van Breukelen and Martin,
2015, and references therein).

Liver is a key organ for maintaining metabolic homeostasis
throughout the body. It is especially important during feeding
and fasting, because hepatocytes, the main cell type of the liver,
process, metabolize and repackage macronutrients from food and
detoxify xenobiotics. Although no comparison to the half-year
long fast of hibernating 13-lined ground squirrels, mice fasted
for 21 h have a robust transcriptional response to fasting and
refeeding that involves approximately 30% of the genes expressed
in liver (Chi et al., 2020). But hepatocytes also produce the
bulk of plasma proteins and play significant supporting roles
in other crucial physiological processes including blood volume
control, immune system function, and endocrine growth factor

signaling (Trefts et al., 2017). Thus, metabolic depression and
low Tb during torpor present additional challenges to liver
and whole animal homeostasis during hibernation. In addition
to the expected effects of the prolonged seasonal fast on liver
gene expression, the enhanced resistance to ischemia-reperfusion
injury during hibernation (Lindell et al., 2005) suggests a role
for dynamically regulated gene expression in orchestrating a
protected phenotype.

Despite the liver’s central role in metabolism, it being the
source of the first differentially expressed gene in a hibernator
(Srere et al., 1992), and the discovery that transcription all
but ceases at the low Tb of torpor but resumes during each
rewarming (van Breukelen and Martin, 2002), we still have
incomplete knowledge of differential gene regulation in the liver
during the seasonal and torpor-arousal cycles of hibernation.
While many studies have considered gene expression changes
in a small number of specific genes, broad screens with the
potential to discover novel or unexpected hibernation genes
are lacking. Previous efforts used custom microarrays (Williams
et al., 2005) or bead arrays (Yan et al., 2008), as well as early high-
throughput sequencing approaches for species lacking robust
genomes (Bogren et al., 2017; Nespolo et al., 2018), all of which
limited DE analyses to a set of almost exclusively protein coding
genes previously described in non-hibernators.

To begin to overcome these limitations and gain further
insight into liver gene expression dynamics in hibernation, we
collected high-quality, paired-end, strand-specific RNA-seq data
from five individuals in each of five physiological states across
the hibernator’s year. These samples distinguish seasonal and
torpor-arousal cycle variation. In addition, reads were mapped
to a greatly enhanced ground squirrel genome and annotation
for quantification. The genome approaches chromosome-level
integrity and includes 42,881 previously identified, newly
annotated and novel genes (Fu et al., 2021). We further assess
the role of transcriptional control in determining the observed
differential gene expression using GRO-seq data (Core et al.,
2008), collected for the first time from a hibernator. Taken
together these two datasets demonstrate that transcriptional
control dominates the seasonal gene expression changes, while
both transcriptional and post-transcriptional mechanisms are
clearly involved in gene expression dynamics across the torpor-
arousal cycle. The RNA-seq data were further analyzed for A-to-I
RNA editing and differential splicing, both previously shown
to occur in brain (Riemondy et al., 2018; Fu et al., 2021),
demonstrating that both cold-associated ADAR-mediated RNA
editing and differential splicing also occur in liver. As in brain (Fu
et al., 2021), these liver data demonstrate the necessity and value
of carefully timed samples for use in this type of hibernation study
and provide both a resource and a roadmap to guide future work.

RESULTS

Liver tissue was collected from 38 individuals representing seven
physiological states across the hibernator’s year (Figure 1 and
Supplementary Table 1). RNA was isolated from 25 of these
livers and converted to strand-specific RNA-seq libraries to
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FIGURE 1 | Physiological groups analyzed for differential gene expression in liver using RNA-seq and GRO-seq. (A) Schematic shows Tb characteristics of animals
in active (SA and SpD) vs. hibernation seasons (IBA, Ent, ET, LT, Ar). RNA-seq data were collected from n = 5 individuals in SA, IBA, Ent, Ar and SpD. Groseq data
were collected for n = 3 individuals in SA, IBA, Ent, ET and LT (see Supplementary Table 1 for metadata). (B) Venn diagram shows common and unique sample
groups studied by RNA-seq and GRO-seq.

quantify the steady-state transcriptome across five physiological
states: two that bracketed the hibernation season (SA and SpD)
and three that captured the torpor-arousal cycles of hibernation
(IBA, Ent and Ar). Nuclei isolated from 15 livers in five states
were chosen to directly examine transcription across the torpor-
arousal cycle (IBA, Ent, ET and LT, compared to the non-
hibernating SA) using GRO-seq (Core et al., 2008). Two of the
livers were used to collect both types of data, SA30 and Ent64.

RNA-Seq Data Analysis
The RNA-seq data set comprised 33.2± 3.3 million high-quality,
strand-specific readpairs (Supplementary Table 1) from each of
five biological replicates from each state as depicted in Figure 1.
The sequences were first aligned to mtDNA, which were elevated
in SA (Supplementary Table 1). This finding likely reflects
the critical role of liver mitochondria in converting dietary
nutrients into fatty acids as the animals fatten in preparation for
winter hibernation (Lanaspa et al., 2015). The remaining, non-
mitochondrial reads were processed for gene-based analyses of
differential expression (see section “Materials and Methods”).

Unsupervised random forest (RF) clustering of the samples
using the log transformed pseudocounts from all pass-filter
nuclear genes reveals clear separation between the homeothermic
active animals (SpD and SA) and the heterothermic hibernators
(IBA, Ent and Ar), demonstrating a prominent effect of
hibernation physiology on the liver transcriptome (Figure 2A).
Among the winter hibernation groups, IBA was the most distinct,
although all 5 groups were cleanly separated when variable
selection was used to optimize group separation (Figure 2B).
Consistent with the RF results, DESeq2 analysis revealed
that 3,120 of the 10,370 pass-filter genes evaluated (∼30%),
were differentially expressed (i.e., q < 0.001, DE, Figure 2C)
among the five states. Hundreds of DE genes distinguished
the homeotherms from the heterotherms (compare SA or
SpD to IBA, Figure 2C), and the IBA hibernators from both
the Ent and Ar hibernators (Figure 2C). It is noteworthy

that the majority of DE genes (approximately two-thirds) that
distinguished the three hibernating states from non-hibernating
euthermic states were decreased in the hibernators. This finding
suggests a large seasonal shift with a general down-regulation
of the genes comprising the liver transcriptome in hibernation
compared to active, feeding animals. Far fewer liver genes
were DE between animals that had recently emerged (SpD)
from hibernation and those preparing to immerge (SA) into
hibernation. The smallest number of DE genes differentiated
Ent from Ar hibernators (Figure 2C), despite this being the
longest time segment in the torpor-arousal cycle (Figure 1A). The
largest pairwise fold-changes, on the order of 200-fold (| log2FC|
> 7.79) were found among genes increased in both homeotherms
compared to IBA and increased during Ar compared to IBA
(Supplementary Table 2).

Exploring the genes with the highest fold changes reveals
that nine transcripts with log2 fold-changes greater than five
are found in the data. Most of these are protein-coding genes
which were seasonally decreased throughout hibernation. Just
the RNaseP_RNA had a different pattern, which was a dramatic
increase across the torpor bout (Figure 2D). Many of the
higher fold changes across the pairwise transitions are also
MIR_containing, i.e., the longer primary RNA precursors of
functional miRNAs: all of these decrease across the torpor
bout (Figure 2E). Similar to brain (Fu et al., 2021), transcripts
increased in the cold (i.e., higher in Ar than either Ent or IBA)
were also biased for higher GC content, as were transcripts
elevated in IBA compared to SpD (Figure 2F).

