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THE BIGGER PICTURE Research has shown that certain aspects of human poverty and welfare can be
measured with deep machine learning in combination with satellite imagery. High hopes have been ex-
pressed from policy and decision makers, but downstream applications are still rare. We suggest that one
obstacle to overcome is the lack of explainability in some parts of the scientific process. Future directions
would be to develop methods to understand which features in an image that triggers a certain response
and relate that to domain knowledge; is the response and features in accordance with theory within the
field(s)? Suggested reading: Roscher, Ribana, et al. "Explainable machine learning for scientific insights
and discoveries." IEEE Access 8 (2020):42;200–42216.
SUMMARY

Recent advances in artificial intelligence and deep machine learning have created a step change in how to
measure human development indicators, in particular asset-based poverty. The combination of satellite im-
agery and deep machine learning now has the capability to estimate some types of poverty at a level close to
what is achieved with traditional household surveys. An increasingly important issue beyond static estima-
tions is whether this technology can contribute to scientific discovery and, consequently, new knowledge
in the poverty and welfare domain. A foundation for achieving scientific insights is domain knowledge, which
in turn translates into explainability and scientific consistency. We perform an integrative literature review
focusing on three core elements relevant in this context—transparency, interpretability, and explainabil-
ity—and investigate how they relate to the poverty, machine learning, and satellite imagery nexus. Our inclu-
sion criteria for papers are that they cover poverty/wealth prediction, using survey data as the basis for the
ground truth poverty/wealth estimates, be applicable to both urban and rural settings, use satellite images as
the basis for at least some of the inputs (features), and the method should include deep neural networks. Our
review of 32 papers shows that the status of the three core elements of explainable machine learning (trans-
parency, interpretability, and domain knowledge) is varied and does not completely fulfill the requirements
set up for scientific insights and discoveries. We argue that explainability is essential to support wider
dissemination and acceptance of this research in the development community and that explainability means
more than just interpretability.
INTRODUCTION

Weather events, such as the current drought in East Africa leav-

ing more than 13 million people severely food and water inse-

cure, the COVID-19 pandemic, and food price shocks due to

war and local conflicts, affect already vulnerable and disadvan-

taged communities. Identifying those with the greatest needs

is a challenging task aggravated by significant information

gaps typical for many poor regions of the world. Lack of accurate
This is an open access article under the CC BY-N
and repeated measurements has long hampered effective relief

efforts and progress toward understanding the determinants of

observed outcomes and ultimately progress toward sustainable

development.1

Programs tailored for measuring different aspects of living

standards at a household level have long been the primary tool

to identify people at risk and long-term development.2 Since

1984 the Demographic and Health Surveys (DHS) program

has, together with around 90 developing countries, collected
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national representative data on fertility, reproductive health,

maternal health, child health, immunization and survival, and

welfare in general (https://dhsprogram.com/). The objective of

the DHS program is to improve and formalize surveys and the

use of data together with individual countries for program moni-

toring and evaluation and policy development decisions. Similar,

but not identical, the Living Standards Measurement Study

(LSMS) is a project that was initiated in 1980 (https://www.

worldbank.org/en/programs/lsms). Although DHS and LSMS

share the goal of monitoring, evaluation, and policy development

decisions, they aim to move beyond simple measurement rates

and toward an explanation and increased understanding of out-

comes. Together they have served as workhorses for under-

standing social and economic progress for more than four

decades.

While household-level surveys are the key tool for information

on human welfare and outcomes, they are also increasingly crit-

icized. They are expensive and laborious, with a typical LSMS or

DHS survey round for one country costing close to 2 million USD

and population census being 10 or 100 times more expensive.3,4

Related, many countries conduct surveys infrequently, some-

times due to the associated high costs and an unwilling regime.

Another implication is that surveys of this kind are generally only

representative of nations and sometimes regions, making it diffi-

cult to access information in sub-regional locations.

The traditional tools for gathering data on human development

are now supplemented with digital data sources and tools. Cen-

tral to what the UN has named the ‘‘data revolution’’ has been the

growing abundance and quality of satellite data, together with

developments in machine learning (ML) over the last two de-

cades, in particular deep learning and convolutional neural net-

works (CNNs) for image analysis. This development has been

possible because of considerable increases in labeled datasets,

massive improvements in computer hardware, and substantial

developments in ML algorithms that can exploit the hardware.

Today, the ImageNet database has more than 14 million images

(https://www.image-net.org/) that can be used to train deep neu-

ral networks and the CIFAR-10 database, a subset of the 80

million tiny images dataset, has more than 60,000 labeled im-

ages (https://www.cs.toronto.edu/ kriz/cifar.html). Ten years

ago, the best non-human results in the ImageNet competition

were about 25% wrong classifications in the ‘‘top 5’’ category;5

today, they are in the single percentages and much better than

human performance.6 The same development has been seen

in the CIFAR-10 competition; the deep learning ML approaches

surpassed human performance roughly 5 years ago.7,8 Training

state-of-the-art deep networks on the ImageNet dataset took

days or weeks a decade ago but takes minutes or hours today.9

An interesting discovery with deep CNNs is that they learn

high-level features in their top layers that can be transferred to

a related domain with fewer data, and they provide improved

performance compared with just using the data from that

domain.10 Such transfer learning was demonstrated on deep

CNNs trained on the ImageNet data and then tuned to satellite

image data in a seminal paper by Jean et al. in 2016.11 This

inspired many following studies and, for some human outcome

indicators, e.g., asset-based poverty, ML approaches combined

with satellite imagery are now close to matching the perfor-

mance of survey data.
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The most recent review of the field is by Burke et al. (2021).2

They performed a broad review of the rapidly growing literature

regarding satellite imagery and measurements of different hu-

man outcomes, with specific attention to those who apply artifi-

cial intelligence to images. Their work focused on four domains

where satellite-based measurements have been particularly

successful: smallholder agriculture, population estimation,

informal settlements, and economic livelihoods. The four do-

mains are naturally intertwined in terms of focusing on humans

and human outcomes but, in terms of research, they form rather

distinct categories. Remote sensing in agriculture is a vast

research field that involves a range of methods and applications

adapted to varying contexts, such as precision agriculture in

developed regions of the world and crop yield studies in poor re-

gions. Smallholder agriculture, typical for large parts of Africa, is

specifically challenging for remote sensing due to small field

sizes, complex environments, and scarcity of reference data.

