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Abstract: Niemann–Pick C1-like 1 (NPC1L1) mediates intestinal uptake of dietary and biliary choles-
terol and is the target of ezetimibe, a cholesterol absorption inhibitor used to treat hypercholes-
terolemia. Genetic deletion of NPC1L1 or ezetimibe treatment protects mice from high-fat diet
(HFD)-induced obesity; however, the molecular mechanisms responsible for this therapeutic benefit
remain unknown. A major metabolic fate of cholesterol is its conversion to bile acids. We found that
NPC1L1 knockout (L1-KO) mice fed an HFD had increased energy expenditure, bile acid pool size,
and fecal bile acid excretion rates. The elevated bile acid pool in the HFD-fed L1-KO mice was en-
riched with tauro-β-muricholic acid. These changes in the L1-KO mice were associated with reduced
ileal mRNA expression of fibroblast growth factor 15 (FGF15) and increased hepatic mRNA expres-
sion of cholesterol 7α-hydroxylase (Cyp7A1) and mitochondrial sterol 27-hydroxylase (Cyp27A1). In
addition, mRNA expression of the membrane bile acid receptor Takeda G protein-coupled receptor
5 (TGR5) and type 2 iodothyronine deiodinase (Dio2) were elevated in brown adipose tissue of
L1-KO mice, which is known to promote energy expenditure. Thus, altered bile acid homeostasis
and signaling may play a role in protecting L1-KO mice against HFD-induced obesity.

Keywords: NPC1L1; cholesterol; obesity; energy expenditure; TGR5

1. Introduction

Niemann–Pick C1-like 1 (NPC1L1) is a polytopic transmembrane protein localized
at the brush border membrane of the small intestine [1,2]. It is responsible for intesti-
nal absorption of both biliary and dietary cholesterol [2–5]. NPC1L1 knockout (L1-KO)
mice exhibit greatly reduced intestinal cholesterol absorption and are resistant to high
cholesterol-containing diet-induced hypercholesterolemia [2,6]. Ezetimibe is the first of a
class of cholesterol-lowering drugs that selectively inhibit cholesterol absorption by target-
ing NPC1L1 [2,7–9]. Surprisingly, in addition to reducing plasma total and low-density
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lipoprotein (LDL) cholesterol (LDL-C), ezetimibe treatment prevents high-fat diet (HFD)-
induced obesity in mice [10] and reduces weight gain in non-obese Japanese males with
hypercholesterolemia [11]. Ezetimibe also reduces visceral fat in Japanese patients with
metabolic syndrome [12]. Genetic deletion of NPC1L1 protects mice against HFD-induced
obesity [13]. Although L1-KO mice do not efficiently absorb intestinal cholesterol [2], the
protection against HFD-induced obesity was cholesterol dependent and was reversed when
the mice were fed a higher cholesterol-containing HFD [14].

It was reported that L1-KO versus control mice display a 5.2% reduction in intestinal
fat absorption [13]. The authors estimated that this reduction in fat absorption may not ac-
count for all of the differences in weight gain between the two genotypes [13]. We observed
a 7.8% reduction in intestinal fat absorption in L1-KO mice fed a trans-fat (hydrogenated
vegetable oil)-based HFD [15] but not in those fed a lard-based HFD [14]. However, the
L1-KO mice fed either diet gained less weight versus control mice. In addition, we and
others did not detect any significant differences in food or energy intake between L1-KO
mice or ezetimibe-treated mice and their respective controls [10,13,14]. These observa-
tions collectively suggest that mechanisms in addition to intestinal fat absorption may be
involved in protecting L1-KO mice from HFD-induced weight gain.