To better understand liver gene expression dynamics during
hibernation, we used WGCNA (Langfelder and Horvath, 2008)
to first cluster the DE genes by their relative transcript abundance
pattern across the five physiological groups and then correlate
those co-expression patterns with phenotypic characteristics
(Supplementary Figure 1). Consistent with the findings from
RF and pairwise analyses, we observed strong correlations
(>0.8) of cluster patterns to heterothermy, Tb and IBA. Because
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FIGURE 2 | RNA-seq reveals changes in the relative abundance of liver steady-state RNAs as a function of hibernation physiology. Two-dimensional scaling plots
obtained by unsupervised (A) or supervised (B) clustering of RNA-seq pass-filter reads by random forest; each label represents one individual (groups are as defined
in Figure 1). (C) Schematic of seasonal (SpD - > SA - > IBA) and hibernation (IBA - > Ent - > Ar) cycles showing the number of DE genes across each pairwise
transition. As indicated in the schematic legend (left), the number of DE genes increased in the state closest to the head or the tail of the arrow are enumerated in
black and gray, respectively. Numbers below report the number of DE genes/the number of pass-filter liver genes evaluated. Line plots of (D) 9 liver DE genes
exhibiting log2 fold change > 5; (E) Differentially expressed microRNA precursor genes. (F) Boxplot showing the GC-content of DE genes (dots) across the
torpor-arousal cycle. Each of the three possible pairwise comparisons comprising the torpor-arousal cycle depicted in panel C are indicated below, genes elevated in
each state of the pair are plotted by color (legend). See also Supplementary Data Sheet 3, Supplementary Table 2.

closer inspection of individual genes revealed many exhibited
gene expression dynamics inconsistent with their WGCNA
assignments (see also, Botía et al., 2017; Fu et al., 2021), we
defined 14 most-common DE patterns in the data and re-
assigned the 3,120 DE genes to their best-fit cluster. This process
placed 95.8% of the DE genes into one of 14 dynamic patterns
(Figure 3A and Supplementary Figure 2).

Strong effects of hibernation season and Tb on liver
transcriptome dynamics dominated the liver co-expression

patterns. More than one third of the DE genes were increased
(Winter_high) or decreased (Winter_low) throughout the several
months of hibernation (IBA, Ent, Ar) compared to active animals
(SA, SpD). And, nearly 40% were altered by temperature, either
increasing (Cold_high) or decreasing (Cold_low) by the end of
the torpor bout (Ar) compared to 2–3 h after rewarming (IBA),
with different relative abundances at the end of the euthermic
period as the animals reentered torpor (EH, EM, EL, for Ent
high, medium or low, respectively). There were relatively few
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FIGURE 3 | Seasonally decreased metabolic genes dominate differential gene expression in hibernator liver. (A) Heatmap summary of RNA-seq co-expression data
for 3,120 DE genes in liver. Colors indicate the relative abundance of steady-state RNA for each physiological state. Pattern names (left) and the number of genes
(right) in each co-expression cluster are indicated. (B,C) Gene enrichment categories in the DE genes. Two-dimensional scaling plots for gene enrichments based on
similarity of terms, using REVIGO (B) and then replotted in panel (C) after segregating by co-expression pattern and adjusting so that circle diameters are
proportional to the number of DE genes in each enrichment category. Colors group enrichments to the indicated broad categories: expression = regulation of gene
expression, repair = DNA repair; RNA = RNA splicing and processing, and stress = stress response and signaling. In panel (C), co-expression clusters with < 2
significant enrichments are excluded. See also Supplementary Figure 2 and Supplementary Table 3.

genes in the two clusters with maximal change across the torpor
bout, i.e., Cold_low_EH or Cold_high_EL, consistent with the RF
clustering in Figure 2A and the pairwise analysis in Figure 2C.
Another 14% of DE genes were increased or decreased exclusively
early in the euthermic period between torpor bouts (IBA_high,
IBA_low). Finally, small sets of DE genes altered uniquely in one
of the homeothermic periods, SA or SpD, were also apparent
in the data. Further insight comes from analysis of enriched
gene ontology terms in these clusters. Not unexpectedly for liver,
gene enrichments exhibited an overarching dominance of terms
related to metabolism (yellow circles in Figure 3B), with the vast
majority of these segregating to the Winter_low co-expression
group (Figure 3C, Supplementary Figure 2, and Supplementary
Table 3), consistent with the reduced need to process nutrient
influx during the long winter fast.

The 214 genes that increased in the cold
(Cold_high_EM + Cold_high_EL) in these RNA-seq data were
particularly intriguing given that transcription in ground squirrel
liver was shown previously to all but cease (van Breukelen and
Martin, 2002) at the low Tb of torpor. Because RNA-seq measures
the relative abundance of transcripts at steady-state, differences
in transcription, stability or even polyadenylation (Grabek et al.,
2015a) could account for the observed transcriptome differences
between animals just beginning (Ent) vs. those just ending (Ar)
a torpor bout. To directly assess the role of transcription in
the observed transcriptome dynamics across the torpor-arousal
cycle, we prepared GRO-seq libraries from liver in four stages
of hibernation: IBA, Ent, and early and late torpor (ET and LT,
respectively, Figure 1), and compared them to a non-hibernating
SA group. GRO-seq is a high-throughput sequencing adaptation
(Wissink et al., 2019) of the run-off assay used previously in
hibernating ground squirrel liver (van Breukelen and Martin,
2002). Isolated nuclei were incubated to extend RNA polymerases

that were pre-initiated and competent for elongation at the time
of tissue collection. These newly transcribed RNAs were isolated,
converted to sequencing libraries and sequenced such that only
genes harboring active RNA polymerase across our various
hibernation states were recovered in the GRO-seq libraries. The
gene-based read counts from these libraries provide an accurate
measure of relative transcription, in contrast to the multiple
factors that govern the relative abundance of transcripts in
steady-state RNA, i.e., as measured above by RNA-seq.

GRO-Seq Data Analysis
The GRO-seq dataset comprised 32.2 ± 3.7 million, strand-
specific single-end reads from three biological replicates
representing each of the five physiological states. After adapter
removal, quality trimming and a length filter, 14.9 ± 3.4 million
reads/sample remained; of these, 10.2± 2.2 million reads/sample
aligned to the HiC genome (Supplementary Table 1). Initially,
we quantified these reads using the same transcript annotation
(Fu et al., 2021) as used for the liver RNA-seq analysis described
above. Because previous studies of torpid hibernators had
demonstrated depressed transcription at low Tb, we were
astonished to find large numbers of DE genes that increased in
ET compared to Ent, LT compared to ET, or LT compared to
IBA (e.g., Nxph4 in Figures 4A,B; Supplementary Figure 3A).
Inspection of the GRO-seq coverage on genes increased in
LT compared to ET using the genome browser revealed they
were found adjacent to an upstream, actively transcribed gene
(Figures 4A,B; Supplementary Figures 3B–E), suggesting that
elongation by RNA polymerase on liver genes can continue
slowly throughout the torpor bout in concert with a failure to
terminate transcription.

Metaplots comparing RNA-seq data with GRO-seq data by
state lend further credence to the view that transcription fails to
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FIGURE 4 | GRO-seq reveals transcriptional run-on and failure to terminate during torpor. (A) Browser view shows 13-lined ground squirrel (HiC_Itri_2) genomic
region with Nxph4 downstream of Lrp1 and upstream of Shmt2, all transcribed from the minus strand, along with GRO-seq coverage from one representative
sample from each state across this region and RNAseq from the common SA and Ent samples. Arrows mark paused polymerase near transcriptional start sites
(promoter proximal pause) for Lrp1 and Shmt2. (B) Line graphs plot log2 fold change for these three genes in GRO-seq and RNA-seq data. (C) Distribution of fstitch
segments called in GRO-seq data for each hibernation state, relative to the position of the 3′ end (at 0, ± 20kb) of annotated genes. The 3′ ends included in the
analysis were required to have fstitch annotations called in all 5 states and these annotations were required to overlap the annotated 3′ end. RNA polymerase is
known to accumulate at both the 5′ and 3′ ends of transcripts (Core et al., 2008; Glover-Cutter et al., 2008). See also Supplementary Figures 3, 6, and 13.

terminate during torpor. In contrast to the RNA-seq data, where
read coverage near the 3′ end of transcripts abruptly decreased
at the transcription termination site (TTS) independent of
physiological status (Supplementary Figure 3F), elongating RNA
polymerase captured by GRO-seq extended further and further
3′ of the TTS as animals began to cool during Ent and then
progressed through the torpor bout (compare SA and IBA
to Ent, ET and LT in Supplementary Figure 3G). Therefore,
we used Fstitch (Azofeifa et al., 2017) on the GRO-seq data
to reassess transcription units for 13-lined ground squirrel
liver, analyzing each state separately. Comparison of the Fstitch
transcribed segments among the five physiological states revealed
a genomewide 3′ shift of elongating PolII on a subset of liver
genes during torpor (Figure 4C), as seen by the second peak
downstream of the TTS as animals begin to cool when re-entering
torpor and its movement and broadening further to the right of
the TTS as animals progressed from Ent -> ET -> LT in the
torpor-arousal cycle of hibernation.