There are several reviews on remote sensing in agriculture, for

example, Atzberger12 and Weiss et al.13 Knowing where people

are located is vital information and a starting point for many ap-

plications. For a review of five satellite-based population data-

sets, see Bustos et al.14 The detection of informal settlements

or slums is a field that has received attention recently and can

be directly linked to the well-being of people. For a review, see

Kuffer et al.15

The domain for our concerns is the one Burke and co-workers

categorize as economic livelihoods. Studies in this category aim

to predict local-level human outcomes of different types and

over varying geographies. Most studies predict wealth with a

focus on the developing world (especially Sub-Saharan Africa)

[SSA]) and are benchmarked against DHS data. The work in

this category originates from some key publications, Xie

et al.16 and Jean et al.11 In an attempt to quantify the accumu-

lated performance, Burke et al.2 found that often more than

75% of the variation in the survey measured performance could

be explained, a number that seems to increase over time. The

overall conclusion from Burke et al. is that AI-based methods

outperform earlier methods whenever they are deployed. The

success has spurred high hopes in both research and policy

communities, and there is a growing interest in how these find-

ings can be put to work.2,17

This paper investigates the potential to learn something new

from using deep ML and satellite imagery in the specific domain

of poverty andwelfare. The aim is linked to recent debates on ex-

plainability in computer sciences where ‘‘there is a recent and

ongoing high demand in the ML-community for understanding

the way a specific model operates and the underlying reasons

for the decisions made by the model’’ (Roscher et al.18). Explain-

ability is to be understood as a prerequisite to ensure the scien-

tific value, and thereby deepening our understanding and ulti-

mately providing new scientific discoveries. Therefore, we use

the framework from Roscher et al. to structure and review the

concepts of transparency, interpretability, explainability, and

domain knowledge (see Tables 1, 2, and 3).

A pertinent question is, then, can these new tools be used to

provide scientific insight on a large scale concerning why people

are poor? Can they providemore basis for knowledge than ‘‘just’’

an estimate of poverty? The geography of poverty is reasonably

well known;why people are poor is amore complicated question

https://dhsprogram.com/
https://www.worldbank.org/en/programs/lsms
https://www.worldbank.org/en/programs/lsms
https://www.image-net.org/
https://www.cs.toronto.edu/%20kriz/cifar.html


Table 1. Descriptions of how model, design, and algorithmic transparency were evaluated for the reviewed papers

Model transparency Design transparency Algorithmic transparency

The model is mathematically transparent

(e.g., functions, size, deterministic .)

Decisions in the design (e.g., kernels,

layers, units, .) are clearly described and

motivated.

The way to find the solution is ‘‘unique,’’ the

solution can be found again (e.g., stopping

criteria .)

The paper should describe the model

structure so an expert can write the model

down mathematically. If this is the case,

then it is valued as ‘‘mathematically

transparent’’ (green). If the paper mentions

the use of a method but nothing about what

the final model looks like, then it is valued as

‘‘not mathematically transparent’’ (red). If

the paper is somewhere between those two

cases, e.g., that the feature extraction

would be hard to reproduce, but the

remaining model is ok, then it is valued as

‘‘somewhat mathematically transparent’’

(yellow).

The paper should describe the model

design choices well enough so that an

expert can understand and repeat those

choices. If this is the case, then the model is

valued as ‘‘design transparent’’ (green). If no

motivation or specification is given on the

design choices, then the model is valued as

‘‘not design transparent’’ (red). If the

description in the paper is in between those

two, some choices are described well,

others not so well, then the paper is valued

as ‘‘somewhat design transparent’’ (yellow).

In ML there is an acceptable level of non-

uniqueness in the solution. Parameters may

not be identical, but the functional result of

repeated training can be almost identical. If

the algorithm and training method used in

the paper are described such that repeated

runs should produce a functionally almost

identical result, then the paper is labeled

‘‘algorithmically transparent’’ (green). If

important issues, like stopping criteria, are

not described, then the paper is valued as

‘‘not algorithmically transparent’’ (red).

Anything in between is valued as

‘‘somewhat algorithmically transparent’’

(yellow).
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to answer. We investigate the status and potential of these ques-

tions by reviewing all the papers from the beginning, starting

almost a decade ago. Common for this body of work is that tar-

gets, training, and evaluation are all conducted in relation to

household survey data, particularly DHS or LSMS. We do not

include other research fields where ML applications have suc-

ceeded, such as slum detection or poverty mapping in general.

Remote sensing and ML predictions of poverty
In the mid-1990s, the National Aeronautics and Space Adminis-

tration approached the research community in an effort to realize

the potential of satellite imagery—specifically addressing the so-

cial sciences. High hopes were expressed in ‘‘People and pixels:

linking remote sensing and social science.’’19 However, the re-

sults have been meager, and their added value questioned20,21

until recently. The most influential work where satellite data are

applied to social and economic research originates from the De-

fense Meteorological Satellite Program Operational Line-Scan

System after scholars, already in the mid-1970s, observed that

imagery showed the extent and intensity of human settlements.

Data with this capability are usually referred to as night time

lights (NTLs). Technical limitations with data storage and pro-

cessing power hampered the accessibility of imagery and devel-

opment until the 1990s. NTL data have been publicly available

from 1992 and onward.

Early work observed that regions emitting high levels of NTL

were also associated with high economic output.22 Henderson

and others used data on annual global NTLs and showed the

linkage between artificial light and economic activity.23–26 While

the relationwas observedmuch earlier by Elvidge et al.22 the pre-

vious authors who detailed the econometrics, an ongoing work27

showed that such data correlate closely with detailed records of

wage income in Sweden. NTL data has been applied and evalu-

ated in some of the world’s poorest regions. The work26 showed

that NTL correlated with asset-based measures of wealth for 37

countries in Africa, but at the same time underlined the observa-

tion that NTLs underperform in the poorest regions, which

was confirmed in a study in Burkina Faso.28 This is usually attrib-
uted to the low light levels found in agricultural-based economies

and poor regions, which cannot be separated from noise in

the data.24 It has also been observed that NTLs have difficulties

distinguishing between poor and densely populated areas;

and wealthy sparsely populated areas.11 Improvements are

observed with the spatially and radiometrically improved sensor

Visible Infrared Imaging Radiometer Suite.29

These limitations inspired recent papers that use daytime sat-

ellite imagery tomeasure poverty in developing countries, partic-

ularly in SSA. Pioneering works by Xie et al.16 and Jean et al.11

combined the power of NTL with daytime satellite imagery and

recent tools in ML. To circumvent the lack of labeled training

data, they applied a two-step transfer learning approach to five

countries in SSA using NTL intensity levels as labels. They

improved R2 bymore than 10% compared with using NTL alone.

This approach has been elaborated further in several papers and

for countries outside Africa, for example, Sri Lanka, China, and

India, and with steadily improving performance metrics.2 The

benchmark indicator for these studies is the wealth index (WI)

from the DHS. The index is a principal-component analysis of

items easily observable from the surveying officer’s perspective,

such as access to water, phones, and bicycles. On the other

hand, Head et al.30 have shown that this method does not gener-

alize in the same way that other measures of development pre-

dict access to drinking water and various health indicators. Other

measures, such as the consumption index from the LSMS are

not predictive at the same level as asset-based indices (see

below). Overall, satellite image-based poverty predictions can

now explain more than half of the variation and sometimes up

to 85% of the survey-measured poverty. In this paper, we focus

the review on papers that build on the seminal texts from

2015/2016.

Measuring poverty
Poverty measures have been a concern for research and society

for more than a century.31 Some of the studies in our review

include more than one indicator, but the common denominator

is that they all predict poverty, or economic livelihood to follow
Patterns 3, October 14, 2022 3



Table 2. Descriptions of how interpretability and algorithmic explainability were evaluated in the reviewed papers

Interpretability Algorithmic explainability

The properties of the final model are described in a way that is

understandable to a human.

