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Abstract

affected by the different topologies in the data.

Background: Transcription factors regulate numerous cellular processes by controlling the rate of production of
each gene. The regulatory relations are modeled using transcriptional regulatory networks. Recent studies have
shown that such networks have an underlying hierarchical organization. We consider the problem of discovering the
underlying hierarchy in transcriptional regulatory networks.

Results: We first transform this problem to a mixed integer programming problem. We then use existing tools to
solve the resulting problem. For larger networks this strategy does not work due to rapid increase in running time and
space usage. We use divide and conquer strategy for such networks. We use our method to analyze the
transcriptional regulatory networks of E. coli, H. sapiens and S. cerevisiae.

Conclusions: Our experiments demonstrate that: (i) Our method gives statistically better results than three existing
state of the art methods; (i) Our method is robust against errors in the data and (iii) Our method’s performance is not

Background

Genes are the smallest functional units of an organism.
They carry out vital functions in cells by interacting with
each other and with other molecules. Biological networks
model such interactions among genes. Using biological
networks, researchers are able to take a holistic approach
on the analysis of cellular functions. Such analysis has
shown that biological networks have a number of global
properties. One of these properties is their hierarchi-
cal organization. Hierarchical organization defines a par-
tial ordering of the underlying genes. Recent studies
have shown that directed interactions between transcrip-
tion factors (TFs) in transcriptional regulatory networks
(TRNSs) impose a hierarchy on TRNs [1-5]. Analysis of the
hierarchies of TRNs helps researchers better understand
the flow of controlling signals through the transcription
machinery [1,3]. TFs are special types of proteins that
control the expression of other genes by binding to spe-
cific regions of the DNA [6]. Since each protein is coded
by genes, we will use the terms transcription factor and
gene to refer to TFs throughout this paper. One way to
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model hierarchy in TRNs is to assign levels to the inter-
acting TFs. Figure 1 shows a sample network with its level
assignments. In this paper, we consider the problem of
finding the hierarchical organization of a TRN. The formal
definition of our problem in this paper is as follows:

Problem definition

Let us denote a TRN with G = (N, E). Here, N denotes
the set of TFs and E denotes the set of directed interac-
tions (i.e. edges) between the TFs in N. We refer to each
TF in N as a node. We name the ith node in N as n;. We
represent an edge from the node #; to n; with (n;, ;). Also,
we denote the maximum possible number of levels in G
with M. We denote the hierarchy level assigned to a node
n; with t; where t; is an integer in {1,2,,3,...,M]}. Let
¢ (n;,nj) — {0,1} be a binary function that describes the
key topological relationship between 7; and ;. (We elabo-
rate on the ¢ function below.) We compute a penalty score
pij for each pair of nodes as follows:

& (ni, ny),

0, else

ift; < k
bpij =

Our aim is to find an assignment of hierarchies to the

nodes of N which minimizes ) p;;.
(@)
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Figure 1 Hierarchical decomposition of a sample network with
seven nodes denoted by nq, ny, - - -, n7 to three levels. Directed
edges represent the interactions. Dashed line splits the nodes into
different levels. Each of the seven nodes are assigned one of the three
existing levels.

In this paper, we use two different ¢ functions describ-
ing two key topological properties.

1. Adjacency. We define ¢ (n;, nj) = 1if (n;,n;) € E
and ¢ (n;, nj) = 0 otherwise.

2. Reachability. We define ¢ (n;, ;) = 1 if there exists
a path from #; to nj in G by traversing the edges in E.
We set ¢ (n;, nj) = 0 otherwise.

Depending on the choice of the two ¢ functions, we
name the resulting distance function adjacency distance
or reachability distance respectively. In summary, using
adjacency distance we aim to assign levels such that every
TF is above the others it directly regulates, and below its
every direct regulator. On the other hand, using reachabil-
ity distance, we consider any direct or indirect regulation
relation between two TFs when assigning levels.

There has been attempts to devise methods to reveal the
underlying hierarchies of TRNs. Yu and Gerstein devel-
oped BFS-level method to carry out this task [1]. This
method uses breadth first search to assign hierarchies
to TFs in a network. Although their method works for
most networks, it fails to assign accurate levels for net-
works that contain cycles. Jothi et al. developed vertex
sort method [2]. This method incorporates topological
sort algorithm for addressing the network hierarchy prob-
lem. Vertex sort method does not have any restrictions
on network motifs or cycles. However, rather than a cer-
tain hierarchy, it assigns a range of possible levels for
the TFs. Hartsperger et al. devised an algorithm based
on breadth first search method to solve the problem
[3]. Their solution improves the BFS-level method, and
outputs a hierarchy for every network regardless of its
topological features. However all these algorithms fail to
minimize the number of edges that violate the hierar-
chy. We name such edges as conflicting edges. We will
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elaborate on the quality of results calculated by existing
methods in Section Comparison with existing hierarchical
decomposition methods.