Bile acids are synthesized from cholesterol in the liver, stored in the gallbladder, and
released postprandially into the lumen of the small intestine where they facilitate digestion
and absorption of dietary fat, cholesterol, and lipid-soluble vitamins. More than 90% of
bile acids are reabsorbed by enterocytes in the ileum via the apically localized bile acid
transporter, the apical sodium-dependent bile acid transporter (ASBT), and the basolat-
erally localized bile acid efflux transporter, the organic solute transporter (Ost)α/Ostβ
heterodimer [16,17]. The reabsorbed bile acids are returned to the liver via the portal vein.
This enterohepatic recirculation of bile acids is important for nutrient absorption and bile
acid homeostasis. Bile acid biosynthesis is subject to feedback regulation. Increases in
bile acids activate the nuclear hormone receptor, farnesoid X receptor (FXR) [18,19]. In
the liver, FXR activation inhibits cholesterol 7α hydroxylase (Cyp7A1), the rate-limiting
enzyme of bile acid biosynthesis, to repress bile acid synthesis [18,19]. In the distal small
intestine, FXR activation increases fibroblast growth factor 15 (FGF15; in humans, FGF19)
expression and secretion [20]. Secreted FGF15 travels to the liver via the portal vein. In the
liver, FGF15 activates its receptor FGF receptor 4 (FGFR4) and signals to suppress Cyp7A1
transcription and bile acid synthesis [20]. Under physiological conditions, this is the major
pathway for negative feedback regulation of hepatic bile acid synthesis.

In addition to the nuclear receptor FXR, G protein-coupled bile acid receptor 1 (GP-
BAR1, also known as Takeda G protein-coupled receptor 5 or TGR5) was identified as
a membrane-type receptor for bile acids [21,22]. Activation of TGR5 by bile acids raises
intracellular cyclic AMP (cAMP), which then increases transcription and activity of type 2
iodothyronine deiodinase (Dio2), an enzyme that converts inactive T4 to active T3 locally in
the brown adipose tissue (BAT) [23]. The increased levels of T3 in BAT were shown to medi-
ate the bile acid feeding-induced increase in energy expenditure and prevent diet-induced
obesity in mice [23].

NPC1L1 deficiency dramatically alters whole-body cholesterol homeostasis [2–5].
Since cholesterol is the precursor for bile acid biosynthesis, we hypothesized that NPC1L1
deficiency may alter bile acid homeostasis. Considering the role of the bile acid-TGR5-Dio2
signaling in thermogenesis [23], an energy-dissipating process, we further hypothesized
that altered bile acid homeostasis may protect L1-KO mice from HFD-induced obesity
by increasing energy expenditure through the TGR5-Dio2 pathway. Consistent with our
hypotheses, we observed that L1-KO mice, compared with their littermate wild-type (WT)
controls fed an HFD, had a significant increase in energy expenditure, bile acid pool
size, and enrichment of tauro-β-muricholate (TBMC) in the bile acid pool. These animals
also had reduced ileal expression of FGF15, increased hepatic expression of Cyp7A1 and
Cyp27A1, and elevated mRNAs levels of TGR5 and Dio2 in BAT.
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2. Materials and Methods
2.1. Animals and Diets

L1-KO mice were created by using embryonic stem cells from pure C57BL/6J mice
and the standard gene-targeting approach [6] (kindly provided by Drs. Yannis Ioannou and
Joanna P. Davies at Mount Sinai School of Medicine in New York). All mice were housed in
a specific pathogen-free animal facility in plastic cages at 22 ◦C, with a daylight cycle from
6 a.m. to 6 p.m. The mice were provided with water and a standard chow diet ad libitum
unless stated otherwise. All animal procedures were approved by the Institutional Animal
Care and Use Committees at Wake Forest University Health Sciences and the University
of Maryland School of Medicine. Male L1-KO mice and their WT controls were fed an
HFD (TD.93075; Envigo, Madison, WI, USA) for 6 or 24 weeks, starting at 6 weeks of age.
The HFD derives 54.8% calories from fat, 21.2% calories from protein, and 24% calories
from carbohydrates. It contains only a trace amount of cholesterol (~0.007%). The fatty
acid composition in the fat of this diet is 28% saturated, 30% monounsaturated-(trans), 28%
monounsaturated-(cis), and 14% polyunsaturated-(cis) fatty acids.