What, how, and why?

The paper should make an effort to describe the properties of the

model in an understandable way. In the case of a linear model, this

is straightforward. For simpler decision trees, this is also

straightforward. For more complicated models, saliency maps or

heat maps can be used to illustrate what the model reacts to. If such

a description is well explained in the paper, it is valued as an

‘‘interpretable’’ model (green). If there is no attempt to describe the

models0 properties, then it is valued as ‘‘uninterpretable’’ (red). Cases

between these extremes are valued as ‘‘partly interpretable’’ (yellow).

Does the paper make an attempt to explain why a certain prediction

is made? For example, why are some villages considered poor and

others not? What would need to change in the satellite data for a

village to move from poor to not so poor? If the paper makes an

attempt at this, or if the answer is obvious from the model structure

(e.g., a linear model), then it is valued as ‘‘explainable’’ (green). If

there is no discussion at all in the paper on this and the model is

not straightforward to explain, then it is valued as ‘‘not

explainable’’ (red). Cases between these two

are valued as ‘‘partly explainable’’ (yellow).
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the Burke et al. categorization,2 and which is also the over-

arching aim of most of the studies reviewed.

Poverty can be classified in several ways. One way is to divide

poverty into absolute and relative terms. The former uses poverty

lines with constant real value as in the World Bank definition of

extreme poverty (i.e., those who live on less than $1.90 a day).

The latter uses relativemeasures for which the poverty line varies

as a function of a set proportion concerning the current mean (or

median).31 Examples of both can be found in the reviewed liter-

ature. Further division concerns persistent and transient poverty,

place-based and individual poverty, and urban and rural

poverty.32 Place-based poverty tends to be persistent and,

accordingly, individual poverty transient.

There is a fundamental difference between stock measures

(assets) and flow measures (income, consumption, and expen-

ditures). While it is desirable to have data on household income

and expenditures, they are limited by factors, such as season-

ality, misreporting, and volatility.33 Household assets are easier

to collect as they involve items that are easily observed by the

surveying officer and are closely linked to long-term welfare

status. A household’s assets are more obvious targets for

remote sensing-based methods than most flow measures.

The majority of studies we have reviewed target asset wealth

as an indicator of poverty. Several studies attempt to estimate

consumption expenditure but with less success. There are

also attempts to estimate the global multidimensional poverty

index and also poverty rates derived from censuses (see

Table 4).

TheWI found inmost of the literature is the DHSWI, a compos-

ite measure of a household’s cumulative living standard. The WI

is calculated based on a household’s ownership of selected as-

sets, such as televisions, bicycles, and materials used for hous-

ing construction (flooring and tiling), as well as types of water ac-

cess and sanitation facilities. Some assets are clearly hidden

from space-borne sensors. The WI places individual households

on a continuous scale of relative wealth, making comparisons

difficult between countries. DHS separates all interviewed

households into five wealth quintiles to compare the influence

of wealth on various population, health, and nutrition indicators.

Later versions also include land holdings and farm animals. To

protect the integrity of respondents, the DHS village cluster co-

ordinates are randomly displaced up to 10 km. A similar

approach is used for LSMS.45
4 Patterns 3, October 14, 2022
EXPLAINABLE AI

Recently, there have been several surveys on explainable AI (XAI)

methods and terminology. Most relevant for our discussion is the

one by Roscher et al.18 where they discuss requirements for us-

ing ML for scientific discovery and organize them into three core

elements.

They make a useful distinction between transparency, inter-

pretability, and explainability, where transparency considers

the ML approach, interpretability considers the ML model

together with data, and explainability considers the model, the

data, and human involvement.

Transparency
In general, ML models are transparent to the extent that they

are mathematically well defined; equations can be written

down that describe what they do. However, ML models tend

not to be transparent in the sense that it is easy to understand

why certain model design choices were made (e.g., number of

layers, activation functions, regularization, training algorithm).

Transparency relates to the processes for constructing the

ML model, e.g., the final model itself, methods for model

structure choices, and for fitting the parameters. If these can

all be well described and motivated then the ML model is

transparent. Following Lipton63 and Roscher et al.18 it is

necessary to divide transparency into three parts: model

transparency, design transparency, and algorithmic trans-

parency.

Model transparency relates to the transparency of the struc-

ture of the model (e.g., the number of layers, activation func-

tions, kernel functions, number of decision trees in a random

forest, splitting criteria). Design transparency refers to design

choices made when constructing the ML algorithm: are those

choices understandable, well motivated, and replicable? Exam-

ples include selecting neural network architecture, activation

functions, training time, batch sizes, training algorithm, which

may all affect the final ML model. Algorithmic transparency re-

lates to the uniqueness of the final solution. Is the result repro-

ducible even if all design choices are reported thoroughly?

Frequently, there are several local minima where a model can

get stuck and the result of two training sessions can end up

quite different. If that is the case, then the algorithm is not

transparent.



Table 3. Descriptions of how domain knowledge was used regarding data, hypothesis, training, and the final model were evaluated in

the reviewed papers

Data (features) Hypothesis (model structure) Training (loss function) Final model (constraints)

Does the paper employ domain

knowledge in selecting or engineering

features? If this is the case, then it is

valued as ‘‘domain knowledge in

data’’ (green). If the work relies

completely on learning from data

without any prior knowledge, then

it is valued as ‘‘no domain knowledge

in data’’ (red). Cases in between, e.g.,

using both domain knowledge

features and pure learning from

data, are labeled as ‘‘some

domain knowledge in data’’

(yellow). For example, fine-tuning

a CNN with night time light

data are labeled as ‘‘some

domain knowledge in data.’’

Is there some hypothesis

built into the model? For

example, do certain

symmetries or some features

positively or negatively impact

the prediction? If this is the

case, then the work is valued

as a ‘‘hypothesis included in

model’’ (green). If there is no

such hypothesis, then it is

valued as ‘‘no hypothesis

included in model’’ (red). In

unclear cases, or if there is

some weak hypothesis used,

then it is valued as ‘‘some

hypothesis included in model’’

(yellow).

Does the training procedure

utilize domain knowledge?

For example, that the loss

function should have a

specific form for this

problem. If this is the case,

then the work is valued as

‘‘domain knowledge in

training’’ (green). If a

standard loss function and

no domain knowledge are

used in the training, then it

is valued as ‘‘no domain

knowledge in training’’ (red).

In unclear cases, then it is

valued as ‘‘some domain

knowledge in the training’’

(yellow).

Is it checked if the final model

fulfills known or expected

relationships or constraints?

The simplest example can be

that development index values

should be positive. Others

could be that strong increases

in predicted values should be

manifested by certain changes

in the features. If there is a

proper discussion on this in

the paper, then it is valued

as ‘‘domain knowledge

checked in final model

output’’ (green). If there is

no such discussion in the

paper, then it is valued as

‘‘no domain knowledge

checked in final model

output’’ (red). In cases

between these two, it is

valued as ‘‘some domain

knowledge checked in

final model output’’ (yellow).
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Interpretability
Interpretability is often what is meant when explaining a model.