Contributions

In this paper, we develop a novel approach to tackle the
problem of discovering underlying network hierarchy. We
first consider the topology of the network as a set of
constraints. Then, we define two different objective func-
tions using adjacency and reachability penalty functions.
We define the minimization of total penalty as the objec-
tive of the problem. Using the above explanations, we
transform this problem to a mixed integer programming
problem(MIPP) [7]. We solve the resulting problem using
existing MIPP solvers. We name our method Hlerarchical
DEcomposition of regulatory Networks (HIDEN). The
main advantage of HIDEN is it introduces a sound math-
ematical formulation to the network hierarchy problem.
Our formulation can work with any objective function
that is a linear combination of the edges. One drawback
of HIDEN is that it does not scale well to very large net-
works due to the growing size of the MIPP with increasing
number of TFs. In order to address this issue we develop a
divide and conquer approach.

The rest of this article is organized as follows: In
Section Algorithm, we describe the methods we devel-
oped in this paper. In Section Results and discussion,
we discuss the results of HIDEN in detail. Finally, in
Section Conclusion, we briefly conclude the paper.

Method

In this section, we describe the hierarchical decompo-
sition method we developed. Section HIDEN describes
our method. Section Example demonstrates HIDEN on
a simple example. Section Divide and Conquer method
describes divide and conquer method we employ to scale
HIDEN to larger networks.

HIDEN

HIDEN transforms the hierarchical network decomposi-
tion problem to a MIPP [7]. Given a TRN, HIDEN first
constructs a set of linear constraints and a linear optimiza-
tion function that collectively describe the penalty of the
decomposition. Then it uses existing optimizer software
to solve the resulting problem. Next, we will explain how
we formulate the MIPP.

Let us denote the given network that will be decom-
posed with G. Let us denote the nodes (i.e., TFs) of this
network with »1, n, ..., n,, where m is the total num-
ber of nodes of G. HIDEN, allows the user to set a limit
on the maximum number of allowed levels for hierarchi-
cal decomposition. Let us denote this number with M.
Also, let us represent the level assigned to node #; with
ti forall i € {1,2,...,m}, (i.e. Vi, t; € {1,2,3,...,M}).
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We aim to find the level assignment 7" = {¢1,f2, ..., L}
that minimizes the total penalty resulting from this level
assignment. Therefore, the objective of our problem is the
sum of individual penalty scores for each pair of nodes:

minimize Z Dij- (1)
1<ij<m

Next, we set a limit on the number of levels in the hier-
archy. We do this by limiting the variables ¢; as follows:

0<ti<M. ()
We, then, represent each p; as a linear constraint.

Remember that p;; is a binary function in the following
form:

& (nj, nj),

0, else

ift; < L
bij =

We can rewrite this function as follows:
1, ift;<tjand ¢(n;n) =1
pij =

0, else

Let us only consider the cases where ¢ (1, 1) = 1. We
can represent the rest of this function using two linear
inequalities. The following set of constraints represent the
function p;;:

bij € {07 1} (3)
ti—ti—Mxpj>=—-M (4)
i—ti—Mxp;<-—1 (5)

In order to prove that these inequalities model the func-
tion p;; correctly, we need to inspect all possible scenarios:

1. ift; > ¢ andp,j =0, then —1 > ti—ti > —-M-1)
and M x p;; = 0. Therefore both (4) and (5) holds.

2. ift; <tjand p;j = 0, thent; —t; > 0and M x p;; = 0.
Therefore, (4) holds, however, (5) does not hold.

3. ifti>tjandpj =1, then -1 >t —t; > —(M —1)
and M x p; = M. Therefore the expression
tj — t; — M X pjj is smaller than or equal to —M — 1.
This implies that (4) does not hold but (5) holds.

4. ift; <tjandpj = 1,then M —1) > ; — ; > O and
M x p;j = M, therefore both (4) and (5) holds.

Therefore, enforcing the constraints (3), (4) and (5)
implies:

(sz:0<:>ti>tj)/\(pij:1<:>ti§tj) (6)

This corresponds to the latter definition of the func-
tion p;; except the condition of ¢ (n;,n;) = 1. Since we
choose the function ¢ prior to the construction of the
MIPP, we know the value of ¢ (#1;, n;) for every pair (n;, n;).
Therefore, we can manually ensure this property, by only
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considering p; where ¢(n;,n)) = 1 and excluding p;
completely from our calculations where ¢ (n;, ;) = 0.

Based on the constraints above, the MIPP we construct
to solve the network hierarchy problem is as follows:

minimize Z Pij
ij s.t. ¢p(njnj)=1

where
Vn;
0<ti<M
t; is an integer
Vn;, njsuch that ¢ (n;, nj) =1
pij € {0,1}

ti—ti—MXp; >

\
<

Li—ti—Mxp; <-—1

Example
In this section, we show the application of HIDEN on
the network in Figure 1. We will use adjacency penalty
function in this example. Therefore:
1 ifan edge from #; to n; exists
¢ (ni, nj) =

0 otherwise

Using this ¢ function, the objective of the MIPP is to
minimize the following function:

Z Pij = P12+P13 P15+ P2atPss5+P36+Pe7+P73
ij s.t. ¢ (njmj)=l

Now we go over to the constraints. First set of con-
straints limit #;:

Vn;,ifrom1to7
0<t<M
t; is an integer
Then, we write the remaining functions as follows:
V(ni, nj) € {(m, n2), (m, n3), (n1, ns), (n2, na),
(n3, ns5), (13, n6), (16, n7), (n7, n3)}
pij € {0,1}
ti—ti—MXx pj>=—-M
t—ti—Mxpj;<-—1

In the resulting problem, M is left as a user defined
parameter. When we run the above problem with M = 4,
HIDEN returns the following result:
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P12+ p13 + pi15s + poa + p3s + p3s +pe7 +p73 =1
(t1, t2, t3, ta, ts5, te, t7) = (4,3,3,2,2,2,1)

Figure 2 shows the result of HIDEN on the given net-
work. Note that HIDEN computes the level decomposi-
tion successfully despite the existence of a cycle in the
network.