Because of the features of transcription during torpor
described above, to more accurately assess bona fide
transcriptional changes associated with hibernation, we re-
quantified the GRO-seq reads using a re-defined transcript
annotation based on these Fstitch segments. We also removed
the first 500nt downstream of the transcription start site
(TSS, Vihervaara et al., 2017) and considered only the non-
overlapping genes for this quantification. As with the steady-state

transcriptome analyzed by RNA-seq, random forests analysis
of the remaining 4,705 pass-filter GRO-seq genes revealed a
strong effect of hibernation physiology on transcription. The SA,
IBA and Ent groups were all well-separated from one another,
and from the closely juxtaposed low Tb groups, ET and LT
(Figure 5A). DESeq2 analysis of the GRO-seq data revealed
sequential pairwise differences across the physiological states that
were consistent with the random forest clustering. Strikingly,
over half (2,417 or 56%) of the GRO-seq genes analyzed by
DESeq2 were DE among the five physiological groups, with
the largest number of pairwise differences distinguishing the
torpid animals from the warmer stages of the torpor-arousal
cycle (i.e., Ent vs. ET and LT vs. IBA, Figure 5B). Although
the small sample size limits the utility of WGCNA, we see once
again that the highest correlations (>0.8) between transcript
co-expression patterns and phenotypic characteristics are to
heterothermy, SA and IBA (Supplementary Figure 4). Re-
clustering the GRO-seq genes by these traits captures 88% of
the DE genes in just six patterns with the vast majority (73%)
having the pattern Cold_high_EM or Cold_low_EM (Figure 5C
and Supplementary Figure 5). Among these co-expression
patterns in the GRO-seq data, only the Cold_high pattern was
enriched for genes with extended 3′ ends based on the fstitch
annotation, 62%, compared to 56% of the GRO-seq genes
overall (Supplementary Table 4). Gene enrichment analysis
revealed a dominance of mRNA splicing, processing and export
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FIGURE 5 | Differentially transcribed genes in liver during hibernation captured by GRO-seq. (A) Two-dimensional scaling plot shows unsupervised random forest
clustering of individuals based on the full GRO-seq dataset. (B) Numbers of differentially transcribed genes between pairs of sequential stages in the torpor-arousal
cycles of hibernation, compared to summer. As indicated in the legend below, the number of differentially transcribed genes increased in the state closest to the
head or the tail of the arrow are enumerated in black and gray, respectively. Numbers below are the number DE/total fstitch gene-body transcription units. (C)
Heatmap summarizes the GRO-seq coexpression clusters with the pattern indicated on the left and number of genes in each cluster indicated on the right. See also
Supplementary Figure 5 and Supplementary Table 4.

among the genes with the Cold_high_EM pattern, whereas
genes in the Cold_low_EM cluster were enriched for a metabolic
activity, oxidation-reduction (Supplementary Figure 5 and
Supplementary Table 3).

Comparison of Genes DE in Both
RNA-Seq and GRO-Seq Datasets
To gain a better understanding of the role of transcription
in hibernation, we next compared the genes that were DE in
both RNA-seq and GRO-seq datasets (Figure 6A). Merging the
DE genes from the two datasets shows 770 were DE in both.
Interestingly, 2350 DE genes from the RNA-seq dataset were not
differentially transcribed and conversely, 1607 genes that were
differentially transcribed by GRO-seq were not DE in the steady-
state RNA population. We focused on the 770 genes that were
DE in both the RNA-seq and GRO-seq datasets to examine their
dynamics across the pairwise transitions. For this analysis, we
considered the LT sample group in the GRO-seq dataset to be
equivalent to the Ar group in the RNA-seq dataset.

While there were relatively few pairwise differences among
these 770 genes common to both datasets (Figure 6B and
Supplementary Table 5), their correlation plots were instructive
(Figures 6C–F). Changes in transcription were well-correlated
(r = 0.76) with changes in steady-state RNA in the SA to IBA
comparison (Figure 6C), i.e., in the seasonal transition from
homeothermy to heterothermy, even for the genes that did not
meet our criteria for DE (q < 0.001) in both datasets. This
result is consistent with a dominant role for transcriptional
control in the seasonal reprogramming of liver gene expression
during hibernation. In contrast, the correlations between the
GRO-seq and RNA-seq datasets were far lower in the pairwise
transitions across the torpor-arousal cycle among these 770 DE

genes (r = 0.174-0.204). This finding suggests that the relative
abundance of a transcript across the torpor-arousal cycle is more
complex than a simple reflection of its transcription (Figures 6D–
F). Although the dynamics of the five common DE genes
between the GRO-seq and RNA-seq datasets in the Ent vs. Ar/LT
were well correlated, the remaining 765 transcripts exhibited
relatively little change in the steady-state RNA compared to
their broad range of values for transcription across this pairwise
transition (Figure 6E). Additionally, the pairwise comparison
with the largest number of DE genes in both datasets, IBA
compared to Ar in RNA-seq and LT in GRO-seq, revealed that
the poor correlation between transcription and steady-state RNA
across the torpor-arousal cycle (compare panel C in Figure 6
to panels D-F) reflected a conglomeration of positively and
negatively correlated genes (Figure 6F). A mixture of positively
and negatively correlated log2-fold changes was also apparent
in the IBA-Ent comparison (Figure 6D and Supplementary
Table 5) although far fewer of these were DE in both datasets.

As noted above, transcriptional control appeared to largely
account for the observed changes in the transcriptome for
the common DE genes between the homeothermic active
animals and the hibernators (Figure 6C, illustrated by the
gene, SCD_containing, in Supplementary Figure 6A) but not
the relationship between transcription and the steady-state
transcriptome in genes DE across the torpor-arousal cycle.
Considering the 151 DE genes common to both datasets,
87 of them were positively correlated and can reasonably be
considered to be transcriptionally controlled, either increasing
(Supplementary Table 4, Arrdc3 in Supplementary Figure 6B)
or decreasing in IBA. The remaining 64 negatively correlated
DE genes between GRO-seq and RNA-seq either reached their
highest steady-state RNA levels when transcription was lowest
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FIGURE 6 | Comparison of DE genes identified by RNA-seq and GRO-seq. (A) Venn diagram indicates the number of DE genes in just RNA-seq (blue), just
GRO-seq (orange), or both. (B) Common DE genes in pairwise sequential transitions; for this comparison, LT (GRO-seq) and Ar (RNA-seq) are taken as comparable
states. (C–F) Scatter plots of log2 fold change in RNA-seq vs. GRO-seq data for all 770 genes in the indicated pairwise transition (see panel B). DE genes for the
indicated pair are plotted in dark red, all others are gray. Correlations for the 770 genes across each pairwise transition were: (C) IBA-SA, r = 0.76,
p-value < 2.2e-16; (D) IBA-Ent, r = 0.204, p-value = 1.13e-08; (E) Ent-LT/Ar, r = 0.181, p-value = 3.97e-7; (F) IBA-LT/Ar, r = 0.174, p-value = 1.18e-06. (G) Top DE
discordant protein coding genes in RNA-seq vs. GRO-seq data.

(Serpina7 and A2m) or conversely, had their lowest steady-
state RNA levels when transcription was highest (Hsp90aa1 and
Atp6v1b2, Figure 6G). Examining the GRO-seq coverage of these
genes confirmed decreasing transcription from IBA to Ent and
through the torpor bout with highest gene coverage in the GRO-
seq data in IBA for Serpina7 and A2m. Conversely, increased
GRO-seq coverage across Hsp90aa1 and Atp6v1b2 was apparent
as animals transitioned from IBA to Ent and across the torpor
bout (Supplementary Figures 6C–F).