Interpretability concerns describing the properties of anMLmodel

to a person, i.e., ‘‘Themapping of an abstract concept (e.g., a pre-

dicted class) into a domain that the human can make sense of.’’64

Methods for interpretability try to determine and showwhich input

data (or part of the input data) was responsible for the model pre-

diction. Some models are intrinsically interpretable, e.g., linear

models, and can be preferred even though they may be less

accurate.Methods for interpretingMLmodels include the Shapley

additive explanations (SHAP) technique, and many others. If the

output (decision) from an ML model can be described locally,

e.g., by heat maps, filter responses, local expansions, then one

can say that the model is interpretable. See ‘‘interpretability

methods for images’’ below for other methods.

Explainability
Explainability is a collection of interpretations with further

contextual information. It deals with causality, the ‘‘what,’’

‘‘how,’’ and ‘‘why’’ questions.65 It may not be enough to look at

a single data point and an interpretation of the resulting predic-

tion to explain a model, e.g., which pixels in an image were

important for a prediction. Knowledge creation for scientific pur-

poses requires understanding the relationships encoded in the

model, using concepts understood by the scientific community,

and agreeing with (and using) prior domain knowledge. This

often means simplifying; Can a (large) group of features be

collected together into one or a few concepts? Can relations

be expressed with few and simple operations? And so on. With

this definition of explainability, it is clear that much work remains

to achieve explainable MLmodels. Essentially all work so far has

focused on interpretability.
Domain knowledge
Domain knowledge refers to the background knowledge of the

field or environment to which the methods are applied. Three as-

pects are involved, according to van Rueden et al.66: type of

knowledge, representation, and transformation of knowledge

and integration of the above into the ML approach. They arrange

different types of knowledge along a continuum from sciences to

engineering toward individuals’ intuition. Domain knowledge can

be integrated into an ML approach in the training data, hypothe-

sis, training algorithm, and final model.

Interpretability methods for images
Several review papers exist on interpretable deep learning

models for image analysis, such as Van der Velden et al.67 and

Gulum68 for images from the medical domain.

A common approach to explaining a deep-learning imaging

model is to create attribution maps. The attribution values can

be interpreted as the contribution or relevance of each input

feature for the given task. In the case of images where input fea-

tures are the actual pixel values, attribution maps are often pre-

sented as an image of the same size as the input images and pro-

vide a direct visual explanation of the method. Many attribution

methods can be applied to trained deep-learning models, such

as the family of CNNs, without any modifications to the underly-

ing architectures or learning procedures. This makes them ideal

for many applications also outside of the medical domain, such

as satellite imaging.

Attribution maps can be created using two broad approaches,

perturbation (e.g., occlusion)-based methods or back-propaga-

tion (e.g., gradient)-based methods. The former approach is

modifying the input image and measuring its effect on the

model’s output. The perturbation can be modifying individual
Patterns 3, October 14, 2022 5



Table 4. A list of all reviewed papers including comments on methods and data used

Reference Year Method Data

Chen et al.34 2016 First, ResNet50 Convolutional Neural Network (CNN)

model trained on ImageNet. The second step is done

with linear ridge regression.

Input: first, eight bands from year-averaged landsat-7 satellite images.

Second, the features from the CNN. Target: first, night time lights.

Second, a normalized wealth score computed from survey data

collected by the World Bank in the Living Standard Measurement

Study (LSMS).

Jean et al.11 2016 The VGG-F CNN pre-trained on ImageNet data, fine-tuned

on night time lights. Ridge regression used for the final

model from CNN features to poverty/well-being indices.

Input: satellite image data from Google Static Maps API, zoom

level 16 (several zoom levels are tried). Target: two are used.

Consumption expenditure as measured in the World Bank’s

LSMS. Expenditures are averaged over clusters and the log

expenditure is modeled. Household asset score taken from

the Demographic and Health Surveys (DHS).

Kim et al.35 2016 ResNet-50 CNN pre-trained on ImageNet and then

tuned on night time lights.

Input: satellite image data from Google Static Maps API,

zoom level 14, 16, and 18 (all three levels are used). Target:

asset wealth index computed from the DHS.

Xie et al.16 2016 First, the VGG-F CNN model, pre-trained on ImageNet.

Second, logistic regression.

Input: first, satellite images from the Google Static Maps API, at

zoom level 16. Second, the features from the CNN. Target:

first, night time light intensities from The National Oceanic and

Atmospheric Administration (NOAA).

Second, data with binary poverty labels from the LSMS

survey conducted in Uganda (Uganda Bureau of Statistics 2012).

Babenko et al.36 2017 GoogleNet CNN model. Trained directly to predict poverty. Input: digital globe and planet satellite imagery (RGB). High-res and low-res.

Target: survey data from the 2014 MCS-ENIGH. Income per adult equivalent.

Three poverty groups (fraction of households living in poverty). Poverty lines.

Head et al.30 2017 VGG16 CNN, pre-trained on ImageNet but fine-tuned

with night time lights.

Input: satellite images from Google Static Maps. ‘‘Low res.’’ NOAA night

time light images from the Defense Meteorological Satellite Program

Operational Line-Scan System (DMSP-OLS) website are used

for fine-tuning. Target: DHS data. Several indices from these.

Irvin et al.37 2017 Tries both ‘‘standard’’ CNN and a ResNet CNN network.

Tries both training the ResNet from scratch and having

one pre-trained on ImageNet data but fine-tuned on

their task. Tests with averaging outputs from image tiles,

or using more advanced recurrent neural networks for

combining (LSTM).

Input: satellite images from Google Maps Static API, zoom level 15.

Target: DHS data. Poverty prediction with wealth index, split into

four categories. Malnutrition prediction using height and weight

for age scores, split into six categories.

Perez et al.38 2017 CNN of type ResNet and VGG-Net. Pre-trained on

ImageNet data for RBG bands, otherwise trained

from scratch. Try both gradient boosted trees and

linear ridge regression for predicting Asset Wealth

Index (AWI) from the CNN features, and also (as

comparison) directly from night time light values.

Input: first, multispectral satellite imagery from Landsat 7 (several

spectral bands tried). Second, CNN features. Target: first, predicting

class of night time lights (three classes). Second, AWI from

DHS data.

(Continued on next page)
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Table 4. Continued

Reference Year Method Data

Pandey et al.39 2018 CNN architecture for the first task. Trained from

scratch. For the second task a multilayer perceptron.

Input: first, satellite images from Google Static Maps API, zoom level 16. Images

only of villages. Second, predicted roof material, source of lighting, and source

of drinking water. Target: first, the roof material, source of lighting, and source of

drinking water in a region. In a second model, the household income level in a region.

The information comes from the 2011 Census of India and Socio-Economic Caste

Census of 2011.

Perez et al.40 2019 CNN with weighted Generative Adversarial Network

(WGAN), for the first step. The second step is done

with ridge regression.