2.2. Indirect Calorimetry

Indirect calorimetry was performed in the Mouse Metabolic Phenotyping Center at
Vanderbilt University Medical Center by using an Oxymax indirect calorimeter (Columbus
Instruments, Columbus, OH, USA) with an airflow of 0.75 L/min. Oxygen consumption,
carbon dioxide production, and energy expenditure were normalized using the metabolic
body size [kilogram (kg)0.75 body weight (BW)] as described by others [23,24].

2.3. Measurements of Biliary Cholesterol, Bile Acids, and Phospholipids

A measured volume (5–10 µL) of gallbladder bile was placed into a glass tube. Biliary
lipids were extracted by the Bligh–Dyer method [25] in the presence of 10 µg 5α-cholestane
as an internal standard. The upper aqueous phase was analyzed for the total bile acid con-
tent using an enzymatic assay as previously described [26]. The bottom organic phase was
analyzed for free cholesterol content by gas–liquid chromatography and for phospholipid
(PL) content using Phospholipids B enzymatic assay kit (Wako).

2.4. Measurements of Plasma Bile Acid Concentrations, Fecal Bile Acid Excretion, and Bile Acid
Pool Size

Plasma was collected after a 4 h fast, and concentrations of bile acids were measured
at the Emory Integrated Lipidomics Core by UPLC–MS/MS with an Infinity 1295 II UPLC,
Zorbax Eclipse Plus C18 column, and Agilent 6495C mass spectrometer using a dynamic
MRM method for targeted analysis and standards for all the major mouse bile acid species.
Fecal bile acid excretion was measured in the mice fed the HFD for 18 weeks. Feces
were collected from these HFD-fed mice that had been housed individually in the wire-
bottom cages for 72 h and extracted as described previously [27]. The total bile acid
content in the fecal extract was determined enzymatically [28]. The bile acid pool size
was analyzed in the mice fed the HFD for 24 weeks as described [29]. After a 4 h fast, the
small intestine plus luminal contents, gallbladder, and liver were collected. Bile acids were
extracted and the bile acid composition was determined using the high-performance liquid
chromatography (HPLC) [29–31]. Individual bile acid species were detected by using an
evaporative light scattering detector (Alltech ELSD 800) and quantified by comparison
with authentic standards purchased from Steraloids.