Divide and Conquer method

HIDEN works well for networks that have up to 100
nodes. For larger networks, however, it becomes difficult
to solve the resulting MIPP using current hardware. This
is mainly because the number of integer variables of the
MIPP that describe the problem for the given network
increases. This increases the memory consumption and
the running time significantly.

In order to solve our problem for networks that have
more than 100 nodes we adopt a divide and conquer
approach. Given a large TRN, we randomly divide this
network into fixed size partitions. We do this by first ran-
domly selecting a node from the given network. This node
is the seed of the first partition, and thus it is a member of
that partition. We then chose the remaining nodes in that
partition iteratively by randomly growing the partition
one node at a time. More specifically, at each iteration, we
randomly select a node that is not selected so far and that
is interacting with at least one of the nodes in the parti-
tion. We repeat these iterations until the number of nodes
in the partition reaches to a predefined threshold or all the
nodes in the TRN are assigned to a partition. Then, we
use HIDEN to decompose the subnetwork defined by the
nodes and the edges in this partition into hierarchical lev-
els. Once we determine the levels of all the nodes in the

level 4

level 3

level 2

level 1
Figure 2 Result of the hierarchical decomposition of the
network in Figure 1 using HIDEN. Note that the decomposition
differs from the decomposition in Figure 1.
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current partition, we store those values as they will remain
unchanged in the rest of our solution. Next we randomly
pick another node from the given TRN among those that
have not been considered yet as the seed of the next parti-
tion. We grow the next partition similarly and use HIDEN
to decompose it into hierarchical levels. We repeat these
steps until we exhaust all the nodes in the given TRN.

This method greatly reduces the running time of
HIDEN on large networks. Since MIPP is NP-hard,
depending on the size and the connectivity of the given
TRN, the divide and conquer strategy can be orders of
magnitude faster than the unpartitioned HIDEN. How-
ever, due to random selection of the nodes, it is possible
for us to not achieve the optimal result. This is possi-
ble if the partition of the network we start with does not
intersect with one or more of the levels in its underlying
hierarchy. It is worth mentioning that this probability is
usually very low. We can explain this as follows. Consider
an N node network which contains n nodes belonging
to a specific level x. If we select k nodes among these N
nodes randomly, the probability that none of the k nodes
belong to level x is (N-n choose k)/(N choose k). As k
or n increases, this expression quickly converges to zero.
In order to reduce this probability further, we repeat the
divide and conquer strategy multiple times, each time
starting from a randomly selected node. In our implemen-
tation, we repeat this process 1000 times for real TRNS.
After 1000 iterations, the probability of all the trials start-
ing with an undesired (i.e. does not intersect with all
the final levels) partition becomes very small (i.e. if for 1
iteration, the probability is as high as 0.9, after 1000 iter-
ations, the probability becomes 0.910 ~ 107%), Since
the running time of partitioned HIDEN is orders of mag-
nitude less than that of the unpartitioned HIDEN, 1000
repetitions remains to be practical. It took less than 10
minutes for the largest dataset (S. cerevisiae). Our experi-
ments showed that on the average, the results of the divide
and conquer method reach its optimum in less than 500
iterations.

Results and discussion

In this section, we evaluate HIDEN using a number of
computational tests. In our tests, we let the underlying
MIPP solver to handle the case of multiple optimal results.
We only consider the unique result reported by the solver
in our discussions. In the rest of this paper, we will use
the term experiment to refer to in silico experiments for
simplicity.

DATASET In our experiments, we used TRNs of E.
coli, H. sapiens and S. cerevisiae. We used the previously
constructed networks, used by existing methods to test
our method [1-3,5]. Earlier studies used existing interac-
tion data to construct these three networks [8-17]. For
the experiments that require gene function information,
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we used the information included in the Gene Ontology
Database [18]. We downloaded the list of essential genes
for S. cerevisiae from the database of essential genes [19].

In the rest of this section, we first compare HIDEN
with other existing hierarchical decomposition methods
in Section Comparison with existing hierarchical decom-
position methods. In Section Biological evaluation of
network hierarchies we evaluate the results our method
using a number of biological properties of TFs. Finally in
Section Effects of input on HIDEN, we analyze the behav-
ior of our algorithm with respect to different quantitative
properties of the data.

Comparison with existing hierarchical decomposition
methods

The objective of hierarchical decomposition is to arrange
the TFs of a given network to levels so that the gene that
alter the activity of the other appears at a higher level than
the other throughout the network as frequently as possi-
ble. The two ¢ functions described at the beginning of this
paper model this relationship in terms of the adjacency
and the reachability of the nodes in the given network.
In this experiment we evaluate how well our method,
HIDEN, compares against three state of the art meth-
ods, namely vertex sort [2], HINO [3] and BFS-level [1], in
achieving this objective. To perform this comparison, we
compute the penalty values obtained by HIDEN when it
is applied on S. cerevisiae, E. coli and H. sapiens networks.
We compute the same penalty values for the vertex sort,
HiNO and BFS-level methods on the same three datasets
for which their hierarchical decompositions are available.

