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Monoclonal antibodies (mAbs) are a crucial asset for human health and modern
medicine, however, the repeated administration of mAbs can be highly immunogenic.
Drug immunogenicity manifests in the generation of anti-drug antibodies (ADAs), and
some mAbs show immunogenicity in up to 70% of patients. ADAs can alter a drug’s
pharmacokinetic and pharmacodynamic properties, reducing drug efficacy. In more
severe cases, ADAs can neutralize the drug’s therapeutic effects or cause severe
adverse events to the patient. While some contributing factors to ADA formation
are known, the molecular mechanisms of how therapeutic mAbs elicit ADAs are
not completely clear. Accurate ADA detection is necessary to provide clinicians with
sufficient information for patient monitoring and clinical intervention. However, ADA
assays present unique challenges because both the analyte and antigen are antibodies,
so most assays are cumbersome, costly, time consuming, and lack standardization. This
review will discuss aspects related to ADA formation following mAb drug administration.
First, we will provide an overview of the prevalence of ADA formation and the available
diagnostic tools for their detection. Next, we will review studies that support possible
molecular mechanisms causing the formation of ADA. Finally, we will summarize recent
approaches used to decrease the propensity of mAbs to induce ADAs.

Keywords: monoclonal antibodies, anti-drug antibodies, immune response, immunogenicity, neutralizing
antibodies

INTRODUCTION

In the last three decades, the pharmaceutical industry experienced a massive shift toward the
use of protein drugs, often referred to as “biologics.” Biologics offer higher specificity and
better characterized mechanisms of action compared to small molecule drugs, and their use has
revolutionized the treatment of a wide range of diseases and disorders. In general, monoclonal
antibodies (mAbs) are the most widely used class of biologics (1).
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Monoclonal antibodies account for a growing number of
blockbuster drugs with their US sales reaching over $24 billion
(2), and will maintain a dominant position in the pharmaceutical
market that exceeds $125 billion by the end of 2020 (3).

To date, over 73 mAbs have been approved by the
United States Food and Drug Administration (FDA) and the
European Medicines Agency (EMA). Hundreds more mAbs
are in different stages of clinical developmental. mAbs are
used for various clinical indications including cancer, chronic
autoimmune and inflammatory diseases, allergies, infections,
transplantations, and cardiovascular diseases (4).

The mechanism of action (MOA) of mAbs can vary across
different use cases. For example, the anti-CD20 rituximab
induces cell death by binding to surface receptors, resulting in
a signaling cascade that leads to apoptosis (5). Other mAbs,
including the anti-HER-2 trastuzumab, block receptor-ligand
interactions to achieve a desired effect, either by blocking the
receptor domain to inhibit an activation signal by removing
a soluble ligand entirely from circulation (6). mAbs can also
induce fragment crystallizable (Fc)-dependent effector functions
such as antibody-dependent cell-mediated cytotoxicity (ADCC)
and complement-dependent cytotoxicity (CDC), which are
important for the anti-CD20 drug obinutuzumab that is used for
the treatment of lymphoproliferative disorders (7). Other mAbs
target specific proteins involved in pathogenesis of disease, such
as anti-TNFα mAbs infliximab and adalimumab that are used to
treat inflammatory bowel disease (IBD) and rheumatoid arthritis
(RA) (8). Other mAbs in this category are omalizumab, an anti-
IgE mAb that is used to treat patients with allergic asthma (9),
palivizumab which targets an epitope in the A antigenic site of
the F protein of the respiratory syncytial virus (RSV) (10), and
bezlotoxumab which binds and neutralizes Clostridium difficile
toxin B (11). Some mAbs, such as cetuximab and panitumumab
(12), target the epidermal growth factor receptor (EGFR) which is
overexpressed in a number of cancers. In recent years, checkpoint
inhibitor mAbs were also developed to manipulate anti-tumor
T-cell responses, like the anti-PD-1 nivolumab that is used to treat
melanoma and non-small cell lung cancer (13).

The tremendous progress in mAb discovery began in 1975,
when Köhler and Milstein reported in vitro screening and
production of murine mAbs from hybridomas (14). In the
late 1980s, murine mAbs were in rapid clinical development,
but had significant drawbacks as they were often induced
allergic reactions and the formation of human anti-mouse
antibodies (HAMA). Examples include T101 used to treat chronic
lymphocytic leukemia (CLL) and cutaneous T cell lymphoma
(CTCL), and 9.2.27 to treat melanoma (15). Additionally, murine
mAbs exhibited a relatively short half-life in humans, possibly due
to low affinity toward the human neonatal Fc receptor (FcRn)
(16), and were relatively poor recruiters of effector functions,
crucial for some mAb efficacy (17).

To overcome the immunogenicity and reduced effector
function of murine mAbs, chimeric antibodies (mouse–human)
were next developed by fusing the antigen-specific variable
domain of a murine mAb with the constant domains of a
human mAb. This resulted in chimeric mAbs of approximately
65% human origin by amino acid content (18). Human gene

sequences were mostly taken from the κ light chain and
the IgG1 heavy chain, as IgG1 has the highest efficiency in
activating complement and cytotoxic effector cells, and the
κ light chain is more common in human serum antibodies
(19, 20). The development of chimeric mAbs indeed reduced
immunogenicity and increased efficacy. For example, metastatic
colorectal carcinoma patients who received the chimeric mAb 17-
1A did not show any toxic or allergic reactions, and the chimeric
antibody was significantly less immunogenic than its parental
murine antibody (21).