We scanned the sequences of the positively and negatively
correlated transcripts for enriched motifs in their 3′ non-
coding regions. This analysis revealed a striking, reciprocal
enrichment pattern for transcripts containing AU-rich motifs
in the genes discordant between the RNA-seq and GRO-seq
datasets (Supplementary Figures 7A,B). Specifically, steady-
state transcripts that increased during IBA compared to Ar
were enriched in AU-rich motifs when their transcription was
decreased. Conversely, AU-rich motifs were depleted in those
transcripts that were increased during Ar compared to IBA,
despite their concomitantly low transcription. This result is
consistent with the GC enrichment of transcripts that were stable
across the torpor bout (Figure 2F) and implies regulation by
RNA binding proteins that recognize AU-rich elements (García-
Mauriño et al., 2017; Otsuka et al., 2019). Only five ARE-binding
proteins were DE in the liver RNA-seq dataset, and, for all but
one of these, the dynamics were different from hypothalamus
(Supplementary Figure 7C). This difference is consistent with
distinct regulation of ARE-containing transcript stability and
turnover in hibernating liver compared to brain.

These liver RNA-seq data were further analyzed for
qualitative changes associated with hibernation in addition
to the quantitative changes described above. Specifically, we

examined the liver RNA-seq data for deamination of adenosine
by ADAR (adenosine deaminase acting on RNA), and for
changes in splicing, both of which were found previously in
hibernating brain (Riemondy et al., 2018; Fu et al., 2021).

RNA Editing
Our earlier study of the brain transcriptome in hibernating 13-
lined ground squirrels revealed a large increase of adenosine
deamination during torpor, i.e., when the animal’s Tb was low
(Riemondy et al., 2018). This deamination effectively recodes
RNA by converting adenosine to inosine, which behaves like
guanosine. We asked whether a similar increase in edited sites
was apparent in these liver RNA-seq data. As was observed
in brain, a clear excess of A/G substitutions was observed
in the RNA-seq data compared to all other possible variants
(Figure 7A), and these are significantly elevated in Ar compared
to all other pairwise comparisons, i.e., they accumulate at the
low Tb of torpor in liver (Figures 7B,C). While there were fewer
edited sites (705, Supplementary Table 6) in these liver data than
were observed in brain, 141 sites were significantly edited in both
tissues (Figure 7C and Supplementary Figure 8). And, in liver
as in brain the edited sites were predicted to have little impact on
the proteome, instead occurring largely outside of coding regions
and in repeated DNA (Figures 7E,F).

RNA Splicing
Finally, the liver RNA-seq data were analyzed for alternative
splicing during hibernation using MAJIQ (Vaquero-Garcia et al.,
2016). MAJIQ reports alternative splicing events between states
in terms of dPSI (change in “percent spliced in”) values
for each possible junction that a given source (upstream)
or target (downstream) sequence can form. MAJIQ refers to
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FIGURE 7 | A-to-I RNA editing occurs in the liver during torpor. (A) Summary of single-nucleotide variants detected in RNA-seq data (but not in GRO-seq data) with
allele frequencies that are significantly (FDR < 0.05) variable across hibernation stages. (B) Summary of pairwise analysis of A-to-I editing sites with differential editing
frequencies between each stage. FDR < 0.05 is considered significant. (C) Euler-diagram comparing the A-to-I RNA editing sites with enhanced editing during torpor
in brain tissue (Riemondy et al., 2018) and in liver, p-value < 2.3 × 10-308. (D) Heatmap of the frequency of editing sites with cold-enriched editing in the liver. Only
editing sites with sufficient counts in greater than six samples are shown. (E) Summary of the genomic positions of cold-enriched liver editing sites. (F) Summary of
the predicted impacts of A-to-G substitution on mRNA processing and translational activities. See also Supplementary Table 6 and Supplementary Figure 8.

these collections of possible junctions as LSVs (local splicing
variations). Here, we define alternative splicing as a significant
increase in the PSI of all alternative junctions relative to the
“summer-dominant junction” (most common junction in SA)
at a given LSV. Consistent with our previous findings in the
brain of the 13-lined ground squirrel (Fu et al., 2021), we
found that alternative splicing in the liver is highly temperature

dependent (Figure 8A and Supplementary Figure 9). As in the
brain, we specifically observed that alternative splicing events
most commonly exhibit the Cold_high_EM and Cold_high_EH
patterns, indicating increased alternative junction use in the cold
states (Ent and Ar) relative to the warm states (SA, IBA, SpD).
Focusing on intron retention by considering the dPSI values
of all retained introns rather than the most common junctions
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FIGURE 8 | Summary of alternative splicing in the liver during hibernation. Heatmaps show summary of (A) mean dPSI, and (B) retained introns relative to SA.
Numbers on the right give the number of genes in each of the indicated cluster patterns named on the left. Splice graphs from MAJIQ illustrate temperature
dependent alternative splicing for (C) SRSF6 and (D) Trab2b. See also Supplementary Table 7.

in SA, we observed that intron retention is largely restricted
to Cold_low_EM and Cold_low_EL patterns (Figure 8B and
Supplementary Figure 10). This finding is consistent with intron
retention patterns in the brain, where intron retention is also
the default heterothermic state for most LSVs that contain a
significant state-specific intron retention event.

To determine if genes involved in certain pathways
were consistently alternatively spliced in the liver during
hibernation, we performed GO term enrichment on the list
of genes with significant state-dependent alternative splicing
events, independent of cluster (Supplementary Table 7). We
found that the three most significantly enriched terms were
“regulation of RNA splicing” (GO:0043484), “mRNA processing”

(GO:0006397), and “RNA splicing” (GO:0008380). Strikingly,
the top 14 most significant terms all concern RNA processing or
RNA splicing, specifically. When considering the splicing clusters
(Figure 8A) as separate gene lists (Supplementary Table 7), the
same overrepresentation of splicing-related terms is returned,
with the added information that most of the genes involved in
splicing exhibit the Cold_high_EH pattern. This is consistent
with our earlier findings that the splicing factors SRSF6 and
Srsf5 are themselves alternatively spliced during hibernation
in the brain and may directly modulate the state-dependent
alternative splicing observed there (Fu et al., 2021). Indeed, we
observe the same alternative splicing events in both Srsf5 and
SRSF6 in the liver. Figures 8C,D show the splice graphs for two
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representative alternative splicing events in liver splicing factor
mRNAs, SRSF6 and Tra2b.

DISCUSSION

Metabolic flexibility, the ability to maintain cell, tissue and
organismal homeostasis despite variabilities in the internal
and external milieux, is a critical characteristic of mammalian
hibernation. Homeostasis is maintained despite the dramatic
swings of nutrient intake, oxygen delivery and tissue temperature
that occur during hibernation (Carey et al., 2003; Staples, 2016).
We employed two high-throughput sequencing approaches to
interrogate the steady-state transcriptome and transcription in
the liver with the goal of revealing changes in liver gene
expression that support the hibernating phenotype. RNA-seq
quantifies the relative abundance of transcripts at steady-state,
and therefore represents the product of transcription and RNA
turnover (Mortazavi et al., 2008; Lovén et al., 2012). In contrast,
GRO-seq quantifies pre-initiated RNA polymerases that are
capable of continuing elongation when nuclei are incubated with
nucleotides (Core et al., 2008). These datasets, obtained from
precisely sampled livers representing key timepoints in both the
torpor-arousal and seasonal cycles of hibernation, allowed us
to separate both transcriptional from post-transcriptional and
seasonal from temperature effects on liver gene expression in
hibernation for the first time.