The penalty is a quantitative value that can be used to
compare different methods on the same dataset. How-
ever, since the size (number of genes and interactions) and
the topology of these networks deviate significantly, the
resulting penalties will differ significantly across datasets.
In order to report a statistically sound value that describes
the success of a method independent of the network
size and topology, we also compute the Z-scores of the
resulting penalty values.

Let us denote the level assignment obtained by a specific
method for an m node network with T = {t1,t2,- - , tju}.
Let y denote the penalty of T according to a specific ¢
function. In order to compute the Z-score for T, we ran-
domly produce many level assignments using the same
level distribution as that of 7. For each such assignment,
we compute the resulting penalty value using the same ¢
function. Let i and o denote the mean and standard devi-
ation of the resulting penalty values of all these random
level assignments respectively. We calculate the Z-score as
follows,

H—=Y
o

(7)

z =
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A higher Z-score implies a better level assignment. Typ-
ically, a Z-score of four or higher is very significant as
they indicate a result which is 4 or more standard devi-
ations more extreme than the mean Table 1 summarizes
the penalties and the corresponding Z-score values. For
HIDEN, we reported the results for each of the six val-
ues of maximum number of levels (M = {3,4,--- , 8}). For
other methods the number of levels is not a configurable
parameter. Hence, we reported the level that we obtained
after execution of that method. We discuss the results for
each organism next.

S. cerevisiae

We compared HIDEN with all the three competing meth-
ods for this dataset. Our method outperformed all the
three methods in terms of both adjacency and reacha-
bility penalty values as well as the Z-scores regardless of
the number of levels. As the number of levels allowed
increases, the penalty incurred by HIDEN monotonically
decreases. This, however, is not true for the Z-score as
it depends on the distribution of nodes to levels. For
instance HIDEN attains the highest Z-score for adjacency
penalty at level eight whereas it attains that using only
six levels for the reachability penalty. The biggest drop
of penalty takes place when the number of allowed lev-
els increases from three to four. We observe further, yet,
smaller improvement in the penalty as the number of
allowed levels increases beyond four.

Among the competing methods, the vertex sort method
of Jothi et al. incurs the lowest penalty. It, however, uses
significantly more levels than the HiNO and BFS-level
methods. Furthermore, although it uses more levels than
HIDEN as well, it performs worse than HIDEN in terms of
both penalty and Z-score measures. Among the remaining
two methods, HiNO and BFS-level, there is no clear win-
ner. BFS-level leads to slightly less penalty at the expense
of an additional level. As a result, HINO produces slightly
better Z-scores.

E. coli

For this dataset, we compared HIDEN with all three exist-
ing methods. The penalty values of all the methods for
E.coli are smaller compared to those of S. cerevisiae. This
is mainly because E. coli network is much smaller. HIDEN
performs the best among all methods for four or more lev-
els according to both penalty and Z-score values. We did
not observe any improvement for HIDEN beyond seven
levels. Vertex sort attains statistically better results than
HiNO and BFS-level methods.

H. sapiens

We compared HIDEN with vertex sort and BFS-level
methods for this dataset. We omitted HiNO in this exper-
iment because we could not run it on this dataset. The
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Table 1 Comparison of HIDEN with three other methods on different networks
Organism Method Num. Adjacency Reachability
Level Penalty Z-score Penalty Z-score
3 140 10.8 3600 139
4 103 10.8 3027 14.6
5 88 9.5 2774 14.1
HIDEN
6 91 10.2 2573 134
Yeast 7 79 9.8 2469 12.8
8 79 11.6 2365 13.7
vertex sort 9 179 7.3 3920 10.2
BFS-level 4 245 6.0 5734 99
HINO 3 279 6.8 6205 105
3 15 6.3 19 7.1
4 8 6.5 10 6.8
5 5 64 7 6.7
HIDEN
6 5 6.2 6 6.6
E. coli
7 5 6.2 5 6.6
8 5 6.2 5 6.6
vertex sort 6 10 57 M 6.5
BFS-level 4 44 3.7 65 5.1
HINO 4 41 4.2 59 53
3 101 74 1950 94
4 84 74 1608 10.6
5 75 79 1435 10.8
HIDEN
Human 6 66 79 1347 10.2
7 72 75 1287 9.7
8 72 73 1248 99
vertex sort 5 207 1.2 2162 58
BFS-level 3 210 0.72 2163 6.0

2For HIDEN we vary the maximum allowable level from three to eight. We report the adjacency and reachability penalties as well as the Z-scores for these penalties for
each experiment. “Num. Level” denotes the maximum number of allowed levels. The results for HINO on human are omitted, because of problems in execution.

results follow a similar pattern as those of the two other
datasets. HIDEN outperformed vertex sort and BFS-level
even when it used fewer levels. The gap between the
Z-scores of HIDEN and the other methods was even
more significant than the previous datasets. HIDEN led
to the highest drop of penalty of from three to four lev-
els and continued to improve with increased number of
levels.

We conclude that, HIDEN performs significantly bet-
ter than the competing methods for all the three major
datasets.