Chimeric mAbs exhibited an extended half-life and reduced
immunogenicity, but they still presented a considerably high
propensity for ADA induction (22). Aiming to further reduce
mAb immunogenicity, humanized mAbs were developed by
grafting the murine complementarity determining regions (CDR)
onto framework regions (FR) of the human mAb heavy
and light chain variable domains (VH and VL, respectively),
for mAbs that are approximately 95% human (23). mAb
humanization often significantly reduces immunogenicity and
ADA formation (24).

Technological advances of phage display technology (25, 26)
based on human single chain Fv (scFv) libraries (27) next enabled
the discovery of antibodies comprised entirely of human genes.
These human mAbs were additionally aided by the more recent
development of transgenic mouse strains expressing human
antibody variable domains (28–30).

While both humanized and fully human mAbs reduce
immunogenic potential and show properties similar to human
endogenous IgGs, they fail to completely eliminate mAb
immunogenicity and ADA formation (31). Table 1 summarizes
mAbs that are currently approved in the US and EU, along with
their reported immunogenicity rates.

In the past decade, next-generation sequencing (NGS)
technologies enabled a rapid increase in the capacity to sequence
human and animal genomes (32). Like many other areas of
modern biology, NGS is now frequently used in basic and applied
immunology. NGS is often applied for sequencing the VH and
VL antibody domains (33–36), as well as T-cell receptors (37, 38)
and antibody derivative [e.g., scFv, F(ab)] libraries screened using
display systems (39–41). NGS analysis of B cells can elucidate
the features of antibody immune responses at a molecular level,
and has been further exploited for advanced mAb discovery and
engineering (42–44).

In addition to NGS of bulk populations, single-cell sequencing
comprises an important group of technologies for antibody
discovery, as single cell data is necessary to reveal the native VH
and VL pairing. Previous studies were able to obtain VH and
VL chain pairing from isolated plasmablasts (PB) in immunized
mice (34, 45, 46) and antigen-specific PB from tetanus-vaccinated
human patients (33).

A recently introduced technology combines proteomic
analyses of antibodies in blood or secretions with NGS analysis of
antibody-encoding B cells. Proteomics thus provides invaluable
information about the molecular, monoclonal properties of
human serum antibodies in health and disease (46–48). All of
the above recently developed technologies have expedited mAb
discovery and revolutionized our understanding about the nature

Frontiers in Immunology | www.frontiersin.org 2 August 2020 | Volume 11 | Article 1951

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fim
m

u-11-01951
A

ugust16,2020
Tim

e:14:14
#

3

Vaism
an-M

entesh
etal.

Im
m

unogenicity
M

echanism
s

ofM
onoclonalA

ntibodies

TABLE 1 | Approved mAb and their reported ADA rates.

International non-
proprietary name

Brand name Target Format Indication first
approved or
reviewed

First EU/US
approval year

%ADA %ntADA References

Adalimumab Humira TNFa Human IgG1 Rheumatoid
arthritis

2003/2002 28% Not reported (139, 140, 141)

Alemtuzumab Lemtrada;
MabCampath,
Campath-1H

CD52 Humanized
IgG1

Multiple sclerosis;
chronic myeloid
leukemia#

2013;
2001#/2014;2001#

67.1–75.4 Not reported (102, 103)

Alirocumab Praluent PCSK9 Human IgG1 High cholesterol 2015/2015 5.1% 1.30% (142)

Atezolizumab Tecentriq PD-L1 Humanized
IgG1

Bladder cancer 2017/2016 30–48% Not reported https://www.accessdata.fda.gov/drugsatfda_docs/label/
2018/761034s010lbl.pdf

Avelumab Bavencio PD-L1 Human IgG1 Merkel cell
carcinoma

2017/2017 4.10% Not reported https://www.accessdata.fda.gov/drugsatfda_docs/label/
2018/761069s002lbl.pdf

Basiliximab Simulect IL-2R Chimeric IgG1 Prevention of
kidney transplant
rejection

1998/1998 1.17% Not reported https://www.accessdata.fda.gov/drugsatfda_docs/label/
2003/basnov010203LB.htm

Belimumab Benlysta BLyS Human IgG1 Systemic lupus
erythematosus

2011/2011 0–4.8% Not reported (74)

Benralizumab Fasenra IL-5R α Humanized
IgG1

Asthma 2018/2017 15.62% Not reported (143)

Bevacizumab Avastin VEGF Humanized
IgG1

Colorectal cancer 2005/2004 0% 0% (144)

Bezlotoxumab Zinplava Clostridium
difficile
enterotoxin
B

Human IgG1 Prevention of
Clostridium difficile
infection recurrence

2017/2016 0% 0% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2016/761046Orig1s000ClinPharmR.pdf

Brodalumab Siliq,
LUMICEF

IL-17R Human IgG2 Plaque psoriasis 2017/2017 2.70% 0% (145)

Burosumab Crysvita FGF23 Human IgG1 X-linked
hypophosphatemia

2018/2018 0% 0% https://www.ultragenyx.com/file.cfm/29/docs/Crysvita_
Full_Prescribing_Information.pdf

Canakinumab Ilaris IL-1β Human IgG1 Muckle-Wells
syndrome

2009/2009 <1% 0% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2016/125319Orig1s085,086,087MedR.pdf