2.5. Quantitative Real-Time PCR (qPCR)

Measurements of the mRNA levels for selected genes in the ileum, liver, and in-
terscapular BAT were performed as described previously [32]. Primers sequences are
listed as follows: FXR, forward, TGAGAACCCACAGCATTTCG, and reverse, GCGTG-
GTGATGGTTGAATGTC; ASBT, forward, TGGGTTTCTTCCTGGCTAGACT, and reverse,
TGTTCTGCATTCCAGTTTCCAA; Ostα, forward, TACAAGAACACCCTTTGCCC, and
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reverse, CGAGGAATCCAGAGACCAAA; Ostβ, forward, GTATTTTCGTGCAGAAGAT-
GCG, and reverse, TTTCTGTTTGCCAGGATGCTC; ILBP, forward, CAAGGCTACCGT-
GAAGATGGA, and reverse, CCCACGACCTCCGAAGTCT; FGF15, forward, GCTCTGAA-
GACGATTGCCATC, and reverse, TTCCTCCCTGAAGGTACAGTC; Cyp7A1, forward,
AGCAACTAAACAACCTGCCAGTACTA, and reverse, GTCCGGATATTCAAGGATGCA;
Cyp27A1, forward, GGAGGGCAAGTACCCAATAAGA, and reverse, TGCGATGAA-
GATCCCATAGGT; Cyp8B1, forward, GCCTTCAAGTATGATCGGTTCCT, and reverse,
GATCTTCTTGCCCGACTTGTAGA; SHP, forward, CAGCGCTGCCTGGAGTCT, and re-
verse, AGGATCGTGCCCTTCAGGTA; HNF4, forward, ACTGTCCAGAGCTAGCGGA-
GAT, and reverse, GCAGGCATATTCATTGTCATCAA; TGR5, forward, TGGGTCAGCTC-
CCTGTTCTT, and reverse, TGGCATCAGGGCTCCAAT; Dio2, forward, CAGCTTCCTCC-
TAGATGCCTACA, and reverse, GACGTGCACCACACTGGAAT; UCP1, forward, GAGGT-
GTGGCAGTGTTCATTG, and reverse, GGCTTGCATTCTGACCTTCA; PGC1α, forward,
AACCACACCCACAGGATCAGA, and reverse, TCTTCGCTTTATTGCTCCATGA; PPARα,
forward, ACAAGGCCTCAGGGTACCA, and reverse, GCCGAAAGAAGCCCTTACAG;
PPARγ, forward, CACAATGCCATCAGGTTTGG, and reverse, GCTGGTCGATATCACTG-
GAGATC; CTP1A, forward, CACCAACGGGCTCATCTTCTA, and reverse, CAAAATGAC-
CTAGCCTTCTATCGAA.

2.6. Statistical Analysis

Data are expressed as mean ± standard error of the mean (SEM). The difference
between the mean values of L1-KO and WT groups was tested for statistical significance
by two-tailed Student’s t-tests. A value of p < 0.05 was accepted as statistically significant.

3. Results
3.1. NPC1L1 Deficiency in Mice Increases Energy Expenditure

We and others have shown that NPC1L1 inhibition or deletion protects mice against
HFD-induced obesity [10,13,14]. However, it was unknown whether this protection was
associated with increased energy expenditure or altered bile acid homeostasis. To address
these questions, in this study, we fed L1-KO and their WT controls a low-cholesterol-
containing HFD and analyzed energy and bile acid metabolism in these animals. We had
previously shown that the weight gain differences between L1-KO and control mice were
observed when the mice were fed an HFD without added cholesterol [14]. As expected,
L1-KO mice weighed significantly less than WT mice after 6 weeks on the HFD (Figure 1A).
Although both genotypes had similar body weights before HFD feeding, reduced weight
gain in L1-KO mice was observed as early as one week on the HFD (Figure 1B). The weight
loss of WT mice in the 19th week of age resulted from animal transport to a different
building, highlighting an important effect of the housing environment on animal health.
After 24 weeks of HFD challenge, L1-KO mice, compared with WT controls, appeared
leaner (Figure 1C). The reduced weight gain of L1-KO mice was associated with a decrease
in epididymal and brown fat weights (Figure 1D,E).

To determine whether the reduced weight gain of L1-KO mice was a result of reduced
fat mass but not lean mass in the whole body, the body composition of L1-KO and WT
mice was analyzed by NMR at Vanderbilt’s Mouse Metabolic Phenotyping Center. L1-
KO mice displayed a 60% decrease in the fat body mass (Figure 2A) but only an 8.8%
reduction in the lean body mass (Figure 2B). When normalized to BW, the fat mass-to-BW
ratio decreased 53.2%, while the lean mass-to-BW ratio increased 17.8% in L1-KO mice,
compared with control mice (Figure 2A,B). The reduced weight gain and fat mass in L1-KO
mice were not a result of reduced food intake (Figure 2C). The physical activities were
not different either between the two groups (data not shown). When whole-body energy
expenditure was measured using the Indirect Calorimetry, L1-KO mice versus WT mice
had significantly increased oxygen (O2) consumption (Figure 2D), carbon dioxide (CO2)
production (Figure 2E), and energy expenditure (Figure 2F) in the light cycle, though no
significant changes in the dark cycle. The respiratory exchange ratio (RER) was comparable
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between the two genotypes (Figure 2G), suggesting that NPC1L1 deficiency did not alter
the relative contribution of fat and carbohydrates to energy metabolism under the current
experimental conditions.
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3.2. NPC1L1 Deficiency in Mice Increases Biliary Bile Acids and Cholesterol