Biological evaluation of network hierarchies

In this section, we analyze HIDEN using biological evi-
dence. First, we check functional properties of genes
across different levels. Then, we evaluate the locations of
essential genes in the hierarchy.

Functions of genes

TRNs regulate the expression of genes that take part in
many processes in an organism [13]. Earlier works suggest
that the concentration of genes participating in certain
functions are closely related to the level in the hierar-
chy [1]. However, majority of cellular functions in the cell
take place through multiple reactions happening in suc-
cession. Therefore, we expect a uniform distribution of
functions among different levels. In order to confirm this
theory, we calculated the functional enrichment score of
every single level in the hierarchies we discovered. We first
decomposed each of the H. sapiens, E. coli and S. cere-
visiae TRNs to each of the three to eight levels. Then,
for the resulting 18 combinations (i.e., 3 organisms and
6 levels), we calculated a p-value for each gene ontology
term and level pair. We obtain the gene ontology terms
from the Gene Ontology database [18]. We calculate these
p-values assuming a hypergeometric distribution of the
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Figure 3 The p-values for the observed number of genes
annotated with the wound healing process at each level for the
H. sapiens TRN. The network is divided into six levels using HIDEN
with reachability as penalty scheme.

gene ontology term over all the TFs in the network. We
observed that the p-values were similar at all levels of
the hierarchy (see Figure 3). This supports our initial the-
ory that majority of the functions the TFs in our network
participate are not enriched at any level. One example
among many is the wound healing function in human net-
work [20]. However, in rare instances, we observed some
functions being moderately enriched in some levels. For
example, third of the eighth level (the third level when we
decompose the network into eight levels) of human TRN
is enriched with the signal transduction function. How-
ever, we could not detect any other levels in any other
network enriched with this function.

Each gene in an organism takes part in at least one
metabolic function. A gene participating in a large num-
ber of reactions is a common phenomena in many organ-
isms. In this experiment, we compare the level of each
gene with the number of functions they participate in. By
doing so, we aim to discover any existing relation between
the two. In order to do this, we use the gene ontology
database [18]. The participation of a gene in a reaction
is represented using gene ontology annotations in the lit-
erature. For each gene in our networks, we first count
the number of gene ontology terms it is annotated with.
We also decomposed each network into six layers using
HIDEN. Then, we visualized the networks using hierar-
chy information as location and functional information as
color of each node. Figures 4, 5 and 6 show our results.
Our results suggest that there is no strong correlation
between the number of functions of each gene and the
level of the gene in the hierarchy. However, in all three
organisms, we observed that the genes with the highest
number of annotations tend to lie at the middle levels (i.e.
2,3 or 4). This result indicates that regulatory hubs in the
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Figure 4 lllustration of the distribution of the number of
functions that each gene participates in for the TRN of H.
sapiens. Each circle represents a TF. The network is divided into six
levels using the reachability as the penalty function and placed in
relevant levels. The horizontal lines separate the TFs to different levels.
The genes are colored according to the number of Gene ontology
terms they are annotated with in gray scale. The least number of
functions is assigned the color black, where the largest number of
functions is assigned the color white.

TRNs are not at the top levels. They are rather at the
middle levels of the hierarchy.

Gene Essentiality

The genes which an organism cannot survive without are
called essential genes [19]. Such genes take part in vital
functions in the cell. Earlier works proposed that the num-
ber of essential genes is strongly correlated to its location
in the hierarchy [2]. In this experiment, we aim to find out
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Figure 5 lllustration of the distribution of the number of
functions that each gene participates in for the TRN of S.
cerevisiae. Each circle represents a TF. The network is divided into six
levels using the reachability as the penalty function and placed in
relevant levels. The horizontal lines separate the TFs to different levels.
The genes are colored according to the number of Gene ontology
terms they are annotated with in gray scale. The least number of
functions is assigned the color black, where the largest number of
functions is assigned the color white.
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Figure 6 lllustration of the distribution of the number of
functions that each gene participates in for the TRN of E. coli.
Each circle represents a TF. The network is divided into six levels using
the reachability as the penalty function and placed in relevant levels.
The horizontal lines separate the TFs to different levels. The genes are
colored according to the number of Gene ontology terms they are
annotated with in gray scale. The least number of functions is
assigned the color black, where the largest number of functions is
assigned the color white.

if there exists any such relation. In order to do this, we
count the number of essential genes at each level of hierar-
chy in a five level decomposition of S. cerevisiae TRN. We
then report the ratio of number of essential genes to total
number of genes in a level in the hierarchy. We also cal-
culate P-values for the number of genes observed in each
level to show how significant the observations are. Figure 7
shows our results for this experiment. We observe that
there is a higher density of essential genes at the middle
levels of the hierarchy. We also observe that, the P-values
we calculated show that the level three (of maximum four)
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Figure 7 The ratio of essential genes(solid boxes) and the P-
values(dashed line) for the number of essential genes observed
in S. cerevisiae TRN in each level of the hierarchy. The network is
divided into five different levels using the reachability penalty. The
P-values are calculated based on the hypergeometric distribution.
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is highly enriched in essential genes. This result, com-
bined with the results of the previous experiment support
our theory that regulatory hubs of an organism are often
at the middle levels of the hierarchy, rather than the top
level. Indeed strong correlation between hubs and essen-
tiality has been observed in the literature that supports
our results [21].