Cemiplimab Libtayo PD-1 Human mAb Cutaneous
squamous cell
carcinoma

2019/2018 1.30% Not reported https://www.accessdata.fda.gov/drugsatfda_docs/label/
2018/761097s000lbl.pdf

Cetuximab Erbitux EGFR Chimeric IgG1 Colorectal cancer 2004/2004 22.36% Not reported (90)

Crizanlizumab Adakveo CD62 (aka
P-selectin)

Humanized
IgG2

Sickle cell disease In review/2019 0–1.6% 0% https://www.accessdata.fda.gov/drugsatfda_docs/label/
2019/761128s000lbl.pdf

Daratumumab Darzalex CD38 Human IgG1 Multiple myeloma 2016/2015 0.70% Not reported https://www.ema.europa.eu/en/documents/variation-
report/darzalex-h-c-4077-ii-0002-epar-assessment-
report-variation_en.pdf
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TABLE 1 | Continued

International non-
proprietary name

Brand name Target Format Indication first
approved or
reviewed

First EU/US
approval year

%ADA %ntADA References

Denosumab Prolia RANK-L Human IgG2 Bone Loss 2010/2010 0% 0% (146)

Dinutuximab Unituxin GD2 Chimeric IgG1 Neuroblastoma 2015/2015 28% Not reported (147)

Durvalumab IMFINZI PD-L1 Human IgG1 Bladder cancer 2018/2017 2.90% Not reported https://www.accessdata.fda.gov/drugsatfda_docs/label/
2018/761069s002lbl.pdf

Eculizumab Soliris C5 Humanized
IgG2/4

Paroxysmal
nocturnal
hemoglobinuria

2007/2007 0% 0% (148)

Elotuzumab Empliciti SLAMF7 Humanized
IgG1

Multiple myeloma 2016/2015 33.30% Not reported (149)

Emapalumab,
emapalumab-lzsg

Gamifant IFNg Human IgG1 Primary
hemophagocytic
lymphohistiocytosis

In review/2018 5% 1.60% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2018/761107Orig1s000MultidisciplineR.pdf

Erenumab Aimovig CGRP
receptor

Human IgG2 Migraine prevention 2018/2018 8.90% 0% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2018/761077Orig1s000SumR.pdf

Evolocumab Repatha PCSK9 Human IgG2 High cholesterol 2015/2015 0.16% 0% (150)

Evolocumab Dupixent IL-4R α Human IgG4 Atopic dermatitis 2017/2017 2–6% 4–9% https://www.accessdata.fda.gov/drugsatfda_docs/label/
2018/761055s007lbl.pdf

Fremanezumab Ajovy CGRP Humanized
IgG2

Migraine prevention 2019/2018 0.4–1.6% 0.06–0.9% https://www.accessdata.fda.gov/drugsatfda_docs/label/
2018/761089s000lbl.pdf

Galcanezumab Emgality CGRP Humanized
IgG4

Migraine prevention 2018/2018 12.50% Most ADA were ntADA https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2018/761063Orig1s000ClinPharmR.pdf

Golimumab Simponi TNFa Human IgG1 Rheumatoid and
psoriatic arthritis,
ankylosing
spondylitis

2009/2009 31.70% Not reported (151)

Guselkumab TREMFYA IL-23 p19 Human IgG1 Plaque psoriasis 2017/2017 5.50% 0.40% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2017/761061Orig1s000MultidisciplineR.pdf

Ibalizumab,
ibalizumab-uiyk

Trogarzo CD4 Humanized
IgG4

HIV infection 2019/2018 0.83% 0.83% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2018/761065Orig1s000ClinPharmR.pdf

Infliximab Remicade TNF Chimeric IgG1 Crohn’s disease 1999/1998 66.70% Not reported (139, 152)

Ipilimumab Yervoy CTLA-4 Human IgG1 Metastatic
melanoma

2011/2011 26%, 1.1–5.4% Not reported, 0% (153), United States Product Information 2018

Ixekizumab Taltz IL-17a Humanized
IgG4

Psoriasis 2016/2016 9% Not reported (154)

Lanadelumab Takhzyro Plasma
kallikrein

Human IgG1 Hereditary
angioedema
attacks

2018/2018 12% Not reported https://www.accessdata.fda.gov/drugsatfda_docs/label/
2018/761090s000lbl.pdf

(Continued)

Frontiers
in

Im
m

unology
|w

w
w

.frontiersin.org
4

A
ugust2020

|Volum
e

11
|A

rticle
1951

https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761069s002lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761069s002lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/761107Orig1s000MultidisciplineR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/761107Orig1s000MultidisciplineR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/761077Orig1s000SumR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/761077Orig1s000SumR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761055s007lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761055s007lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761089s000lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761089s000lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/761063Orig1s000ClinPharmR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/761063Orig1s000ClinPharmR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/761061Orig1s000MultidisciplineR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/761061Orig1s000MultidisciplineR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/761065Orig1s000ClinPharmR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/761065Orig1s000ClinPharmR.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761090s000lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761090s000lbl.pdf
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fim
m

u-11-01951
A

ugust16,2020
Tim

e:14:14
#

5

Vaism
an-M

entesh
etal.