Cholesterol homeostasis is substantially altered in L1-KO mice [2,3,33]. Bile acids
are end products of cholesterol catabolism and play important roles in regulating energy
expenditure in mice [23,34]. To determine whether NPC1L1-deficient mice fed the HFD
have altered bile acid metabolism, we first examined biliary concentrations of bile acids
and two major lipids (cholesterol and phospholipids) in the gallbladder. After 24 weeks
of HFD feeding, L1-KO, compared with WT mice, showed a 55% increase in biliary bile
acids (Figure 3A), an 81% increase in biliary cholesterol (Figure 3B), and no alterations in
biliary phospholipids (Figure 3C). The calculation of the molar ratio (Figure 3D) showed
that HFD-fed L1-KO mice had significantly elevated molar percent of biliary cholesterol. In
addition, the molar percent of biliary bile acid was slightly increased in L1-KO mice after
long-term HFD feeding.

3.3. NPC1L1 Deficiency in Mice Increases Bile Acid Pool Size

Next, we examined whether whole-body bile acid homeostasis was changed in L1-
KO mice. After 24 weeks on the HFD, L1-KO mice, compared with WT mice, exhibited
a significant increase in fecal bile acid excretion rate (Figure 4A), and this increase was
attributable to the lower BW of L1-KO mice. Without normalization to BW, the daily fecal
bile acid output was similar between the two genotypes of mice (Figure 4B). In addition,
L1-KO mice had a significant increase in the bile acid pool size, with the largest increase
seen in the TBMC pool (Figure 4C), which increased from 6.7 ± 1.6 µmol/100 g BW in
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WT mice to 28.2 ± 3.9 µmol/100 g BW in L1-KO mice (p < 0.001). The increase in the bile
acid pool size was independent of BW because it remained significantly increased without
normalization to BW (Figure 4D). When bile acid compositions in the pool were calculated,
the relative content of TBMC was significantly enriched, whereas that of taurocholate (TC)
was significantly reduced in L1-KO mice, compared with WT controls (Figure 4E).
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3.4. NPC1L1 Deficiency in Mice Reduces Ileal Expression of FGF15

To probe potential mechanisms underlying altered bile acid homeostasis in the
HFD-fed L1-KO mice, we measured ileal and hepatic mRNAs for genes involved in
the metabolism and regulation of bile acids in L1-KO and control mice fed the HFD for
6 weeks. This dietary time point was chosen because it was when the two genotypes of
mice began to show BW differences (Figure 1A), and we wanted to minimize potential
secondary effects of large BW differences in gene expression after long-term HFD feeding.
We found that ileal levels of mRNAs for FXR, ASBT, Ostα, Ostβ, and ileal lipid-binding
protein (ILBP) were similar between the two genotypes (Figure 5A). Interestingly, FGF15
mRNA expression significantly decreased 72% in the ileum of L1-KO mice (Figure 5A).
Decreased intestinal FGF15 is predicted to upregulate hepatic Cyp7A1 expression [20], the
rate-limiting enzyme in bile acid biosynthesis. Indeed, the hepatic Cyp7A1 mRNA level
increased 1.9-fold in L1-KO mice (Figure 5B). Additionally, the hepatic mRNA for Cyp27A1,
the initiating enzyme in the alternative (acidic) pathway of bile acid synthesis [35], elevated
2.1-fold in the HFD-fed L1-KO mice, compared with control mice (Figure 5B). No genotypic
differences were observed in hepatic levels of mRNA for sterol 12α-hydroxylase (Cyp8B1),
an enzyme that is required for cholic acid synthesis [36] (Figure 5B). These changes in
hepatic mRNA levels of bile acid synthetic enzymes in the L1-KO mice were associated
with reduced mRNAs for FXR and SHP and increased mRNA for hepatocyte nuclear factor
4 (HNF4) in the liver (Figure 5B).