Figure 8 shows a subnetwork of the human TRN. The
highlighted TFs are shown to have abnormalities in many
types of cancers. c-Myc is a TF which has a key role
in cell proliferation [22]. Overexpression of ¢-Myc may
result in development of different types of cancers. TP53
is an essential gene which is regulated by c-Myc. The
expression of this gene prevents formation of tumors by
activating DNA repair, inhibiting cell growth and finally
inducing apoptosis [23]. TP53 executes apoptosis by acti-
vating caspases (i.e. CASP8, CASP3) [24]. FLI1 is another
protein regulated indirectly by ¢-Myc. The fusion of pro-
teins EWSRI/FLI1 and EWSRI/ERG due to a mutation
creates a master regulator for the development in Ewing’s
Sarcoma [25,26]. EWSRI1/FLII causes tumor formation by
upregulating genes that are involved in cell proliferation
(i.e. IGFI) and downregulating genes that control apop-
tosis and growth inhibition (i.e. IGFBP3, TGFBR2) [27].
These small scale observations support our previous justi-
fications that regulatory hubs and essential genes are more
likely to be situated in the middle layers of the TRNs.

Effects of input on HIDEN

In this section, we analyze HIDEN by changing the input
of the algorithm. In order to do this, we first change the
number of layers we decompose the network into. Then,
we assume errors and uncertainties in input networks.
Using our results, we explain how reliable our method is
under different conditions. Finally, we discuss the quality
of our results for different subnetworks.

Navigation of genes across levels in varying hierarchies

The location of a gene in the hierarchy depends highly
on the total number of levels. This leads to the follow-
ing important question: How much can we rely on the
relative levels of genes? One key feature of our method
is that it allows the user to specify the number of levels
in the hierarchical decomposition of the given network.
By exploiting this feature, next, we answer this question.
Particularly, we show how the change the number of lev-
els affect the locations of the nodes in the hierarchy. In
order to do this, we first calculate the levels of every node
for S. cerevisiae, E. coli and H. sapiens networks in a six
level hierarchy. We use these calculations to place every
node in their respective positions. We then decompose
the same networks to five levels. We use the result of the
second decomposition to assign colors to each node in the
network. Figure 9 shows the results of this experiment for
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FLI1

for simplicity.

Figure 8 The TRN of H. sapiens with a subnetwork related to cancer highlighted. In this subnetwork, external signals (i.e. Growth factors, other
proteins and molecules) regulate or affect the proteins c-Myc, FLIT and ERG. Many other regulatory connections and transcription factors are omitted

GFBR

S. cerevisiae. Our results demonstrate that for the majority
of the genes, the relative position between different genes
is preserved. In different decompositions, discovering
genes in the same relative positions with respect to other
genes suggest the accuracy of our method for the relevant
genes. However, there exists some genes that violate this
relationship. For example, in Figure 9, nodes YGL013C,
YMR280C and YKL109W are at least two levels away from
where they were earlier. Therefore, we conclude that the
predicted levels of these genes not as reliable as the others.
This approach can be used for evaluating the reliability of
our results. Figures 10 and 11 present similar results for E.
coli and H. sapiens.

Robustness of HIDEN

One weakness of all hierarchical decomposition methods
arises from the nature of the biological network datasets
that they are incomplete and imprecise. As a result, the
actual network topology observed can be slightly dif-
ferent than what is given in existing network databases

[28]. Furthermore, studies demonstrate that the network
topologies can vary due to many other factors such as
external perturbations [29] and varying genetic profiles
and disorders [30] even within the same species. This
raises the question that how much can we rely on a hierar-
chical decomposition if the topology of the given network
is not accurate?

This section evaluates the robustness of HIDEN with
respect to inaccuracies in the given network. In order to
do this, we carry out the following steps. Given a network,
we first find its hierarchical decomposition, denoted by T'.
We then create many mutant networks from this network
for a given mutation percentage using the degree preserv-
ing edge shuffling model [31]. This is the state of the art
network alteration method that preserves the degree dis-
tribution of the network. We elaborate on this method
later in this section. Thus, each mutant network denotes a
potential precise network that is different than the origi-
nal network. Using the topology of each mutated network,
we compute the penalty of the hierarchical decomposition
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Figure 9 lllustration of the navigation of genes across levels for the TRN of S. cerevisiae. Each circle represents a gene. The locations represent
the levels of the genes in a 6-level decomposition, whereas colors of the genes represent their locations in a 5-level decomposition. The color red
represents the bottom level in the hierarchy, green represents the topmost level and the gradient of colors in between is used to color the nodes in

between.

T we found at the first step. Thus, this penalty shows how
bad our results are if our network is inaccurate. We repeat
this for many mutant networks and report the average of
their penalties.

Briefly, we mutate a given network G as follows. Let
(u, v) and (s, t) denote two randomly selected edges from
this network such that (i) # and v are different; s and ¢ are
different, and (ii) the edges (¢, t) and (s, v) do not exist in
G. We remove edges (¢, v) and (s, £) and add edges (i, t)
and (s, v). Let n denote the number of times we repeat this
edge shuftling process. Then the mutation percentage of
the original network is EI x 100% rounded to the nearest
integer.