Im
m

unogenicity
M

echanism
s

ofM
onoclonalA

ntibodies

TABLE 1 | Continued

International non-
proprietary name

Brand name Target Format Indication first
approved or
reviewed

First EU/US
approval year

%ADA %ntADA References

Mepolizumab Nucala IL-5 Humanized
IgG1

Severe eosinophilic
asthma

2015/2015 3% <1% (155)

Mogamulizumab Poteligeo CCR4 Humanized
IgG1

Mycosis fungoides
or Sézary
syndrome

2018/2018 3.90% 0% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2018/761051Orig1s000MultidisciplineR.pdf

Natalizumab Tysabri a4 integrin Humanized
IgG4

Multiple sclerosis 2006/2004 8–9% Not reported (156)

Necitumumab Portrazza EGFR Human IgG1 Non-small cell lung
cancer

2015/2015 4.10% 1.40% https://www.accessdata.fda.gov/drugsatfda_docs/label/
2015/125547s000lbl.pdf

Nivolumab Opdivo PD1 Human IgG4 Melanoma,
non-small cell lung
cancer

2015/2014 12.7%, 4.1–37.8% 0.8%, 0–4.6% (157) https://www.accessdata.fda.gov/drugsatfda_docs/
label/2019/125554s070lbl.pdf

Obiltoxaximab Anthim B. anthracis
PA

Chimeric IgG1 Prevention of
inhalational anthrax

In review/2016 0% 0% (158)

Obinutuzumab Gazyva,
Gazyvaro

CD20 Humanized
IgG1

Chronic
lymphocytic
leukemia

2014/2013 7% Not reported https://www.accessdata.fda.gov/drugsatfda_docs/label/
2017/125486s017s018lbl.pdf

Ocrelizumab OCREVUS CD20 Humanized
IgG1

Multiple sclerosis 2018/2017 0.9%, 0.2–0.5% 0.15%, 0–0.2% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2017/761053Orig1s000ClinPharmR.pdf, (159)

Ofatumumab Arzerra CD20 Human IgG1 Chronic
lymphocytic
leukemia

2010/2009 <1% Not reported https://www.accessdata.fda.gov/drugsatfda_docs/label/
2016/125326s062lbl.pdf

Olaratumab Lartruvo PDGFRα Human IgG1 Soft tissue sarcoma 2016/2016 3.50% 3.50% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2016/761038Orig1s000MultiDisciplineR.pdf

Omalizumab Xolair IgE Humanized
IgG1

Asthma 2005/2003 0% 0% (160)

Palivizumab Synagis RSV Humanized
IgG1

Prevention of
respiratory syncytial
virus infection

1999/1998 1.80% 0% (161)

Panitumumab Vectibix EGFR Human IgG2 Colorectal cancer 2007/2006 4.60% 1.60% https://www.accessdata.fda.gov/drugsatfda_docs/label/
2009/125147s080lbl.pdf

Pembrolizumab Keytruda PD1 Humanized
IgG4

Melanoma 2015/2014 1.80% 0.50% (162)

Pertuzumab Perjeta HER2 humanized
IgG1

Breast Cancer 2013/2012 0.60% Not reported (163)
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TABLE 1 | Continued

International non-
proprietary name

Brand name Target Format Indication first
approved or
reviewed

First EU/US
approval year

%ADA %ntADA References

Ramucirumab Cyramza VEGFR2 Human IgG1 Gastric cancer 2014/2014 3.80% 0.18% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2014/125477Orig1s000MedR.pdf

Ravulizumab
(ALXN1210)

Ultomiris C5 Humanized
IgG2/4

Paroxysmal
nocturnal
hemoglobinuria

2019/2018 >0.5% 0% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2018/761108Orig1s000MultidisciplineR.pdf

Raxibacumab (Pending) B. anthracis
PA

Human IgG1 Anthrax infection NA/2012 0% 0% https://www.accessdata.fda.gov/drugsatfda_docs/label/
2012/125349s000lbl.pdf

Reslizumab Cinqaero,
Cinqair

IL-5 Humanized
IgG4

Asthma 2016/2016 4.8–5.4%, 5% Not reported, 0% (164, 165)

Risankizumab Skyrizi IL-23 p19 Humanized
IgG1

Plaque psoriasis 2019/2019 24% 14% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2019/761105Orig1s000MultidisciplineR.pdf

Rituximab MabThera,
Rituxan

CD20 Chimeric IgG1 Non-Hodgkin
lymphoma

1998/1997 26–37%, 12.5% Not reported (73, 144)

Romosozumab Evenity Sclerostin Humanized
IgG2

Osteoporosis in
postmenopausal
women at
increased risk of
fracture

NA/2019 18.10% 4.60% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2019/761062Orig1s000MultidisciplineR.pdf

Sarilumab Kevzara IL-6R Human IgG1 Rheumatoid
arthritis

2017/2017 14–19.3% 1.8–3.3% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2017/761037Orig1s000ChemR.pdf

Secukinumab Cosentyx IL-17a Human IgG1 Psoriasis 2015/2015 0.41% 0.20% (166)

Siltuximab Sylvant IL-6 Chimeric IgG1 Castleman disease 2014/2014 0.20% 0% (167)

Tildrakizumab Ilumya IL-23 p19 Humanized
IgG1

Plaque psoriasis 2018/2018 6.8–8.8%, 4.1–8.2% 2.7–3.34%, 0.6–3.2% https://www.accessdata.fda.gov/drugsatfda_docs/nda/
2018/761067Orig1s000MultdisciplineR.pdf, (168)

Tocilizumab RoActemra,
Actemra

IL-6R Humanized
IgG1

Rheumatoid
arthritis

2009/2010 5 Not reported (169)

Trastuzumab Herceptin HER2 Humanized
IgG1

Breast cancer 2000/1998 16.30% Not reported (144)

Ustekinumab Stelara IL-12/23 Human IgG1 Psoriasis 2009/2009 6.50% Not reported (170)

Vedolizumab Entyvio α4β7
integrin

humanized
IgG1

Ulcerative colitis,
Crohn’s disease

2014/2014 17% Not reported (171)
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of the immune responses, including in the formation of ADAs
following immunization and administration of mAbs.