The central role played by the liver in the uptake and
repackaging of dietary nutrients (Trefts et al., 2017), along
with the demonstrated seasonal resistance of the 13-lined
ground squirrel liver to damage caused by cold storage and
reperfusion (Lindell et al., 2005) led us to expect a robust seasonal
reprogramming of liver gene transcription and hence the
transcriptome. Indeed, the dominant feature of the transcriptome
was the seasonally decreased (Winter_low) abundance of a large
number of transcripts for genes encoding metabolic enzymes,
particularly those involved with fatty-acid, cholesterol and
steroid biosynthesis, xenobiotic and amino acid metabolism
including the urea cycle (Figure 3, Supplementary Figure 2,
and Supplementary Table 2, 3). These enrichments are broadly
consistent with gene enrichments found associated with short-
term fasting in mice (Chi et al., 2020; Defour et al., 2020), and
in previous analyses of the hibernating 13-lined ground squirrel’s
liver metabolomic, transcriptomic and proteomic adjustments
across hibernation cycles (Serkova et al., 2007; Hindle et al.,
2014; Bogren et al., 2017), as well as in RNA-seq datasets of liver
gene expression changes in other taxa of hibernators (Nespolo
et al., 2018; Jansen et al., 2019). The basis for enhanced liver
protection during hibernation is not quite as apparent in the
changing transcriptome as the strong metabolic response (which
may itself be protective, Hindle et al., 2014; Perez de Lara
Rodriguez et al., 2017). But the seasonal gene enrichments in
cell adhesion (Joutsen et al., 2020) and spermine metabolism
(Pegg, 2014), both Winter_high, as well as enrichments in
apoptotic cell clearance (Cold_high_EM), the unfolded protein
response, regulation of cellular response to heat (Cold_low_EL),
and hyaluronan metabolism (Day and de la Motte, 2005) in

the torpor-arousal cycle may all contribute to protecting the
functional integrity of the liver throughout hibernation.

Compared to our recent study of DE genes in three brain
regions (Fu et al., 2021), this liver dataset is distinct in its elevated
number of seasonally altered genes (44% in liver vs. 14, 20
and 23% in forebrain, hypothalamus and medulla, respectively),
in the larger fold changes in liver (both a greater proportion
of genes exhibiting > 2x fold-change, and the maximum fold
changes observed, Supplementary Table 2) and in the large,
liver specific enrichment of metabolic genes that are decreased
over the entire winter hibernation season (Figure 3). This last
feature in particular is consistent with earlier reports that the
major component of differential gene expression in hibernation
is related to tissue-specific gene expression (Grabek et al.,
2015b; Bogren et al., 2017), and with the key role of the
liver in maintaining metabolic homeostasis throughout the long
winter fast, as discussed above. The generally larger fold-changes
observed among the liver DE genes compared to the three
brain regions likely reflects the relative enrichment of a single
cell type, the hepatocyte, which comprises ∼80% of the cell
volume in the mammalian liver. While the liver does have several
other cell types and there is evidence of region-specific gene
expression (Halpern et al., 2017; Trefts et al., 2017; Cheng et al.,
2018) it is nonetheless not as heterogeneous as brain when
considering the unique gene expression profiles of numerous
small pools of neurons along with its numerous non-neuronal
cell types. Regional functionalization in liver, taken together
with our use of an ∼50-100mg broken piece of frozen liver for
library preparations, may underlie the relatively high individual
variation in the liver datasets, as evidenced by generally higher
p-values (Supplementary Table 2), compared to the brain.

Many features of the liver RNA-seq dataset were shared with
brain. RNA binding proteins, including polyA binding proteins,
were increased for winter in liver (Supplementary Figure 2
and Supplementary Table 3), indicative of the importance of
regulating RNA turnover and stability in the torpor-arousal cycle.
The bias toward higher GC content among the genes stabilized
across the torpor bout was also found in liver (Figure 2F). The
preservation of this GC-rich subset of mRNAs may reflect the
general depression of translation at the low Tb of torpor (van
Breukelen and Martin, 2001) leading to decreased turnover of
what would otherwise be highly translated, and consequently
highly turned-over, mRNAs (Courel et al., 2019). The finding
that several of the highest fold changes among the genes in
liver that were DE across the torpor-arousal cycle were found in
miRNA_containing genes was also a common feature with the
three brain regions (Fu et al., 2021). In liver however, all of these
dynamic miRNA_containing transcripts decreased dramatically
across the torpor bout (i.e., between Ent and Ar, Figure 2E),
and just one, MIRLET7D_containing, was also DE in brain. It
is important to note that our library preparation methods do
not capture mature miRNAs, so these quantifications do not
address whether the functional miRNAs are DE. However, one
of these, miR-148a, has been reported to be elevated during ET
in hibernating 13-lined ground squirrel liver (Wu et al., 2016).
Inspection of the read distributions for these miRNA_containing
genes reveals that the majority of reads fall outside of the miRNA
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region, i.e., the quantification reflects the 3′ most remainder of
the primary transcript excluding the miRNA (i.e., containing
the polyA tail up to the 3′ end of the miRNA which has been
largely processed out (Supplementary Figure 11). Additional
experiments are needed to assess the functional significance of
these dynamic miRNA_containing transcripts during torpor-
arousal cycles, including whether the miRNA or the lncRNA that
remains after initial processing (Du et al., 2019; He et al., 2021),
or both, are functionally relevant.

The RNA subunit of RNaseP exhibited one of the
largest increases seen in our RNA-seq dataset – log2-fold
Ar/Ent = 5.95, Figure 2D. This large increase likely reflects novel
polyadenylation of this gene during torpor, as demonstrated
previously in brown adipose tissue (Grabek et al., 2015a). RNaseP
RNA is not polyadenylated while serving its function in tRNA
processing, and thus not normally captured in polyA selected
RNA as used here for RNA-seq library construction. Rather the
appearance of this transcript in our liver RNA-seq data (along
with others, e.g., SCARNA17_like, Supplementary Table 2)
likely indicates an uncoupling of the signal for and actual
processing of transcripts through the nuclear exosome (LaCava
et al., 2005; Yu and Kim, 2020) at the low Tb of torpor.

The direct impact of transcription on the differential-
expression dynamics of thousands of genes in hibernation was
assessed here for the first time. Our findings support and extend
those of an earlier study in torpid and IBA hibernating golden-
mantled ground squirrels compared to SA (van Breukelen and
Martin, 2002) which used similar nuclear run-on techniques
but was technically limited to global rather than gene-specific
conclusions. As expected from those earlier results, our GRO-
seq data revealed that a large number of liver genes contained
pre-initiated RNA polymerase during early and late torpor and
elevated transcription activity in IBA. Unexpectedly however,
we found that transcription during torpor often extended 3′
of the transcription termination signal used in the warm Tb
states, including into adjacent genes. Based on our new data
and the literature we posit that transcription initiation and
termination cease during torpor while elongation continues at a
greatly reduced rate.

Several observations consistent with this hypothesis are:
1) run-off transcription measured globally using 32P-UTP
incorporation is indistinguishable between ET and LT, reflecting
the maintenance of a constant number of elongation-competent
RNA polymerases for multiple days at 4-8◦C across the torpor
bout (van Breukelen and Martin, 2002), because the energetic
requirements of the three states of transcription (initiation,
elongation and termination) are quite different (Yan and Gralla,
1997; Han et al., 2016) the elongation-competent polymerases
present in ET likely remain present in LT; 2) browser tracks
of genes with significantly increased transcription only during
torpor revealed read-through transcription from upstream genes
and lacked evidence of local promoter-proximal pausing as
expected if initiation had occurred on their own promoters
(Figures 4A,B and Supplementary Figures 3B–E), moreover,
these genes exhibited no increase of steady-state RNA across
the torpor bout, and they are typically not expressed in liver
in mouse or human, consistent with their transcription coming

from an upstream promoter and a lack of termination on that
upstream gene; 3) while the GRO-seq data revealed no difference
in the distribution of polymerases surrounding the TTS between
SA and IBA, we observed an increasingly downstream shift as
animals progressed into and through the torpor bout, i.e., from
IBA - > Ent - > ET - > LT (Figure 4C and Supplementary
Figure 3G), again consistent with the movement of elongating
polymerase and lack of termination; and 4) despite dramatic,
temperature-dependent effects on the rate of transcriptional
elongation in run-off assays, a small amount of incorporation
is detectable at the temperature of a torpid hibernating ground
squirrel (van Breukelen and Martin, 2002), indicating that
elongation can proceed at the temperature of torpor. In the
absence of de novo initiation or termination of transcription
during torpor, the difference between the mean location of
polymerase downstream of TTSs in ET and LT can be taken
to reflect the movement of elongating RNA polymerase across
the torpor bout. Specifically, in these samples RNA polymerase
moved 1890± 29 nt 3′ from ET to LT (calculated as the difference
between mean ET and LT fstitch extensions) in 7.3 ± 2.2 days
(the difference in mean times with Tb below 8◦ for the ET and
LT animals). Thus, the elongation rate observed across the torpor
bout was∼ 2kb in 5 days, or about 0.0003 kb/min, a rate far lower
than the typical PolII transcription rate of 1-6 kb/min (Fuchs
et al., 2014; Veloso et al., 2014). Additional experiments such
as pulse-chase assays (Fuchs et al., 2014) will be necessary to
estimate the elongation rate more precisely during torpor.