Input: first, multispectral (nine bands) imagery from Landsat 7 (Enhanced

Thematic Mapper Plus [ETM+]). RBG images are pan-sharpened (to get 15 m

resolution). Second, the features from the CNN. Target: it is not described fully

what they train the CNN to predict, but it includes night time lights. For a

second, linear model, they use the AWI from the DHS data.

Tingzon et al.41 2019 One approach using VGG16 CNN, pre-trained on the

ImageNet data and fine-tuned on night time lights,

ridge regression used on the final features. Another

approach using Random Forest (RF) on OpenStreet

Map (OSM) engineered features (road type, building

type, and points of interest). The results from the

two approaches are compared.

Input: daytime satellite images from Google Static Maps, zoom level 17.

OSM data from GeoFabrik, with OSM features then engineered by the

group themselves. Target: CNN approach first uses night time luminosity

data from Visible Infrared Imaging Radiometer Suite Day/Night Band

(VIIRS-DNB), categorized into five classes. Then wealth index (and

other indices) from the Philippine DHS from 2017. The ONS approach

builds an RF model directly for the DHS wealth index (and other indices).

Wu et al.42 2019 First, ResNet50 model pre-trained on ImageNet data,

fine-tuned on night time light data. Second, linear r

idge regression.

Input: first, LANDSAT 8 images. Second, the features from the ResNet50 model.

Target: first, night time light data (Suomi NPP satellite). Second, Gross domestic

product (GDP) and total retail sales of consumer goods (TRSCG).

Wu et al.43 2019 First, a ResNet50 (CNN) combined with a feature pyramid

network (FPN). The ResNet-50 is pre-trained on ImageNet.

Both networks are then trained (fine-tuned) to predict night-

time light intensity categories and spectral index categories

from the daytime satellite image.

Input: first, LANDSAT 8 images. Second, the features from the ResNet50 and

the FPN. Target: first, night time light data (NPP-VIIRS) and spectral indices

(NDVI, MNDWI, and NDBI). Second, per capita gross domestic product

(PCGDP) from the Guizhou Bureau of Statistics.

Zhao et al.44 2019 RF. A CNN VGG-F, trained on ImageNet data, was fine-

tuned to predict night time light classes (and thus learn

features).

Input: night time lights from the VIIRS Cloud Mask–Outlier Removed (vcm–orm) annual

composite NPP-VIIRS DNB data (NOAA/NCEI). Google Static Maps satellite images,

zoom level 16 (high resolution). OSM. Land cover maps from the European Space

Agency (ESA) Climate Change Initiative. Different features were computed from these.

Target: the Wealth Index (WI) from the DHS.

Ayush et al.45 2020 Gradient descent boosting trees, but using deep neural

networks (Yolov3) for object detection in the feature

generation step.

Input: xView (DigitalGlobe) high-resolution satellite images. Features are extracted

from these using Yolov3. Target: Living Standards Measurement Study for Uganda.

Consumption expenditure.

Hofer et al.46 2020 ResNet-34 CNN models for images feature extraction

and ridge regression for poverty target estimation.

Input: daytime satellite images from Landsat (15-m resolution) and Sentinel (10-m

resolution). Night time satellite images from VIIRS. Target: poverty estimates

from household surveys, and census data from the Philippines and Thailand.

Kondmann et al.47 2020 First, a ResNet 50 CNN, pre-trained on ImageNet and

fine-tuned on night time lights. All layers are involved

in the fine-tuning. Second, ridge regression on the

features from the CNN.

Input: first, yearly composites of LANDSAT 7 satellite images. Second, the

features from the CNN. Target: first, night time lights from DSMP-OLS.

Second, the wealth index from the DHS data for Rwanda for the years 2005,

2010, and 2015. They test for the ability to predict the wealth index across time.

(Continued on next page)
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Table 4. Continued

Reference Year Method Data

Tan et al.48 2020 ResNet50 (CNN) for the first task. Ridge regression

for the second task.

Input: first, Landsat 8 images. Second, the features from the ResNet50

network. Target: first, spectral index data (NDVI, MNDWI, and NDBI), and

night time light data (Suomi NPP). Second, development indicators from

the Chinese statistical yearbook data.

Yeh et al.49 2020 The ResNet-18 CNN model (v2, with preactivation).

Pre-trained on ImageNet data. One network for

daytime satellite images, one for night time.

Input: multispectral images from Landsat archives available on

Google Earth Engine, and night-time lights images (VIIRS and DMSP).

Target: the wealth index from the DHS data.

Ayush et al.50 2021 Gradient descent boosting trees. Deep neural

networks (Yolov3) for object detection in the

feature generation step. Reinforcement learning

method for selecting low-resolution or high-

resolution images.

Input: xView (DigitalGlobe) high-resolution satellite images and low-resolution

Sentinel-2 satellite images. Target: LSMS for Uganda. Consumption

expenditure.

Chi et al.51 2021 Gradient-boosted regression trees for wealth

prediction and linear models for error prediction.

Input: features calculated from OSM, USGS, Facebook, VIIRS and

satellite imagery from Digital Globe. Satellite image features are

coming from pre-trained CNNs. Target: DHS ‘‘relative

wealth index.’’

Engstrom et al.52 2021 Features are identified using a combination of CNN

and classification of spectral and textural

characteristics. In some cases (roads) is manual

identification used. Finally, a linear LASSO model

that uses the features as input.

Input: object and texture features derived from HSRI (High Spatial

Resolution Imagery). Target: household estimates of per capita

consumption imputed into the 2011 Census of population

and housing (Sri Lanka).

Huang et al.53 2021 A deep learning model, Mask R-CNN, is tuned to

detect and segment individual houses in satellite

images. The color of the house roof is used to label

its material (tin, thatched, or painted). The total roof

area, and the fraction of high-quality roof areas out

of the total roof area in the region, together with night

time light intensity, are used as indicators of wealth.

The Mask R-CNN model is first trained on two

large public datasets, Common Objects in Context

(COCO) and Open AI Tanzania, and then fine-tuned

on a small set of samples from the study region in Kenya.

Input: first, high-resolution daytime satellite images from Google

Static Maps, resolution 0.3 m. Second, the detected roofs, colors,

and the night time lights. Target: first, manually segmented houses

(for the small tuning set). Second, comparison with survey-based

measures of economic well-being.

Jarry et al.54 2021 First, a VGG-16 CNN pre-trained on ImageNet and

fine-tuned on night time lights. The VGG-16 network

is followed by a fully connected layer. They also try

to fine-tune with land-use as target, and to use a

self-organized contrastive method to find good

features. Second, ridge regression on the final

features from the CNN.

Input: first, daytime satellite images from Google Static Map, with

2.5-m resolution. Second, the features from the CNN. Target: first,

night time light data from the Earth Observation Group, extracted

using Google Static Map. Second, poverty indicators from the

World Bank’s LSMS for Malawi.

Lee et al.55 2021 XGBoost (decision tree) for the feature based

model. CNN for the satellite image-based model.

Input: OSM data, the VIIRS DNB night time lights dataset, day

time satellite images (Google Static Map, zoom level 16), and

the High-Resolution Settlement Layer (HRSL) datasets Target:

the International Wealth Index (IWI) computed from the DHS data.