Monoclonal antibodies immunogenicity is mainly manifested
in ADA generation (49). The formation of ADAs alters a drug’s
bioavailability and pharmacokinetic and pharmacodynamic
properties, and most often reduces drug efficacy (50, 51). ADAs
have a significant impact on mAb drug safety, as they can
lead to serious adverse immune reactions in the clinic (52).
Patients with ADAs can be stratified by their effect on the clinical
treatment course. Patients are designated as having primary loss
of response (LOR) when the administrated mAb fails to show
any efficacy within several weeks following treatment initiation,
or secondary LOR when patients show significant side effects or
the drug loses effectiveness over time despite an initial therapeutic
response (53–55).

For multiple decades, many studies focused on possible
mechanisms that govern ADA formation, development of
improved assays for ADA detection, and advancement of tools for
immunogenicity and prediction of ADA formation. This review
provides an overview on these topics, underlining the challenges
and potential solutions for this important research field. While
this review focuses on ADA as an important outcome of mAb
immunogenicity, there are other immunogenicity outcomes such
as allergic reactions, cytopenia, and anaphylaxis that are widely
reviewed elsewhere (56).

THE MOLECULAR MECHANISMS THAT
LEAD TO ADA FORMATION

Anti-drug antibodies can be generated by a T-cell dependent or
independent B cell activation pathway. In the T-cell dependent
pathway, mAbs act as antigens and are internalized by antigen
presenting cells (APCs), processed, and presented to T cells via
the cognate interaction between the MHC class II molecules
and T-cell receptor. Depending on the cytokine milieu during
this interaction, several different immune responses can occur
(57). In the T-cell dependent pathway, ADAs are generated
when a T helper cell (Th) differentiates into a Th1 or Th2
phenotype and, following their cognate interactions with B cells,
induces the proliferation of plasma cells (PC) that secrete ADAs.
Previous studies showed that a Th2 response mostly induce
ADA production of the IgG4 isotype, in comparison to the Th1
response, that in the case of anti-factor VIII elicits the generation
of IgG1 and IgG2 ADA (58, 59).

For example, infliximab-specific Th2 cells can be detected
in circulation after infliximab infusion, and these cells were
correlated with the presence of infliximab-specific ADA (60).
Interestingly, this cellular response was observed mostly in
patients with hypersensitivity reactions, rather than in the
LOR group. In another study, T cell epitopes of infliximab
and rituximab were identified by isolating antibody-specific
T cells after repeated rounds of antibody-loaded dendritic
cells (DCs) in co-culture (61). These T cells were specific to
peptides derived from VH and VL and encompassed CDRs
and FRs, reflecting the immunogenicity of the chimeric
part of these antibodies. Importantly, these peptides were

also eluted from antibody-loaded DCs, highlighting the
importance of MHC Class II antigen presentation in the ADA
formation process.

In contrast, for the T cell independent pathway mAbs
with multiple epitopes can crosslink B cell receptors (BCRs)
and stimulate B cells to differentiate into PC to produce
ADAs (62–66). It was previously demonstrated that impurities
and aggregates of the mAbs may increase the number of
adjacent epitopes on the mAb, potentially steering the immune
response toward a T-cell independent pathway by B cell
crosslinking (67–70).

DRUG AND PATIENT CHARACTERISTICS
CONTRIBUTING TO ADA FORMATION

Anti-drug antibodies formation depends on the interplay
between several factors, which can be patient-related or drug-
related. Possible causes for ADA formation are summarized
in Figure 1.

Patient-Related Factors
The study of why and how ADAs are generated is complicated
by the fact that some patients develop ADAs and some, with
the same clinical indication and receiving the same therapeutic
mAb, do not. The extent of immunogenicity thus differs among
patients receiving the same mAb, which could be related to the
immune pathways underlying the pathogenesis of the disease
(71). For example, RA patients have a higher likelihood of
developing ADAs toward a mAb drug than spondyloarthritis
patients (57). When examining a specific disease or immune
target, different mAbs may have a varying effect on the induction
of ADAs. RA patients develop higher ADA levels when treated
with two different mAbs (72). In multiple sclerosis (MS) patients,
treatment with rituximab (chimeric anti-CD20 mAb) generated
an unwanted immune response in up to 37% of patients (73).
On the contrary, belimumab (a fully human anti B-cell activating
factor (BAFF) mAb), which is used to treat systemic lupus
erythematosus (SLE) patients, showed low rates induction ADA
(74). Of note, in autoimmune diseases the hyperactivation of
both the innate and adaptive immune responses may further
complicate the study of mAb immunogenicity (57, 75). On
the other hand, when administering mAbs to cancer patients,
ADA formation often depends on the stage of the cancer. ADA
levels tend to be higher in early stages of the disease than in
later stages (76).