The increased read-through transcripts detected in the GRO-
seq data during torpor typically did not lead to increased
steady-state abundance of their corresponding transcript (i.e.,
they were not DE in the RNA-seq data). Therefore, normal
3′ end cleavage and polyadenylation is apparently greatly
suppressed during torpor. Significantly, a set of recent papers
report that several stress conditions, including heat shock,
hypoxic and osmotic stress, as well as viral infection, cause
suppression of transcriptional termination leading to read-
through transcription in numerous genes (Vilborg et al., 2015,
2017; Vihervaara et al., 2017; Cardiello et al., 2018). These
findings are strikingly similar to what we see occurring naturally
in the liver of hibernating ground squirrels across the torpor
bout with the important distinction that there is no evidence
to suggest whether proper transcripts can be processed from
those read-through transcripts when the stress stimulus is
reversed. Read through transcription has also been shown to
alter chromatin architecture (Heinz et al., 2018) and hence
which genes are readily accessible to activation by transcription
factors. Significantly, Hsf1, which we found to be induced
throughout winter hibernation (Winter_low, Supplementary
Table 2; squirrelBox), has been linked to altered transcriptional
response and chromatin architecture genome wide (Vihervaara
et al., 2017; Vilborg et al., 2017).

One finding from the earlier study of transcription during
hibernation was not apparent in our GRO-seq data; liver
transcription in golden-mantled ground squirrels increased in
IBA compared to both LT and SA, with IBA approximately 2-
fold higher than LT and 1.3-fold higher than SA (van Breukelen
and Martin, 2002). In contrast, among the 2417 DE genes in
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our GRO-seq data, there were approximately equal numbers of
highly transcribed genes during SA and IBA, and slightly more
in LT (Supplementary Figure 5), although the LT genes were not
as strongly transcribed (Figure 5C). This is likely explained by
the library-size based normalization that was applied to the RNA
and GRO-seq data. This normalization assumes that RNA yield is
similar across cells in each sample, which will therefore obscure
changes in overall transcriptional activity between hibernation
stages (Lovén et al., 2012). This data-processing step, along with
higher rates of transcription in IBA and SA and the large number
of genes that were excluded in our analyses with its focus on
the differentially transcribed genes would all contribute to this
apparent discrepancy.

Another striking and noteworthy feature of the GRO-seq data
is that for most genes, whether the gene will exhibit increased
or decreased polymerase during torpor is well-correlated with
whether polymerase during Ent on that gene was increasing
(Cold_high_EM) or decreasing (Cold_low_EM). This feature
of transcription in the torpor-arousal cycle was most readily
apparent in the heatmap in Supplementary Figure 5; genes in
Cold_high_EM and IBA_low_EM have increased coverage in
GRO-seq from IBA to Ent, whereas genes in Cold_low_EM and
IBA_low_EM were decreasing from IBA to Ent. This pattern
suggests that the bulk of transcriptional control across the torpor
bout has been established prior to Ent.

Seasonal changes in liver transcripts were well-correlated with
their transcriptional dynamics (Figure 6C and Supplementary
Figure 6A), as were many of the transcripts DE across the
torpor-arousal cycle (positively correlated in Figures 6D–
F and Supplementary Table 5). The dynamics of these
positively correlated transcripts thus likely reflects their
differential transcription.

The regulation of the negatively correlated genes across the
torpor-arousal cycle is more complex, however. While we cannot
conclusively rule-out transcriptional control during torpor, most
transcripts that accumulate during torpor appear to be unusually
stable rather than newly transcribed. This conclusion is based
on a common pattern of low GRO-seq coverage in ET and LT
for genes with high relative abundance in the RNA-seq data
(upper left quadrant in Figure 6F). This pattern is exemplified
by the genes encoding two plasma proteins secreted from
liver, SerpinA7 and A2M (Figure 6G and Supplementary
Figures 6C,D). SerpinA7, formerly known as TBG (thyroxine
binding globulin), is a major carrier of thyroid hormone
and A2m, alpha-2-macroglobulin, is a protease inhibitor and
cytokine transporter which can inhibit inflammatory cascades
(Sieckmann et al., 2014); both were previously shown to be
elevated in hibernating ground squirrels (Srere et al., 1992;
Epperson and Martin, 2002; Hindle et al., 2014). Transcripts
of genes with the opposite pattern, i.e., elevated in the GRO-
seq data during torpor when they are at their lowest relative
abundance in the RNA-seq data often reach their highest level
during IBA (lower right quadrant in Figure 6F). This pattern
is exemplified by Hsp90aa1 and Atp6v1b2 (Figure 6G and
Supplementary Figures 6E,F). Their high GRO-seq coverage
in ET and LT suggests that additional RNA polymerases are
still able to initiate and escape into elongation mode after the

Ent but prior to ET sampling timepoints, although we found
no evidence of further increased transcription between ET and
LT, and there was no corresponding increase in the steady-state
RNA (RNA-seq) between Ent and Ar for these genes. Rather,
their increased mRNA abundance in IBA in the absence of
transcription (GRO-seq low in IBA) suggests that the transcripts
initiated as the animals entered torpor were slowly elongated
throughout the torpor bout, but not processed by cleavage and
polyadenylation until the animal rewarmed, i.e., early in IBA.
While the aforementioned transcripts that were stabilized across
the torpor bout would be first translated when Tb recovers
during arousal (van Breukelen and Martin, 2001), the next set
of sequentially expressed genes would be those already largely
or completely transcribed during torpor after termination and
release. Such a temporal pattern could set up a repeating,
cyclical gene expression pattern that specifies all of the necessary
components of the torpor-arousal cycle including recovery of
functional integrity, restoration of metabolic homeostasis and
preparation of the next bout of torpor.

Along with the quantitative dynamics of the transcriptome
discussed above, analysis of these RNA-seq data also revealed
qualitative changes related to hibernation. Deamination of
adenosine by ADAR, picked up in our sequencing as A-to-
G transitions, increased across the torpor bout (Figure 7 and
Supplementary Figure 8). As described previously for the brain
transcriptome (Riemondy et al., 2018), the vast majority of these
occurred outside of coding sequences, consistent with a role for
them in preventing activation of innate immunity through the
double-stranded RNA sensing pathway (Liddicoat et al., 2015).
It is interesting to speculate an increased need for protection
against double-strand RNA given the increased transcription of
intergenic regions during torpor that was revealed by GRO-
seq analysis.