We conducted the experiments on S. cerevisiae, E. coli
and H. sapiens and on both penalty metrics adjacency
and reachability for different number of levels of hierar-
chy. Figure 12 summarizes the results for S. cerevisiae, E.
coli and H. sapiens using the adjacency and reachability
penalties when three, six or eight levels are allowed.

The most important observation that follows from our
results is that the Z-score remains high even after we
mutate the network by 20%. We observe a slight drop
as the mutation rate increases, yet the results remain
statistically significant. This observation holds for small
(3), medium (6) and large (8) number of allowed hier-
archical levels. This result has two major implications.
First, HIDEN is extremely robust with respect to net-
work mutations. It was able to identify hierarchical struc-
ture using the clues that remain in the topology of
the given network after all mutations take place. Thus,
even if the original network may be imprecise, the
decomposition found by HIDEN will be a true decom-
position with a high probability. Second, the degree
preserving edge shuffling does not affect the decompos-
ability of the network. The fact that even the original
level assignment T yielded statistically significant penal-
ties on the mutant network proves that it is possible to
find another decomposition 7" of the mutant network
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that is statistically at least as significant as (possibly more
significant than) T.

Stability of HIDEN to network mutations

So far, we have observed that HIDEN was able to decom-
pose the networks of the given three organisms success-
fully. This observation along with our last conclusion
from the previous section begs the following question:
Can HIDEN decompose the mutant networks or was
there a bias in topology of these three networks in favor
of HIDEN? In other words, how stable is HIDEN with
respect to alterations in the network topology?

In order to evaluate the stability of HIDEN with
respect to network alterations, we carry out the follow-
ing steps. Given a network G, we create many mutant
networks G’ from G for a given mutation percentage
using the degree preserving edge shuffling. We then use
HIDEN on each such G’ to find a new hierarchical level
assignment 7" specifically for that topology. Thus, this
penalty shows how much the performance of HIDEN

is affected from network alterations. We repeat this for
many mutant networks and report the average of their
results.

Tables 2, 3 summarize the penalties and the correspond-
ing Z-scores for varying mutation percentages as well as
varying maximum number of allowed hierarchical lev-
els with according to adjacency and reachability penalties
respectively. For all the three organisms, we observe sim-
ilar patterns in our experiments. The most important
observation is that HIDEN achieves very high Z-scores
at all mutation rates. Furthermore, these Z-scores are
comparable to those of the original network (i.e., muta-
tion percentage = 0%). The adjacency penalty values are
also comparable to those for the original network. This
coincides with the observation we made in the robust-
ness test in Section Robustness of HIDEN that the degree
preserving edge shuffling does not alter the decompos-
ability of the given network. As the mutation percentage
increases, Z-score and the adjacency penalties do not
show a clear trend to increase or decrease. We, thus, reach
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Figure 11 lllustration of the navigation of genes across levels for the TRN of H. sapiens. Each circle represents a gene. The locations represent
the levels of the genes in a 6-level decomposition, whereas colors of the genes represent their locations in a 5-level decomposition. The color red
represents the bottom level in the hierarchy, green represents the topmost level and the gradient of colors in between is used to color the nodes in

to the conclusion that HIDEN is stable with respect to
network alterations.

Local versus global hierarchy of subnetworks

The entire biological network of an organism can be con-
sidered as a (possibly overlapping) collection of smaller
subnetworks where each subnetwork corresponds to a
coherent functional group. For instance, cell cycle net-
work describes the interactions that take place during the
division and replication of a cell to produce new cells.
Similarly, meiosis network describes a special type of cell
division only observed in reproductive cells. These smaller
subnetworks may follow a hierarchical structure as well
within their local topologies. Clearly, we can use HIDEN
on each of these subnetworks to find their hierarchical
structure by isolating them from the rest of the network
one by one. We call such hierarchical decomposition as
local hierarchy since it only depends on the topology of the
subnetwork. We call the hierarchical decomposition we

obtain for a subnetwork from the entire network’s topol-
ogy as its global hierarchy. In this experiment, we evaluate
how well the global hierarchy of a subnetwork fits to its
local hierarchy.

Let us denote the entire network with G and a subnet-
work of G with G'. Let us denote the level assignments for
the networks G and G’ by HIDEN with T and T” respec-
tively. Let 7 C T be the global hierarchy of G’ induced
from T'. We calculate the adjacency penalty and Z-score of
T and T’ using the topology of G'. Table 4 summarizes the
results for S. cerevisiae for two major subnetworks, namely
cell cycle and meiosis taken from the KEGG database
[32] with different values of maximum number of allowed
levels.