Much of the variability in the propensity of administrated
mAb to induce ADA formation may result from different
immune contexts; Principally, disease status and HLA alleles,
which could promote or inhibit an ADA response. The idea that
ADA formation is often derived from a T-dependent response
has recently led to studies focusing on how ADA formation
correlates with HLA polymorphism in the population. Although
limited by sample size, Benucci et al. showed that patients with
the HLA-DRβ-11, HLA-DQ-03, and HLA-DQ-05 alleles were at
a higher risk to develop ADA responses after treatment with an
anti-TNF mAb (5 different mAbs were included in this study)
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FIGURE 1 | Possible causes of ADA formation. (A) Patient related and (B) drug related.

(77). Another report revealed that a G1m1 allotype in the IgG1
created a protease cleavage site in the CH3 domain of the
antibody Fc and enabled presentation of a CH315−29 peptide
epitope (78). The CH315−29 peptide epitope was tolerated in
patients with a G1m1 allotype. However, donors homozygous for
nG1m1 did not natively display the G1m1 MHC-II peptide and
developed T cell CD4+ responses against antibody therapeutics
containing the G1m1 allotype sequence; these ADA were also
correlated with HLA-DRB1∗07 allele. Some therapeutic mAbs
(including trastuzumab) do not harbor this allotype, which could
partially explain differences in immunogenicity across different
mAb drugs (78, 79). This allotype difference could impact future
development of antibody products, since∼40% of the Caucasian
population is homozygous for nG1m1, and thus may be at a
greater risk for ADA generation (80). In two recent studies, ADA
formation against infliximab and adalimumab was correlated
with the HLADQA1∗05A > G genotype in IBD patients (81,
82). One detailed recent study examined the immune response
to natalizumab, a humanized monoclonal IgG4 antibody to α4
integrins that is used to treat patients with MS, and that induces
ADA formation in ∼6% of the patients. The immune response
was found to be polyclonal and targeted different epitopes of
the natalizumab idiotype, with a single immunodominant T
cell epitope spanning the FR2-CDR2 region of the VL (83).
Generation of a T cell-dependent ADA response is also a
multifactorial process, depending not only on the existence of a
potential MHC-II peptide epitope in the mAb, but also on the
ability of that epitope to be processed, presented and recognized
by T cells. The influence of HLA allotypes on the probability
of ADA responses should be considered during the design of
immunogenicity studies and clinical trials for mAb development.
Conclusions from studies that rely on smaller cohorts might
not have general applicability for ADA predictions if the study

population has substantially different MHC-II gene backgrounds
from a larger treatment population.

Drug-Related Factors
The molecular mechanisms that lead to induction of ADAs
were initially related to the murine origin of the first mAbs,
which were recognized as “non-self ” by the human immune
system. Unfortunately, even the use of complete human antibody
genes has not completely eliminated immunogenicity and the
associated induction of ADA (84). Fully human mAbs contain
new epitopes in the CDRs that can steer the immune response
through an idiotype/anti-idiotype interaction (85, 86). As
discussed above, mAb-derived peptides presented by MHC-II are
necessary for T cell-dependent ADA formation. Efforts to remove
T cell epitopes during mAb engineering are used consistently,
but the high genetic variability of human populations greatly
complicates efforts to remove all MHC-II-binding peptides from
human mAbs (87, 88).

Changes in Fc glycosylation may also affect ADA induction.
The removal of N-linked glycosylation of the Fc was shown
to reduce immunogenicity (89). Fully human mAbs lacking
Fc functions were also shown to be immunogenic and have
direct effects on the ability to recruit macrophages and activate
complement. For example, galactose-α-1,3-galactose, which is a
foreign glycan not found in humans, is present on the antigen-
binding (Fab) portion of the cetuximab VH (a chimeric mAb
used in cancer therapy targeting the EGF receptor). This glycan
was shown to induce ADA formation of the IgE isotype, and was
responsible for anaphylactic reactions in patients (90, 91). On the
other hand, immunogenicity is sometimes linked to impurities in
the formulation process, and not necessarily due to glycosylation
differences. A review of the differences between 18 biosimilars
and mAbs originators concluded that the differences between
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them are mainly in glycosylation patterns, and do not impact
immunogenicity (92).

Other drug related factors that play a role in mAb
immunogenicity are "danger signals" that are released by tissues
undergoing stress, damage or abnormal death. The danger model
was first suggested in 1994, were it was first postulated that
the immune system responds to substances that cause damage,
rather than to those that are simply foreign (93, 94). In the
case of therapeutic antibodies, process related impurities (such
as aggregates and residual DNA or proteins from the mAb
expression system) can influence immunogenicity (95).