We observed functional enrichment of terms related to
mRNA splicing in gene clusters linked to both the seasonal
(Winter_high) and torpor-arousal cycles in RNA-seq data
(Cold_high and Cold_low _EM, Supplementary Table 3) and in
the list of genes with altered splicing (Supplementary Table 7).
Consistent with these enrichments, multiple genes exhibited
differential splicing, with the bulk of changes occurring in
the torpor arousal-cycle, including in splicing factors. The
implications of the SRSF6 alternative splicing event are discussed
in detail in our previous analysis of the brain transcriptome
(Fu et al., 2021). Interestingly, the observed splice variation
in Tra2b (Transformer-2 protein homolog beta) is also likely
to alter splicing, possibly in concert with SRSF6. Trab2b
encodes a highly conserved sequence-specific RNA-binding
protein that both regulates mRNA splicing and binds directly to
SRSF6 among other proteins (Hegele et al., 2012). Alternative
splicing of the human TRA2B mRNA produces several protein
isoforms, including a 288 amino acid “complete” isoform
(ENST00000453386) and a 188 amino acid truncated form
(ENST00000382191) caused by skipping the second exon which
lacks the first of two RS (Arg/Ser-rich) domains. In humans,
there is evidence that the full-length protein is responsible for
the role of TRA2B in alternative splicing, and that TRA2B is
involved in alternative splicing of its own mRNA (Hofmann et al.,
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2000; Stoilov et al., 2004). In the 13-lined ground squirrel, the
two most common mRNA isoforms produce highly conserved
288 amino acid and 188 amino acid proteins that correspond
directly to the two most common human isoforms. Incredibly,
however, the squirrel generates the conserved short protein
isoform through the inclusion of a second exon (and resulting
frameshift) rather than exclusion of an exon, as in the human
gene. In liver, the long protein isoform (exclusion of exon 2)
was dominant in warm states, while the short protein isoform
(inclusion of exon 2) increased in the cold (Figure 8C). As
the Tra2b long protein isoform is reported to be required to
regulate alternative splicing in humans, this pattern appears
to be functionally inverted relative to SRSF6 (Fu et al., 2021),
indicative of a complex interaction between splicing factors
during hibernation.

CONCLUSION

In conclusion, these liver data demonstrate the necessity and
value of carefully timed samples when studying differential gene
expression associated with the dramatic physiological transitions
of hibernation. These findings provide both a resource and a
roadmap to guide future work that exploits the physiological
dynamics of hibernation to discover the underlying molecular
mechanisms of metabolic suppression and tissue protection.
While we chose to focus our analysis and discussion of
these data on more general features of transcriptional and
post-transcriptional gene regulation, these lists of differentially
expressed genes provide a rich resource to guide future
hypothesis-driven work and squirrelBox offers ready access and
analytical tools for exploration of these data for individual
genes of interest. The secrets that enable the hibernator’s
unique ability to withstand physiological extremes lethal to non-
hibernating mammals, including humans, is expected to lie
among these differentially expressed genes. Such understanding
will be foundational to the ability to safely engineer reversible
metabolic depression in non-hibernators, including humans.

MATERIALS AND METHODS

Banked Liver Tissue
Liver was dissected from animals in various physiological states
across their circannual rhythm based on calendar date and Tb
measured using implanted telemeter or ibutton, or rectal probe,
flash frozen in liquid nitrogen and then stored below -70◦C
continuously until use, as described (Hindle et al., 2014). Five
states were used for RNA-seq: SA, summer active (8 Aug); IBA,
interbout aroused (11 Feb–26 Mar, 2–3 h after Tb reached 30◦C
following > 5d torpid with Tb < 6.5◦C, with Tb 30.6-37.7◦C);
Ent, entrance into torpor (3 Jan–31 Jan, 23–27◦C after 10-14 hr
with Tb > 30◦C); Ar, arousing from torpor (28 Dec–22 Jan,
with Tb spontaneously recovered to 7.9-12.8◦C after multiple
days < 6.5◦C); and SpD, spring dark (21 Mar–30 Apr, after at least
10 consecutive days with Tb 35.5-37◦C). For GRO-seq, we used
the first three of the above states (SA, IBA, and Ent), plus ET (3

Dec–13 Jan with Tb < 30.0◦C following an IBA for 8-16% of the
previous torpor bout duration) and LT (31 Jan–22 Feb, 5.5–5.7◦C
for 80-95% of the previous torpor bout duration). The animal
metadata are provided in Supplementary Table 1.

RNA-Seq
50-100mg of frozen liver were pulverized under liquid nitrogen
and then homogenized in ice cold TRIzol using a polytron
(Brinkman). RNA was further purified from the aqueous phase
using a Direct-zol RNA MiniPrep Kit (Zymo Research). RNA
was assessed for quantity (NanoDrop, Thermo Scientific) and
quality (average RIN values were 8.3 ± 0.4 with no differences
among sample groups; Bioanalyzer, Agilent Technologies,
Supplementary Table 1). 1 µg was submitted to Genewiz,
Inc. (Plainfield, NJ), for library preparation and sequencing.
Strand-specific RNA-seq libraries were constructed using the
TruSeq Stranded mRNA Library Prep Kit (Illumina). Paired-
end sequence reads (150nt) were collected on an Illumina
HiSeq4000 and demultiplexed fastq files were returned to
Colorado for analysis.

RNA-Seq Data Processing
The raw sequencing reads were first trimmed with cutadapt to
remove adaptor sequences, short sequences (-m17) and low-
quality bases (-q10, Martin, 2011). These sequences have been
submitted to GEO (accession number GSE166814). Trimmed
reads were mapped to the mitochondrial genome with hisat2
(Pertea et al., 2016, Supplementary Table 1). The read
distribution across genes for each sample was assessed using
the geneBody_coverage function in RSeQC (v4.0.0); this analysis
revealed an elevated 3′ bias in a few samples that were distributed
across the sample groups (Supplementary Figure 12A). Non-
mitochondrial reads (92.2 ± 2.3%) were mapped to transcript
annotations on the HiC_Itri_2 genome (Fu et al., 2021)
using Salmon (Patro et al., 2017) with –numBootstraps 50
(Supplementary Table 1). Salmon assignments were imported
into R (R Core Team, 2019) and summarized by gene using
tximport (Soneson et al., 2015). Only genes with rlog ≥ 7
in at least 4/5 individuals from at least one group were
retained for further analyses. These values (Supplementary
Table 2, Supplementary Data Sheet 3) were used as input for
random forests (Breiman, 2001), plotting, WGCNA (Langfelder
and Horvath, 2008) and clustering algorithms. Differentially
expressed genes (DE genes) were defined using DESeq2 (Love
et al., 2014) as those with a likelihood ratio test (LRT) adjusted
p-value of ≤ 0.001 across all states. The model included a
term to control for the effect of sex. DESeq2 was also used
to calculate “shrunken” log2 fold-changes (Stephens, 2017) for
differentially expressed genes and normalized, transformed (rlog)
count matrices (Supplementary Table 2). Comparison of sample
cluster patterns by random forest documents that hibernation
physiology explains a large fraction of the variance across the data
among these samples (Supplementary Figures 12B–D).

Cluster Analyses
WGCNA: Pseudocounts were processed with ComBat
(Johnson et al., 2006) to remove effects of sex and then

Frontiers in Physiology | www.frontiersin.org 14 May 2021 | Volume 12 | Article 662132

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-662132 May 15, 2021 Time: 15:17 # 15

Gillen et al. Dynamic Liver Transcription in Hibernation

passed to WGCNA (v1.68, Langfelder and Horvath,
2008) for module detection. Parameters were optimized
to construct a signed network (TOMType = "signed",
networkType = "signed"), high sensitivity (deepSplit = 3),
with more aggressive than default merging and reassignment
(mergeCutHeight = 0.25, reassignThreshold = 1). Additional
settings were: minModuleSize = 30, minCoreKME = 0.5,
minKMEtoStay = 0.4. Genes from each module were inspected
in comparison to their summary profile eigengene. Module–trait
associations quantification was used to identify modules that
were significantly associated with the measured traits and their
correlation values were color coded for plotting.

Reference pattern clustering: Gene expression patterns were
assigned to their final reference clusters by calculating Pearson
correlation coefficients. Mean expression values were calculated
for each gene in each state, and these average expression values
were tested for correlation with the 14 most common patterns
informed by the WGCNA modules. Genes (r ≥ 0.8) were
assigned to the cluster where most highly correlated; no ties were
observed. Genes with r < 0.8 for any reference cluster were
defined as Unassigned.