(Continued on next page)
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Table 4. Continued

Reference Year Method Data

Liu et al.56 2021 First, a VGG-16 CNN pre-trained on ImageNet

and fine-tuned on night-time lights. The VGG-16

is modified with attention learning on the last layers.

They also try non-fine-tuned VGG and a variational

autoencoder (VAE) on the first step. Second, XGBoost

is used as regression model on the features from

the CNN.

Input: first, daytime satellite images from the PlanetScope Ortho

Scene, with 5-m resolution. Second, features from the CNN encoded

using principal component analysis (PCA); using the first 1–25 leading

principal components. Target: first, night time lights from Earth

Observation Group V1 annual composites, vcm version. Light intensities

are grouped into three levels. Second, GDP for counties from the China

Economic and Social Development Statistics Database, provided by

China National Knowledge Infrastructure.

Ni et al.57 2021 CNNs. Four pre-defined architectures: VGG-Net, Inception-Net,

ResNet and DenseNet. The two latter were also modified and

tested as two new models.

Input: satellite images from Google Maps Static API. Fine-tuning with

night time light imagery from DMSP-OLS satellite. Target: DHS data.

Poverty index. Unclear what type.

Sako et al.58 2021 One approach with fine-tuning a CNN model on night time lights.

The information is missing on the exact type of CNN. They also

tried using the Yolov5 deep neural network object detector and

adding the features from this to the night time lights predictor.

The modeling from features to poverty data was tried with ridge

regression, XGBoost, and RF.

Input: Sentinel 2 satellite images and high-resolution Google Earth images

for a subset (2%) of the locations. The Yolov5 object detector was used to

extract objects from the high-resolution images. Target: the first, fine-

tuning step is done with VIIRS night time lights. In the second step,

Philippines poverty data are used, which come from the Asian

Development Bank.

Castro et al.59 2022 First, VGG16 CNN (transfer learning). Second, linear regression

(combination of ridge and lasso).

Input: first, night time lights from VIIRS DNB), satellite images from

Google Maps Static API, zoom level 16. Second, features computed

from these images. Third, features from CNN models. Target: average

income, GDP per capita, and water index in two Brazilian states.

Daoud et al.60 2022 Several CNN based models (e.g., ResNet-18, ResNet-34,

ResNet-50, VGG-16).

Input: Landsat 7 daytime images (red, green, and blue soil reflectance

bands, plus the panchromatic top-of-the-atmosphere band). Target:

household data from the Indian censuses 2001 and 2011, and several

targets from the Indian National Family Health Survey (NFHS).

Espı́n-Noboa et al.61 2022 A set of features are computed for each site: infrastructure

from OSM and OpenCelliD, population and movement

counts from Facebook data for good, audience reach

estimates from Facebook Marketing, night light intensities

from Google Earth Engine, and image featuresfrom a

CNN trained to model the DHS IWI. (No information

provided on if the CNN is pre-trained, or its structure.)

The XGBoost algorithm is then used to model the IWI

with different subsets of the features.

Input: 172 metadata-features (i.e., from OSM, OpenCelliD, and Facebook)

plus 784 features from the CNN processing the daylight satellite image.

Target: the IWI from DHS for Sierra Leone.

Tang et al.62 2022 First, a VGG-16 CNN, pre-trained on ImageNet and

fine-tuned on night time light intensities. Second, a

RF model built on the fine-tuned features.

Input: first, normalized difference vegetation index (NDVI) images, 16-day,

from Google Earth Engine with a spatial resolution of 250 m. These are

converted to monthly data. The NDVI approach is compared with the

standard daytime satellite image approach, with images from Google Static

Maps, zoom level 16. Target: first, night time lights from the Global DMSP-

OLS Lights Time Series 1992–2013. Second, wealth index (and other indices)

from DHS in Malawi, Nigeria, Rwanda, Tanzania, and Uganda.

Papers are listed chronologically and alphabetically (after first author).
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Figure 1. Classification of reviewed papers
Transparency bars: fractions of the reviewed papers
that were classified as transparent (green), not
transparent (red), and partly transparent (orange)
with respect to the design, the models, and the al-
gorithms used. Interpretability bars: fractions of the
reviewed papers that were classified as interpret-
able (green), uninterpretable (red), and partly inter-
pretable (orange), and corresponding fractions for
algorithmic explainable. Domain knowledge bars:
fractions of the reviewed papers that fulfilled the
criteria for using domain knowledge (red), partly
(orange), and no domain knowledge used (red), for
data, hypothesis, training, and final model.
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pixel values or be larger by masking out larger patches of the

input image (occlusion).69 It can highlight both negative and pos-

itive responses. A drawback is the computational requirement of

perturbation methods, and it may be difficult to determine suit-

able perturbation schemes. Back-propagation-based methods

for attribution maps are model specific and follow various

forward and backward responses through the convolutional

network’s layers. Methods that compute gradients fall under

this category, such as the Grad-CAM family.70 Here, we also

find DeepLIFT71 and Deep SHAFT,72 where the latter uses

game theory-based SHAP values but is modified to work for

deep-learning models.

Attribution maps are also relevant when satellite images

predict human development indicators. The image regions that

aremost influential for the predictions can be highlighted. A chal-

lenge is, however, that it may be difficult to identify and quantify

what regions are represented and how much they contribute.

Domain knowledge will always be important when interpretable

deep learning methods provide explanations.

METHODS

Our review method can be described as integrative rather than systematic,73

and it originates from the sister publications of Xie et al.16 andJean et al.11 These
two publications illustrate the problems with reviewing this body of knowledge,
mixing preprints, working papers, technical reports, peer-reviewed papers, and
conference papers. The paper where Xie is the first author was published in the
30th AAAI Conference on Artificial Intelligence, in 2016, and appeared as an ar-
Xiv preprint in 2015. In 2016, the same group published a similar paper in Sci-
ence. The latter paper builds the narrative for this review, as it represents a nov-
elty inmanyaspects (covered in the introduction). Together, the twopapershave
been cited more than 1,500 times in Google Scholar (assessed July 27, 2022).
The available literature in this research domain is presently not very large but
growing rapidly, and we intend to cover it all. The literature body was collected
by beginning with the papers we knew of in the domain and adding relevant pa-
pers in Google Scholar that cited them. Relevance was determined by reading
the title and abstract, looking for the keywords ‘‘satellite,’’ ‘‘machine learning,’’
and ‘‘poverty’’ and ‘‘wealth.’’ This yielded a rough set with about 100 papers
that were read more thoroughly, and from which we selected 32 papers that
fit our selection criteria:
10 Patterns 3, October 14, 2022
1. The paper should cover poverty/wealth predic-
tion, using survey data as a basis for the ground
truth poverty/wealth estimates. It should be
applicable to both urban and rural settings.