The mAb target may also have high importance for the
MOA of ADA formation. We recently found that repeated
administration of infliximab (a TNFα antagonist) results in a
vaccine-like response, where ADA formation is governed by
the extrafollicular T cell-independent immune response (96).
The administration of infliximab blocks TNFα and shifts the
immune response toward the marginal zone (MZ) instead of
the germinal center (GC), as observed in TNFα knockout mice
(97). Another possible explanation is that a strong T cell-
independent immune response in the MZ may be induced by
a drug/ADA/TNFα immunocomplex (IC). As a trimer, TNFα

may form “super complexes” upon engagement with TNFα

antagonistic antibodies (98–100).
Another example of mAb target importance is alemtuzumab,

a mAb specific to the CD52 lymphocyte cell surface glycoprotein.
Alemtuzumab is used to treat MS (101) and induces ADAs
in about 85% of patients, of which around 92% develop
neutralizing ADAs (102). Alemtuzumab’s high frequency of
ADA induction may be related to CD52 expression patterns.
Alemtuzumab targets APCs, which include DCs, monocytes,
and memory B cells, based on their CD52 expression. When
monocytes repopulate, they encounter the circulating mAb that
rapidly presents antigen to the antigen-specific lymphocytes
(103, 104). Memory B cells often exhibit homeostatic expansion
following treatment with alemtuzumab (105), which could
complement ADA generation.

mAb dosage and schedule are other possible factors
influencing ADA formation rates. Increased numbers of
injections and higher mAb doses are associated with higher ADA
risk, although some cases of chronic treatment and higher doses
have lower immunogenicity (92, 106). For example, rituximab, a
chimeric mAb anti-CD20, targets surface antigens on pre-B cells
and B cells before their differentiation into PCs. As rituximab
selectively depletes CD20 positive B cells, it does not affect
mature PCs and does not have a propensity to elicit ADAs (107).

ASSAYS FOR IMMUNOGENICITY
ASSESSMENT AND TOOLS FOR
IMMUNOGENICITY REDUCTION

Pre-clinical Setting
Due to the growing importance of mAb immunogenicity, there
has been a growing need for tools to assess immunogenicity
and reduce the propensity of mAbs to induce ADAs. Great

efforts in tools such as in silico prediction algorithms and
cell based experimental assays are facilitating immunogenicity
assessment, especially during the initial development phases
of the mAb (108).

In silico CD4+ T cell epitope prediction models are often used
to identify potentially immunogenic MHC-II peptide epitopes.
These algorithms are based on the affinity of mAb-derived
peptides to MHC-II (109–111).

With recent advances in proteomics and sequencing, several
MHC-II peptide epitope databases have been constructed
that provide a library of MHC-II binding data to enable
immunogenicity prediction (112). Most algorithms that predict
the immunogenic sequences recognized by T cells are later
confirmed by assessing peptide binding to MHC molecules (88,
113). For example, a strong correlation was found between
in silico evaluation of T cell epitopes from a recombinant Fc
fusion protein, and the immunogenicity rate when administered
to patients in a clinical trial (114). While such predictive
algorithms are common used, they capture only a fraction of
the system’s complexity. Most CD4 + T cell epitope prediction
algorithms are based on binding affinity and stability to MHC-
II molecules (88, 110), but fail to consider other essential factors
in the recognition of T cell epitopes. Among these factors are
protease cleavage sites (115), T cell precursor frequency (116),
and peptide and T cell competition (117).

Experimental tools are also used to make pre-clinical
predictions about mAb immunogenicity risk. These include HLA
binding assays, DC related assays, T cell stimulation assays,
peripheral blood mononuclear cell (PBMC) stimulation assays,
and various animal models (115). HLA binding and DC antigen
presentation assays can evaluate potential T cell epitopes derived
from the mAb, while T cell and PBMC stimulation assays examine
whether a mAb can activate immune cells in vitro and ex vivo in
terms of cell proliferation and cytokine release. For example, T
cell epitopes in the variable regions of infliximab and rituximab
were able to stimulate peripheral blood mononuclear cells
(PBMCs) to secrete a variety of cytokines (61). In another study,
the immunogenicity of secukinumab, an anti- interleukin-17A
mAb used to treat plaque psoriasis, was assessed by examining
T-cell proliferation (118).

Each of these experimental tools has limitations in assessing
and predicting immunogenicity. While considered reliable and
straightforward, most of the experimental assays are labor
intensive and are impractical to implement with a large number
of mAb candidates. These assays are often performed with cells
derived from a naïve population, where the frequency of antigen-
specific cells is relatively low and precludes a clear positive result
due to low signal-to-noise ratios (88).

Other advancements are being made in the development
of mAbs to which patients will be more tolerant. A previous
study identified a set of naturally occurring human regulatory
T cell epitopes (“Tregitopes”), present in the Fc and Fab
domains of IgG, that induce tolerance when co-administered
with other proteins (119). When incubated with PBMCs in vitro,
Tregitopes activated CD4+ T cells and increased expression of
regulatory cytokines, chemokines, and CD25/Foxp3. When were
administered in vivo with protein antigens, Tregitopes inhibited
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FIGURE 2 | Factors that affect ADA detection in immunoassays. The center of
the figure designates the components that could interfere with ADA detection
(i.e., mAb, target, ADA, and secondary antibody). The middle circle
designates the type of interference, while the outer circle provides examples of
such interferences.

T cell proliferation, reduced effector cytokine expression, and
induced antigen-specific adaptive tolerance. Co-administration
of Tregitopes along with mAbs may be a useful tool for
tolerization of mAbs.

Clinical Settings
Early and accurate ADA detection is extremely important
for patients treated with biologics, especially for mAbs (120).
ADA detection is required to provide the clinicians with
sufficient information to monitor treatment and determine
optimal intervention strategies (121). Detection of ADA against
therapeutic mAbs is highly challenging since both the drug
and the analyte are antibodies. Moreover, immunoassays are
prone to biases due to the presence of the drug and immune-
complexes in patients’ serum. Historically, studies of the response
following mAb administration and ADA prevalence have been
inconsistent, partly due to the various assay formats used to
monitor immunogenicity in clinical trials (122). Each available
format has its limitations that can reduce the assay’s utility in
clinical and research settings, and also complicate interpretation
of the data. Some assays have poor dynamic range and may
generate false-negative results because of interfering interactions
with the active drug, or false-positive results due to other
antibodies like rheumatoid factor (123). Figure 2 shows the
competing factors which affect accurate measurement of ADAs.