Cells 2021, 10, 3468 8 of 14Cells 2021, 10, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 5. L1-KO mice have reduced ileal expression of FGF15 mRNA and increased hepatic expres-
sion of mRNAs for Cyp7A1 and Cyp27A1 after 6 weeks of HFD feeding: (A,B) relative mRNA levels 
in the distal ileum (A) and liver (B) of L1-KO mice and WT littermates measured by qPCR using 
individual total RNA samples in each group (n = 5). GAPDH and 18S RNAs were used as internal 
invariant controls for the ileum and liver, respectively. * p < 0.05. 

3.5. NPC1L1 Deficiency Increases TGR5 and Dio2 Expression in BAT 
It has been shown that bile acids promote energy expenditure by activating the 

TGR5-Dio2 pathway in BAT [23]. To determine whether altered bile acid homeostasis in 
the HFD-fed L1-KO mice was associated with any changes in this pathway, we measured 
circulating bile acid concentrations and the mRNA expression levels of genes related to 
energy expenditure in the interscapular BAT of L1-KO and control mice fed the HFD for 
6 weeks. We found that L1-KO mice exhibited an elevated plasma total bile acid concen-
tration (Figure 6A). In addition, a significant increase was observed in BAT levels of 
mRNAs for TGR5, Dio2, uncoupling protein 1 (UCP-1), and carnitine palmitoyltransferase 
1A (CPT1A) in L1-KO mice, compared with the controls (Figure 6B). BAT mRNA levels 
of peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1α (PGC1α), 
PPARα, and PPARγ showed a trend towards an increase in the L1-KO mice, but the in-
crease did not reach statistical significance (Figure 6B). 
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3.5. NPC1L1 Deficiency Increases TGR5 and Dio2 Expression in BAT

It has been shown that bile acids promote energy expenditure by activating the TGR5-
Dio2 pathway in BAT [23]. To determine whether altered bile acid homeostasis in the
HFD-fed L1-KO mice was associated with any changes in this pathway, we measured
circulating bile acid concentrations and the mRNA expression levels of genes related to
energy expenditure in the interscapular BAT of L1-KO and control mice fed the HFD
for 6 weeks. We found that L1-KO mice exhibited an elevated plasma total bile acid
concentration (Figure 6A). In addition, a significant increase was observed in BAT levels of
mRNAs for TGR5, Dio2, uncoupling protein 1 (UCP-1), and carnitine palmitoyltransferase
1A (CPT1A) in L1-KO mice, compared with the controls (Figure 6B). BAT mRNA levels of
peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1α (PGC1α), PPARα,
and PPARγ showed a trend towards an increase in the L1-KO mice, but the increase did
not reach statistical significance (Figure 6B).
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4. Discussion