2. The method should use satellite images as the
basis for at least some of the inputs (features).

3. The method should include deep neural
networks.

Three papers that did fit these criteria were
excluded because they were very low quality in
terms of layout, spelling, and content, and were
published in venues with a dubious reputation. In hindsight, all the 32 papers
cite either Xie et al.16 or Jean et al.11 (except Xie et al. which was the first paper
on the topic and, of course, did not cite itself).
The aim of the review is to provide an overview of how explainability is

handled in this corpus of papers. Which aspects of XAI are covered well and
which are not? Can these methods potentially be used to learn something
new about poverty prediction? After all, it is perhaps surprising that the predic-
tion accuracy on (asset) wealth is so high when all that is provided is a satellite
image, with no information about the insides of buildings and a spatial resolu-
tion too low for some objects.
As far as possible, the structure provided by Roscher et al.18 is used to orga-

nize the review. The presented models and analyses are evaluated
with respect to the nine aspects described by Roscher et al.18 as listed and
described in Tables 1, 2, and 3: model transparency, design transparency,
algorithmic transparency, interpretability, algorithmic explainability, using
domain knowledge for feature design, using domain knowledge for generating
the hypothesis, using domain knowledge in the training (loss function), and
applying domain knowledge to the final model. How much the work in each
paper fulfills these aspects is qualitatively grouped into three levels: well,
somewhat, and poorly. In Figure 1, the three levels are represented with the
three colors green, yellow, and red, respectively.
The categorization involves estimating boundary cases and can be

illustrated with a few examples. One is the recent study by Lee and
Braithwaite.55 They use two ML models in their work: XGBoost and
CNNs. Both result in well-defined deterministic functions. The parameters
for training them are provided in the paper, and a researcher proficient in
these methods should be able to reproduce them. Their work is labeled
‘‘green’’ for all three parts of transparency, although one could argue that
it should perhaps be labeled ‘‘yellow’’ for the third part (algorithmic trans-
parency). For the input to their models, they use well-defined sources,
but on the output side (the label side) they both correct survey locations
by hand and use a different WI than others. Therefore, their data should
be made available for the work to be perfectly repeatable, but ethical as-
pects need to be considered. It is also unclear if their final prediction is a
combination of the feature-based and the image-based models or if it is
the output of only one of them. However, all their final models (parameters)
should be possible to share without ethical issues and thus made available
for others to explore for explainability, so their models are labeled trans-
parent. Lee and Braithwaite55 do not discuss how different features affect
the output or what needs to be changed in an image for the output to
change, so their work is labeled ‘‘red’’ for both interpretability and explain-
ability. However, their work includes features believed to be important for
the prediction, so we label it as ‘‘green’’ for domain-knowledge features.
Domain knowledge is not used in other ways for the model building, e.g.,
for the cost function or to constrain the output, so the rest of the
domain-knowledge aspects are labeled ‘‘red.’’
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Another example is the study by Yeh et al.49 where deep learningmodels are
used to estimate asset wealth across approximately 20,000 African villages.
The methods are well described from a transparency point of view, including
details of obtaining the satellite data, good specification of the deep-learning
models, and a good description of the model selection procedure such that
other researchers can reproduce it. To further strengthen the transparency,
both data and code are available for download (we did not test if the code
worked but we checked that it is there). This paper, therefore, receives a
‘‘green’’ on all three transparency aspects. There are some anecdotal illustra-
tions of the network responses to different images, but nothing more, and the
label is, therefore, ‘‘yellow’’ and ‘‘red’’ for the interpretability and explainability.
Head et al.30 present an interesting studywhere theymodel wealth and other

indicators (for example, child weight and water accessibility) that could be
related to wealth. They find that, whereas wealth can be well modeled, it is
not as straightforward as the other indicators, which is surprising. This repre-
sents an exceptional case where domain knowledge is used to check if the
models exhibit expected relationships, and this is the only paper that receives
a ‘‘green’’ on the fourth domain—knowledge aspect.
The paper by Huang et al.53 differs significantly from the others. It starts from

the hypothesis that roof size and material reflects wealth, and from this builds
an analysis of the effects of a financial support program. This is the only paper
on the list that starts from a strong hypothesis and is also the only one to
receive a ‘‘green’’ on the domain knowledge hypothesis.

RESULTS

Our review requires all papers to contain some aspect, including

deep neural networks. The reviewed papers are listed in Table 4

with comments on the data and models used, and in chronolog-

ical order. The work presented in each paper was evaluated with

respect to the nine aspects listed above, and there were both

clear and borderline cases, as illustrated in the examples above.

The results should not be interpreted for each paper individually

but as a result for the group of papers in this field.

The first part of the seven aspects deals with the transparency

of the approaches. This relates to how well the work is docu-

mented, if the models can be repeated, and if the final models

can be written down as functions in mathematical form. As

Figure 1 shows, many papers do this well. However, far from

all papers are written such that the work can be reproduced.

The second part, interpretability and explainability, is a weak

part in this field (and in many other fields too). Figure 1 shows

that few researchers attempt to interpret their models, or even

to illustrate what data leads to certain predictions. The explain-

ability is even weaker; the explainable models tend to be simple

decision trees or linear models. Very few researchers approach

the issue of explaining the model prediction.

The third part of the seven aspects deals with domain knowl-

edge: is domain knowledge used, e.g., to build the models, to

select features, or to check if the final models satisfy expected

constraints or behaviors. The use of domain knowledge for

feature selection is common in the papers dealing with feature-

based models. However, domain knowledge is not commonly

used in other aspects of the modeling.

The purpose of this review is not to summarize all the experi-

mental results in these papers, although some of them do reveal

something about interpretability and explainability. One is the

study mentioned above by Head et al.30 which has been verified

by Tingzon et al.41; the study shows that two indices related to

wealth (e.g., wealth and access to water) cannot both be

modeled well. Another is the work by Perez et al.38 who received

equally good predictions with low-resolution satellite images,

indicating that the features that explain the results are perhaps

not in the small details. A third result is in the work by Kondmann
and Zhu,47 where they conclude that the transfer-learning

approach cannot be used to measure change in wealth over

time, indicating that the features used by the transfer approach

change very slowly.

There has, so far, been very little effort spent on interpreting

and explaining why the transfer-learning approach works so

(surprisingly) well. This is evident from the two interpretability

bars in Figure 1.

DISCUSSION

Over the last decades, the dramatic success in ML has led to re-

vitalization and progress in unexpected domains. Starting with

the seminal papers of Jean et al.11 and Xie et al.16 it is now

evident that some defined properties of poverty can be accu-

rately estimated from combinations of satellite imagery and

deep machine learning. Specifically, the fundamental questions

of ‘‘where are the poor and how poor are they’’ could potentially

be answered without launching a new wave of surveys. Recent

research has accounted for some of the initial limitations that

have been pointed out by Head et al.30 and others, with general-

izability being the most important. Lee and Braithwaite55 have

shown that it is possible to create a methodology that is gener-

alizable to several countries. Chi et al.51 have also presented a

method that seems to generalize information concerning

many countries. However, neither the approach by Lee and

Braithwaite nor the approach by Chi et al. rests solely on the

transfer-learning method and satellite images. While great prog-

ress has been achieved in a short time, several areas need

attention, not least considering the reported lack of downstream

applications of the methodology. We argue that explainability is

essential to support research and applications, and explainabil-

ity means more than just interpretability.