An ELISA-based bridging assay is one of the most commonly
used assays for ADA screening, where the mAb drug is used to
first capture ADA present in the patient sera, and the latter are
detected by adding additional labeled mAb as a secondary probe.
Bridging ELISA assays are used for ADA detection of a large

variety of mAbs, and some include an acidic step to dissociate
ADA from the mAb. The excess mAb is then captured or
removed, and free ADA can be detected. These assays often have
significantly higher background and suffer from low sensitivity
due to the disassociation of antibodies. Bridging assays can also
result in false-negatives, as they are more likely to “miss” low
affinity IgM ADAs present in early stages of the immune response
(124). Most ELISA-based bridging assays are also sensitive to
the mAbs’ trough levels (levels of circulating mAb at sampling
time). ADA and mAbs tend to form high molecular weight
immune-complexes, making ADA detection more challenging
(125). To overcome this challenge, several drug-tolerant assays
have been developed to measure ADA levels in the presence of
high mAb concentrations (126). Most of these assays also use
an acidic treatment step. Several other techniques have been
reported to evaluate serum ADA levels. These assays include
radio-immunoassays (127), Biotin-drug Extraction with Acid
Dissociation (BEAD) (128), Precipitation and Acid dissociation
(PANDA) (129), Affinity Capture Elution ELISA (ACE) (130),
and Homogenous Mobility Shift Assay (HMSA) (131); these
assays have been reviewed in detail elsewhere (126). While these
assays presumably detect all serum ADA, they primarily provide
qualitative measures to assist healthcare providers deciding
on appropriate patient interventions, and many (if not all)
studies underestimate actual ADA levels. These assays also lack
standardization that could enable comparisons of ADA levels
across health centers. The great diversity in these assays poses
tremendous difficulty in studying ADA levels between different
mAbs, across studies of the same mAb, and across different assays.

In a clinical context, it important both to assess ADA levels
in patient serum, and also to assess the presence of neutralizing
antibodies that interfere with biological and clinical activity of the
mAb. The neutralizing effect of ADAs can be assayed by testing
whether ADAs in serum inhibit binding of the mAb to its target
(132). Several cell-based assays were developed to detect ntADA
in patients’ serum. One of these assays is a functional ADA cell-
based assay that was developed to quantify the activity of TNFα

antagonists. This assay assesses both drug activity and ntADA
levels (133), but correlations between the clinical outcome and
assay results were not thoroughly tested. Another assay developed
for ntADA detection is the reporter gene assay, which is based
on excretion of IL8 by HT29 cells due to TNFα stimulation (77).
When the assay was applied to sera samples with low-level ADA,
it detected ntADA even prior to clinical LOR to the mAb, which
allows the prediction of clinical LOR with high probability.

While these assays are accurate and sensitive, they require
an active cell line, which complicates assay implementation.
We recently reported on a newly developed quantitative bio-
immunoassay for quantifying ADA specific to TNFα antagonists.
The bio-immunoassay was further modified to easily assess the
neutralization capacity of ADA using an in vitro assay (96). This
assay can be readily used in a clinical setting that performs routine
ADA measurements.

Other clinical approaches to reduce immunogenicity
include active interference of the T cell responses to mAbs,
thereby inducing individual tolerance of the immune system
(“tolerization”).
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For example, administration of methotrexate (MTX) with
infliximab reduced ADA formation in RA patients (134). MTX
also reversed high ADA levels in infantile Pompe disease patients
treated with rituximab, when administered alongside bortezomib,
a proteasome activity inhibitor that leads to cell death (135).
Azathioprine is also an immunosuppressive drug that can be
given in combination with infliximab or adalimumab to improve
treatment and reduce immunogenicity and ADA formation
(136–138). However, such non-specific immunosuppressive
approaches have potentially harmful side effects that must be
balanced with the patient’s overall treatment plan.

CONCLUDING REMARKS

Monoclonal antibodies have the potential to treat a wide range
of diseases and disorders, but they can be highly immunogenic
and induce undesirable ADA responses. ADAs can reduce mAb
drug efficacy by altering its bioavailability and/or accelerating
clearance from circulation. While the molecular mechanisms of
ADA generation are not fully understood, it is dependent on both
patient and drug characteristics. While early ADAs were related
to the murine origin of the first mAb therapeutics, ADAs also
occur against fully human mAbs. Indeed, complete humanization
cannot completely abrogate mAb immunogenicity and ADA
formation. The questions of why and how ADA are generated
also depend on variability of the reported immunogenicity rates,
which emphasizes the need for standardized clinical assays

for ADA detection. Understanding the mechanisms of ADA
generation and the major factors that influence immunogenicity
of mAbs will help us design safer mAbs with lower drug rejection
rates. Recent and ongoing efforts to study mAb immunogenicity
at the molecular level is augmenting our understanding of
these mechanisms that lead to ADA formation, which may help
provide new guidelines to improve the safety and efficacy of
mAb therapeutics.
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