NPC1L1 is essential for intestinal absorption of cholesterol in the gut lumen [2].
NPC1L1 deficiency protects mice against obesity induced by various HFDs that are low in
cholesterol [13,14]. It is currently unknown how NPC1L1 modulates diet-induced obesity.
In this study, we demonstrate that L1-KO versus WT mice fed an HFD display increased
energy expenditure and bile acid pool size. These changes are associated with reduced
ileal mRNA levels of FGF15 and increased BAT mRNA levels of TGR5 and Dio2. It has
been shown that activation of the TGR5-Dio2 pathway by bile acids promotes energy
expenditure in mice [23]. Future studies are warranted to directly test whether BAT TGR5
or Dio2 is required for L1-KO mice to resist HFD-induced obesity. With regard to the effects
on bile acid pool size, a significant reduction in ileal FGF15 expression was observed in
L1-KO mice in the present study (Figure 5A), in which mice were fed a low-cholesterol-
containing HFD (TD.93075; Envigo), which contains ~30% monounsaturated-(trans) fat.
In addition, a similar decrease in ileal FGF15 mRNA expression was also observed when
L1-KO mice were fed a different low-cholesterol-containing HFD (D12492; Research Diets),
which has no trans fat (data not shown). We also observed previously that mice treated
with the NPC1L1 inhibitor ezetimibe express significantly lower levels of FGF15 in the
small intestine [37]. Intestine-released FGF15 is known to inhibit bile acid synthesis in
the liver by suppressing transcription of Cyp7A1 through the cooperation of FGFR4 and
SHP [20]. Therefore, the reduced expression of intestinal FGF15 in L1-KO mice may
alleviate suppression of Cyp7A1 transcription in the liver, thereby increasing bile acid
synthesis and pool size. In agreement with this hypothesis, HFD-fed L1-KO mice exhibited
increased hepatic mRNA expression of Cyp7A1 and Cyp27A1, and fecal bile acid excretion
(Figure 4A). The increase in hepatic Cyp7a1 and Cyp27a1 mRNA expression was associated
with reduced FXR and SHP expression and increased HNF4 expression. This expression
pattern of FXR, SHP, and HNF4 transcriptional factors in the liver is consistent with their
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reported roles in the regulation of hepatic Cyp7A1 and Cyp27A1 expression and bile acid
synthesis [20,38–42].

FGF15 and SHP have been shown to suppress NPC1L1 expression through inhibition
of sterol regulatory element-binding transcription factor 2 (SREBP2) in the mouse intes-
tine [43]. SREBP2-mediated endogenous cholesterol synthesis is essential for sustaining the
health of intestinal mucosa when NPC1L1 is inhibited [44]. Together with our finding that
NPC1L1 deficiency suppresses intestinal FGF15 expression (Figure 5A), there seems to exist
a reciprocal regulation of FGF15 and NPC1L1 in the mouse intestine. It would be interest-
ing to determine whether the SREBP2 and SHP interaction is implicated in this regulation.
Alternatively, the reduced ileal FGF15 expression may be secondary to altered cholesterol
and bile acid homeostasis. The reduced ileal FGF15 may result from changes in the bile
acid compositions in the pool that is enriched with TBMC. TBMC has been identified as a
FXR antagonist [45,46]. While increased hepatic expression of Cyp7A1 and Cyp27A1 likely
accounts for bile acid pool size expansion, the mechanism underlying TBMC enrichment
is unclear. Cyp8B1 deficiency is known to shift bile acid pool compositions from cholic
acid to muricholic acid [36]. Overexpression of Cyp8B1 reduces chenodeoxycholic acid
(CDCA) and its muricholic acid derivatives in the bile acid pool [47]. We did not detect
significant changes in hepatic Cyp8B1 mRNA levels in the L1-KO mice fed the HFD for
6 weeks. It has been reported that germ-free mice, compared with the conventionally
raised mice, display increased bile acid pool size, enriched TBMC in the pool, reduced FXR
signaling, and increased bile acid synthesis [45], which mirror our findings in the HFD-
fed L1-KO mice. Germ-free mice also express reduced FGF15 mRNA levels in the small
intestine [37,45]. L1-KO mice or mice treated with the NPC1L1 inhibitor ezetimibe show
reduced stool output, despite similar food intake [14,37,48]. Reduced stool output was also
seen in germ-free mice [37], suggesting a significant contribution of gut bacteria to the stool
output. Since NPC1L1 deficiency blocks intestinal cholesterol absorption, the amount of
cholesterol passing through the gut lumen and in the feces is significantly increased [2,49],
which has the potential to shape the gut microbiome. Indeed, L1-KO versus control mice
display substantial alterations in the composition of gut microbiota [37]. Perhaps, NPC1L1
deficiency increases bile acid synthesis and pool size and shifts the bile acid composition
toward TBMC by modifying the gut microbiome.