In this paper, we have investigated the readiness for this meth-

odology to be used for scientific discovery, which is asking a lot,

keeping in mind the recency of the research field. As a roadmap,

we have used the requirements suggested by Roscher et al.18

Our review of the field shows that the status of the three core el-

ements of explainable ML (transparency, interpretability, and

domain knowledge) is varied and does not completely fulfill the

requirements set up for scientific insights and discoveries.

Transparency matters are often well covered, meaning that

most of the work is replicable and mathematically sound. Inter-

pretability is not very well covered but, at the same time, inter-

pretability accompanies the literature where recent efforts are

directed and where we find state-of-the art research.45,50

Furthermore, the use of domain knowledge, which is important

to achieve scientific consistency, is not very well covered in

the papers we have assessed. When scrutinizing research, as

we do here, it is important to remember that the research field

is in its infancy and has so far been advancedmainly by the tech-

nical community.

With its unprecedented spatial and temporal coverage, satel-

lite data are increasingly used to measure various aspects of hu-

man welfare. The approach where outputs are benchmarked

against survey data has produced some remarkable results but

largely overlooked epistemological questions. Information eval-

uation is not well understood, specifically which imagery is phys-

ically capable of contributing to this specific domain. Head
Patterns 3, October 14, 2022 11
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et al.30 conclude that, if there is an insufficient signal in the image,

‘‘No matter how sophisticated our computational model, the

model is destined to fail.’’ Therefore, some results that are intu-

itively inconsistent and difficult to explain. One such example

observed by Head et al.30 was the relative under-performance

of models designed to predict access to drinking water. They

expected the satellite-based features to capture proximity to

bodies of water, which in turnmight affect access to drinking wa-

ter. However, an explainable AI approach here could perhaps

shed light on this surprising finding.

Another discussion concerns the observed difference be-

tween stock-based and flow-based indices of poverty.2,49 The

relative under-performance of, for example, consumption

expenditure is attributed to higher noise levels in training data

than for assets. To resolve that issue, it is crucial to understand

what it is in the image that triggers a certain response in the

model. Indeed, the literature is unclear on the relationship be-

tween image features and surveyed features that impact output

predictions, with few exceptions. It is plausible that the ML

model is also picking up on some other features present in the

image, such as the size and shape of arable land or road quality,

and which are the properties that are known to be associated

with welfare status. Complicating the matter further, we also

know that there is evidence that much persistent poverty is place

based and geographically determined,49 meaning that there

might be associations between landscape-specific properties

and poverty to which themodel is susceptible. For our concerns,

sorting and ranking among impact features is probably the single

most important future research direction. Herein lies one possi-

bility for understanding something new about poverty and its de-

terminants.

Understanding the interplay of different sensor characteristics

(spatial and spectral resolutions), interactions with different

physical environments, and the nature of ground truth is crucial.

Satellite imagery is, in many aspects, about what we see is what

we get. A textbook rule-of-thumb is that for an object to be

observable, it should be covered with a minimum of four pixels.

Image enhancement techniques and combining spectral

information in creative ways can bring out extra detail, and

high-contrast objects are also more likely to be observable.

What could we expect to observe if we consider the commonly

used 2.5-m satellite image (scale level 16 in Google API), imag-

ining it centered over one of the DHS rural villages (provided

displacement of coordinates)? The dominating objects would

be buildings, roads, agricultural fields, and forest patches, but

also the overall spatial organization of the village. In other words,

many features are not accounted for in WI design. It would be

difficult to identify cars (but maybe possible), bicycles, electricity

poles, cell phones, television sets, farm animals, although they

are all features of the WI. Results seem to depend very little on

resolution and even on time, so why is it unlikely that the reason

for the outcome depends on the image resolution?

Is this consistent with domain knowledge? This information

would shed light on the important relationship between

geographically determined poverty and other forms of poverty.

The recent studies by Ayush et al.45,50 represent interesting start-

ing points. Here, objects were detected in the images using ob-

ject detection methods as a first step. A feature vector was then

constructed using the counts of different objects, augmented
12 Patterns 3, October 14, 2022
with confidence and size estimates. Using a tree-based model,

these feature vectors were then used to model a poverty index.

This approach provides an increased level of explainability due

to features that are directly interpretable and models that inher-

ently provide some explanations of how features affect the

outcome. There is still room for improvement in terms of expand-

ing the set of objects to detect or adding more abstract features,

such as landscape characteristics, to increase model explain-

ability further. The advantage of a traditional equation, showing

bothwhich terms there are in the equation andwhat factors there

are in front of each term, is obvious.

An example to illustrate this is the Cobb Douglas production

function commonly found in economics of small firms but also

in agricultural production (from Neumann et al.74),

lnðqÞ =
X

i

bi lnðXiÞ+ v � u;

where lnðqÞ is the logarithm of the production of the grid cell in

question, Xi are the different production inputs for that cell, bi
are unknown parameters to be estimated, and v is a random er-

ror to account for statistical noise. Further deviations are due to

inefficiencies ðuÞ for that grid cell. The function for crop produc-

tion ðcpÞ could be

lnðcpÞ = b0 + b1lnðtemperatureÞ+ b2lnðprecipitationÞ
+ b3lnðparÞ+ b4lnðsoilfertilityÞ+ v � u;

with the most important growth defining factors according to

theory inserted; temperature, precipitation, photo-synthetically

active radiation (par), and a soil fertility constant (all values

estimated for the particular grid cell studied). For the ineffi-

ciency ðuÞ, influences of land management, labor force, gen-

eral accessibility, and market access are considered

important:

u = d1ðirrigationÞ+ d2ðslopeÞ+ d3ðagripopulationÞ
+ d4ðaccessÞ+ d5ðmarketÞ:

A model of this kind provides grounds for evaluating the effect

of changes in explanatory variables on lnðqÞ and deviations from

expected levels (the inefficiency function). It would be relevant to

extract a similar explanation from the ML- and satellite image-

based models for poverty estimation. What features in the

satellite image form the basis for the poverty estimate? Are there

expected base level and place-specific inefficiencies relating to

the particular grid cell?

For a period, the scholars have been occupied with increasing

model performance to very good levels compared with survey

data. The next natural step is working toward increased levels of

explainability to explain how features affect the outcome. From

our perspective, which marks the start of learning something

new about poverty and its distributional properties and would

be a venue for different domain experts to work together. One

approach that could be useful and a complement to the contribu-

tion of Ayush et al.45,50 is to work with heat maps. A heatmap rep-

resents coefficients to visualize the strength of correlation among

variables and could add to the discussion on what is in the image

that contributes to a certain poverty score. However, having an
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explainable model requires not only knowing what features or ob-

jects that are important for an estimate but also describing how

these features affect the estimate. Eventually, it will be possible

to ask the important questions, such as: ‘‘What does positive

change in poor societies look like and how is it achieved?’’75 How-

ever, is it likely to be answered from imagery alone?
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