The results demonstrate that the local hierarchy is bet-
ter than the global one. This is not surprising as the
global hierarchy is determined based on the entire net-
work. Thus, the levels are determined with the goal of
optimizing all the interactions in the network. On the
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other hand, local hierarchy is determined only based on
the restrictions asserted by the corresponding subnet-
work. We observe that the gap between the local and the
global hierarchy is small for the cell cycle network. It is,
however, significant for the meiosis network. In order to
understand the factors that contribute to this gap, we per-
formed a detailed analysis of the topology of the entire S.
cerevisiae network as well as these two subnetworks. Cell
cycle contained 54 genes and 108 interactions. Meiosis
was smaller, containing 44 genes and 62 interactions. We
define an interaction from a gene that is not in the subnet-
work to a gene that is in the subnetwork as an incoming
edge. If the interaction points the opposite direction, we
define it as an outgoing edge. We computed the number
of incoming and outgoing edges to each subnetwork. The
number of incoming edges per node was 1.9 and 3.6 for

cell cycle and meiosis respectively. That for the outgoing
edges was 20.6 and 18.8 respectively. This suggests that as
the number of incoming edges increase, the chance that
the global hierarchy deviates from the local one increases.
This is indeed intuitive as the incoming edges influence
the hierarchy much more than the outgoing edges. For the
local hierarchy, we observe that a small number of levels
is sufficient to get a good hierarchical decomposition. For
instance, HIDEN resolved all conflicts for cell cycle in only
five levels. It resolved all but one conflict for meiosis in
four levels.

These results demonstrate that the local and global hier-
archies can deviate significantly depending on the topo-
logical relationship between the subnetwork and the rest
of the network. Thus, detailed analysis of both decom-
positions can yield useful information regarding how the
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Table 2 Stability Experiment for increasing mutation
percentages: The numbers in parenthesis is the average
adjacency penalty
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Table 3 Stability Experiment for increasing mutation
percentages: The numbers in parenthesis is the average
reachability penalty

Mutation [%]

Mutation [%]

Organism Level Organism  Level
5 10 20 40 0 5 10 20 40
3 9.10 11.63 10.17 12.12 10.10 3 12.35 15.21 14.62 15.20 15.31
(118) (137) (127) (127) (130) (3674)  (3600)  (3483)  (3599) 3598
9.31 11.20 11.30 11.37 1091 12.33 14.74 1447 14.73 14.66
Yeast 4 Yeast 4
(99) (117) (103) (114) (104) (3027)  (3026)  (2923)  (3025) (3024)
s 9.26 10.96 10.97 11.62 10.67 s 12.27 14.18 14.29 14.18 14.18
(84) (108) (92) (103) (88) (2754) (2773) (2644) (2772) (2771)
;3 576 498 526 498 534 3 7.73 6.58 6.90 6.58 6.37
(17) (16) (22) (16) (15) @mn (26) @mn (26) 27)
543 4.77 5.67 4.77 557 729 6.16 6.21 6.16 593
E. coli 4 E. coli 4
) (15) (14) (15) (10) (15) (20) (15) (20) (26)
. 5.46 4.72 552 472 534 . 6.95 6.00 6.22 6.00 5.81
©) (15) (12) (15) 8 (14) (20) (am (20) (26)
3 744 9.24 8.66 7.79 9.14 3 8.25 1117 1117 8.66 1117
(101) (105) (95) (106) (107) (1950)  (1951)  (1951)  (1944) (1951)
737 9.09 8.14 822 8.98 8.88 12.02 12.02 1045 12.02
Human 4 Human 4
(84) (90) (83) (92) (92) (1628)  (1613)  (1613)  (1608)  (16.13)
s 7.90 8.83 7.70 8.53 933 s 12.40 11.71 11.71 1045 1171
(75) (93) 81) (73) (86) (1431) (1447) (1447) (14371) (1447)

aThe numbers above them is the corresponding Z-score. Level indicates the
maximum number of allowed levels.

functions of a given subnetwork is depends on the other
genes. HIDEN is capable of revealing such information.

Conclusion

In this paper, we took a novel approach to the prob-
lem of discovering underlying network hierarchy. We first
transformed our problem to a MIPP. Then, we solved
this problem using existing optimizers. We named this
method Hlerarchical DEcomposition of gene regulatory
Networks. However, due to the growing size of the MIPP
with increasing number of genes, we encountered scala-
bility issues. We proposed a divide and conquer approach
to tackle such problems. Later, we experimentally showed
that our algorithm outperformed existing solutions in
terms of minimizing conflicting edges in hierarchy. We
also evaluated our method using biological and statisti-
cal tools. Then, we discussed the relation between the
hierarchy of a gene in a TRN and its location in cell, essen-
tiality and function, based on our experimental results and
biological evidence.

Availability and requirements

The source code for HIDEN can be found in Additional
file 1. The code is written in C++. The code requires
IBM ILOG CPLEX version 12 or higher to compile and
run. Please refer to the documentation of CPLEX for

2The numbers above them is the corresponding Z-score. Level indicates the
maximum number of allowed levels.

platform specific instructions on how to compile and run
applications that use CPLEX libraries. The results of our
code using the penalty schemes described in this paper for
TRNs of E. coli, H. sapiens and S. cerevisiae can be found
in Additional file 2.

Table 4 Comparison of the global hierarchy of
subnetworks to their local hierarchy

Subnetwork ~ Num. Global Local
Level Penalty = Z-score  Penalty  Z-score
3 4 3.2 3 4.2
4 2 33 1 4.0
Cell Cycle 5 2 32 0 37
6 2 3.1 0 37
7 2 3.0 0 3.7
8 2 29 0 3.7
3 8 0.7 2 35
4 6 12 1 3.8
Meiosis 5 6 1.2 1 38
6 5 1.6 1 38
7 5 15 1 3.8
8 5 15 1 3.8

2The experiment is conducted on the two subnetworks of S. cerevisiae, namely
cell cycle and meiosis. “Num. Level” denotes the maximum number of
allowed levels.
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