Bile acid treatment has been shown to increase energy expenditure by activating the
TGR5-Dio2 signaling in BAT and skeletal muscle [23]. Subjects after gastric bypass surgery
lose weight and have increased serum bile acid concentrations [50]. In this study, L1-KO
mice exhibit increased expression of TGR5 and Dio2 and other thermogenic/oxidative
genes, which was associated with a 61% increase in total plasma bile acids (Figure 6A).
Interestingly, not all bile acid species interact with TGR5 equally and the bile acid com-
position may be as important as the total concentration [21,22]. Although we observed
slightly increased plasma bile acid concentrations in L1-KO mice, we cannot rule out the
possibility that certain species of bile acid could be elevated and activate TGR5 in the brown
adipose tissue. Additionally, the relationship between circulating bile acids and metabolic
activity appears to be complicated [51,52]. There was a report that colestimide, a bile-acid-
binding resin that reduces plasma bile acids [53], prevents mice from HFD-induced obesity
and insulin resistance [34]. Alternatively, bile acids can promote energy expenditure by
stimulating glucagon-like peptide 1 (GLP-1) secretion from intestinal endocrine cells after
binding to TGR5 in these specialized cells [54,55]. However, we did not observe elevated
plasma GLP-1 levels in the HFD-fed L1-KO mice (data not shown).

We and others have reported that L1-KO or ezetimibe-treated mice show dramatically
reduced liver cholesterol contents [3,14,15]. In addition, we have shown that HFD-fed L1-
KO mice exhibited significantly increased (approximately sevenfold) hepatic endogenous
cholesterol synthesis [14]. This elevated de novo cholesterol synthesis in the liver could
contribute to the increased biliary cholesterol content observed in L1-KO mice after low-
cholesterol-containing HFD feeding (Figure 3B). Consistently, ezetimibe treatment increases
biliary cholesterol levels when mice were fed a diet containing a low amount of choles-
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terol [56]. In addition, ezetimibe-treated hamsters on a basal diet without added cholesterol
also show increased biliary cholesterol concentrations [57]. Importantly, this study also
reported similar hepatic ATP-binding cassette transporters ABCG5 (G5) and ABCG8 (G8)
(ABCG5/G8) expression levels in hamsters regardless of the treatment [57]. We also ob-
served previously that L1-KO mice or NPC1L1 inhibitor ezetimibe-treated mice, compared
with their controls, express similar levels of ABCG5 protein in the liver [37,48]. Therefore,
it is unlikely that the increased biliary cholesterol is a result of increased ABCG5/G8
expression. While increased cholesterol synthesis may passively leak some cholesterol
into the bile of L1-KO mice, we cannot exclude a role of gallbladder NPC1L1 deficiency.
We have previously shown that NPC1L1 is abundantly expressed in the epithelium of the
mouse gallbladder [58]. NPC1L1 protein in this location may mediate reabsorption of free
cholesterol from the gallbladder and its deficiency may lead to an increase in gallbladder
cholesterol. Regarding the tissue distribution of NPC1L1 expression, in rodents, NPC1L1 is
almost exclusively expressed in the small intestine and gallbladder. However, humans and
non-human primates express a significant amount of NPC1L1 in the liver as well. Thus, the
potential contribution of altered hepatic NPC1L1 expression to increased biliary cholesterol
content, if any, should be limited in mice.

In conclusion, NPC1L1-deficient mice fed a low-cholesterol-containing HFD have
increased bile acid pool size, enriched TBMC in the bile acid pool, and augmented hepatic
expression of Cyp7A1 and Cyp27A1, which is linked to reduced expression of ileal FGF15.
Altered bile acid homeostasis may account, in part, for increased energy expenditure and
associated lean phenotype via the TGR5-Dio2 pathway in these animals.
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