Gene Enrichment Analysis
Lists of the clean_gene_symbol (Supplementary Table 2) for
genes in each cluster (RNA-seq) or common (GRO-seq and RNA-
seq) pattern were submitted to DAVID (Huang et al., 2009) for
gene enrichment analysis. Gene symbols were mapped to human
and analyzed using the chart option with the human gene set
as background. GO terms for all p Value < 0.01 were extracted
and the biological process (BP) terms were further analyzed and
visualized using REViGO (Supek et al., 2011) at 0.9 “allowed
similarity” between terms.

Global Run On Sequencing (GRO-Seq)
The nuclear run-on assay was performed and analyzed as
described previously (Fang et al., 2014). Nuclei were extracted
from frozen ground squirrel liver that had been stored
continuously at < -70◦C after immediate freezing in liquid
nitrogen. Approximately 50mg of liver were homogenized
(Dounce) in ice-cold lysis buffer. Aliquots of nuclei preparations
were inspected visually for quality and counted using a Countess
Automated Cell Counter (Invitrogen). The nuclear run-on
reaction was performed on ∼40 million nuclei for 7min. All
GRO-seq library preparations were done in parallel to avoid batch
effects. Libraries were sequenced on an Illumina HiSeq2000.

GRO-Seq Data Processing
The raw sequencing reads were trimmed with serial runs
through cutadapt to remove the adaptor sequence and polyA,
short sequences with settings -z, -m32 (Martin, 2011). These
sequences have been submitted to GEO (accession number
GSE166370). Trimmed reads were mapped to the HiC_Itri_2
genome (Fu et al., 2021) using BWA and visualized using
IGV and UCSC genome browsers. Reads were enumerated
across gene regions in each sample using the read_distribution
function of RSeQC (Supplementary Figure 13A). The reads
were also independently mapped using a splice-aware aligner

(STAR v 2.5.2a) to assess the level of mRNA contamination
which was found to be low and minor across all libraries
(Supplementary Figure 13B). Uniquely aligned (BWA) reads
overlapping genes were quantified using featureCounts from
the subread package (Liao et al., 2014). Representative gene
coordinates were generated by merging overlapping coordinates
of each transcript for each gene. Differentially transcribed
genes were identified using DESeq2 (Love et al., 2014), initially
using the HiC_Itri2 annotations used for RNA-seq. In the
second analysis, existing transcript annotations were modified by
building fstitch (Azofeifa et al., 2017) annotations, first for each
state using the merged triplicate reads. These were then merged
across all states to generate maximal called transcript regions
which were intersected with the HiC_Itri_2 annotations. In cases
where the fstitch annotation extended further 3′, roughly half
the genes (Supplementary Table 4), the fstitch annotation was
substituted for that gene’s annotation, otherwise the annotation
was unchanged. All overlapping genes were then merged, with
the gene name retaining all merged gene names separated by a “:”.
These fstitch gene annotations were further processed to exclude
the first 500nt (based on TSS annotation, Vihervaara et al., 2017).
Read counts were re-quantified on this new annotation using
featureCounts. DE genes among the GRO-seq reads mapping to
each of these unique gene bodies were identified using DESeq2
and further filtered to exclude gene bodies overlapping multiple
genes or annotations < = 50 nt in length (Love et al., 2014).

Metagenes of GRO-seq read coverage were constructed by
defining genomic intervals -1 and + 5kb (TTS) or -1 and + 1kb
(TSS) centered on gene end coordinates. Genes with overlapping
coordinates after extension were excluded to limit analysis
to well-separated, non-overlapping genes. Additionally, genes
containing gap regions of undefined sequence (i.e., > N20) in
these regions were also discarded. Library-sized normalized
counts were averaged across 50bp (TTS) or 10bp (TSS) bins,
then scaled by the maximal expression within each metagene
interval, followed by averaging values in each bin across all
genes. Well-expressed genes were selected for metagene analysis,
requiring GRO-seq expression of at least 25 TPM in either SA
or IBA, based on full gene coordinates, with coverage in at
least 33% of the bins in 3 or more samples. Characteristically,
several features of the GRO-seq data were distinct from the RNA-
seq data, most notably the read coverage of introns was greatly
enhanced in the GRO-seq data (Supplementary Figure 13A). In
addition, few GRO-seq reads were purely exonic (Supplementary
Figure 13B) and, while greater GRO-seq sequencing depth as well
as improved genome contiguity and annotation would improve
their detection, many genes provide evidence of promoter
proximal pausing and divergent initiation as first revealed by
GRO-seq (Core et al., 2008).

Sequence/Motif Analysis
Sequence analyses were carried out in R, utilizing a forged
BSgenome data package from the newly built genome assembly
(Fu et al., 2021), which enables quick queries of untranslated
sequences. In addition, k-mer counting and enrichment
statistical analysis are achieved through the R package transite
(Krismer et al., 2020).
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RNA Editing
The RNA-seq and GRO-seq data were processed as described
previously (Riemondy et al., 2018) to identify variant sites
except these were mapped to the new HiC_Itri_2 genome
(Fu et al., 2021). As expected there were few state-dependent
A-to-G variant sites in the GRO-seq data and none were
enhanced in the cold. But 14 of the 719 A-to-G sites with
cold enriched editing in the RNA-seq data were found in the
list of variants detected in the GRO-seq data. Because these
are likely polymorphisms, they were excluded from further
analyses. The remaining 705 A/G variants in the RNA-seq data
with FDR < 0.05 were considered ADAR edited sites. SnpEff
was used to predict the functional impact of A-to-I editing
(Cingolani et al., 2012).

Alternative Splicing Analysis
All reads with at least 20 nt after trimming were aligned to the
HiC_Itri_2 genome using STAR (Dobin et al., 2012) in two-pass
mode with: –limitSjdbInsertNsj 2000000, –outSAMattributes
NH HI AS nM MD, –alignSJoverhangMin 8 on the second
pass. Splice graphs were assembled from the STAR alignments
using MAJIQ Builder and changes in relative local splice
variation (LSV) abundance (delta PSI = dPSI) between states
were identified using MAJIQ Quantifier (Vaquero-Garcia et al.,
2016). Significant LSVs, defined as a 99.9% probability of a
dPSI of at least 0.2 in any pairwise state comparison, were
visualized by separately plotting the abundance of the SA-
dominant splice junction and retained intron (if present)
relative to SA using ComplexHeatmap (Gu et al., 2016) in R.
Reference pattern clustering was done as described above. Protein
domains in alternative splicing isoforms were identified using
HMMER version 3.31 on version 32.0 of the PFAM database
(El-Gebali et al., 2018).

Data Exploration
RNA-seq and GRO-seq analyses described above are integrated
with the genome assembly and transcriptome annotation
(Fu et al., 2021) into an interactive R Shiny browser,
squirrelBox, which is hosted online https://raysinensis.shinyapps.
io/squirrelbox_liver/or can be downloaded and run locally https:
//github.com/rnabioco/squirrelbox. squirrelBox enables data
filtering, query, high quality plotting, and basic GO-term and
kmer enrichment analyses. Gene set distribution along the
HiC_Itri_2 genome (RefSeq GCF_016881025.1) is powered
by genomic interval manipulation via valr (Riemondy et al.,
2017) and JavaScript-interfacing via Biocircos (Cui et al.,
2016). squirrelBox was originally designed to explore brain
RNA-seq data (Fu et al., 2021) but here we demonstrate its
flexibility to input datasets and ready adaptation to other data
exploration needs.

smORF Annotation in squirrelBox
Sequences from all annotated transcripts were processed via
the micropeptide prediction tool MiPepid. Reported short

1hmmer.org

open reading frames of length ≥ 10 aa, in the MiPepid
classification class of "coding", and probability ≥ 0.9 were
labeled as "MiPepid_predicted". The similarities of these
sequences to high confidence smORFs documented in the
SmProt database were then calculated using blastp-short
parameters for sequences of length ≤ 30 aa and default
parameters on longer sequences. Homologous smORFs were
annotated with the SmProt micropeptide when blastp results
escore ≤ e-10, percentage identical ≥ 90, and alignment
coverage of the subject sequence ≥ 0.9. These analyses are
provided as columns in the squirrelBox gene summary table
for exploration.
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