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Abstract

Objectives

Both aging and hypertension are significant risk factors for heart failure in the elderly. The
purpose of this study was to determine how aging, with and without hypertension, affects
left ventricular function.

Methods

Cross-sectional study of magnetic resonance imaging and ®'P spectroscopy-based mea-
surements of left ventricular structure, global function, strains, pulse wave velocity, high
energy phosphate metabolism in 48 normal subjects and 40 treated hypertensive patients
(though no other cardiovascular disease or diabetes) stratified into 3 age deciles from 50—
79 years.

Results

Normal aging was associated with significant increases in systolic blood pressure, vascular
stiffness, torsion, and impaired diastolic function (all P<0.05). Age-matched hypertension
exacerbated the effects of aging on systolic pressure, and diastolic function. Hypertension
alone, and not aging, was associated with increased left ventricular mass index, reduced
energetic reserve, reduced longitudinal shortening and increased endocardial circumferen-
tial shortening (all P<0.05). Multiple linear regression analysis showed that these unique
hypertensive features were significantly related to systolic blood pressure (P<0.05).

Conclusions

1) Hypertension adds to the age-related changes in systolic blood pressure and diastolic
function; 2) hypertension is uniquely associated with changes in several aspects of left
ventricular structure, function, systolic strains, and energetics; and 3) these uniquely
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hypertensive-associated parameters are related to the level of systolic blood pressure and
so are potentially modifiable.

Introduction

In normal aging there are several well described changes in cardiovascular function. Vascular
stiffness increases from young adulthood [1]. In the left ventricle diastolic function becomes
impaired from middle age onwards, followed by changes in high energy phosphate metabo-
lism, altered torsional strain patterns [2] and ultimately reduced stroke volume [3]. Heart fail-
ure is predominantly a disease of the elderly [4]. In approximately 30% of cases of those
patients with heart failure admitted to hospital in the United Kingdom do not have left ventric-
ular systolic dysfunction on echocardiogram [4], and so will often be diagnosed with heart fail-
ure with preserved ejection fraction (HF pEF). HF pEF shares several features of the normal
aging responses in left ventricular function, illustrating how aging and cardiovascular diseases
and their risk factors are closely linked [5].

How this accumulation of risk factors leads to HF pEF is not fully understood. A history of
hypertension is a particular risk factor for HF pEF [6]. When comparing subjects with HF pEF
and hypertensive heart diseases [7] it has been shown that there are similar levels of vascular
and diastolic function abnormalities between these 2 groups, though what did distinguish
them was the greater extent of left ventricular hypertrophy, and left atrial enlargement and
dysfunction in the HF pEF group.

Whether hypertension increases the normal aging effects on cardiovascular function, and/
or has other effects distinct from the normal aging process are unclear. In the current study we
sought to address the hypothesis that hypertension leads to both exaggerated effects of aging
on the left ventricle and also effects unique to hypertension, in terms of structure, function,
high energy phosphate metabolism, and vascular stiffness. With that in mind, normal controls
and hypertensive subjects (without other cardiovascular diseases or diabetes) were recruited in
3 age brackets by decades from the sixth to eighth decades.

Materials and methods
Subjects

Forty eight normal subjects were recruited into 3 discrete age bands, with 16 subjects in each
decade of 50-59, 60-69 and 70-79 years (data from these subjects have in part been published
previously, reference [8]). Forty subjects with hypertension were also recruited into these age
categories with 15 between 50-59 years, 15 in 60-69 years and 10 in 70-79 years. Subject
details are presented in Table 1. Normal subjects were defined as those without any cardiovas-
cular diagnosis, diabetes mellitus or dialysis dependent renal failure. Normal subjects had a
systolic blood pressure <150 mmHg and/or diastolic blood pressure <90 mmHg at a screen-
ing visit. Hypertensive subjects were defined as having a diagnosis of hypertension at a local
general practice, though had no other cardiovascular diagnosis, diabetes or dialysis dependent
renal failure. The subjects were screened with a 12-lead electrocardiogram, fasting lipid profile,
and blood pressure measurements. All hypertensive patients were on anti-hypertensives,
which were prescribed from the local General Practioner (GP). There were no significant dif-
ferences in the number of anti-hypertensive agents between the 3 hypertension age groups
(Table 1). The duration of hypertension treatment was similar across age groups. The com-
bined use of angiotension converting enzyme inhibitors and angiotension receptor blocker

PLOS ONE | https://doi.org/10.1371/journal.pone.0177404 May 11,2017 2/16


https://doi.org/10.1371/journal.pone.0177404

@° PLOS | ONE

Effects of aging and hypertension on left ventricular function

Table 1. Normal and hypertension subject details.

Normals Hypertension
Age Group 50-59 60-69 70-79 50-59 60-69 70-79
N 16 16 16 15 15 10
Gender 10/6 7/9 97 5/10 4/11 3/7
(Female/Male)
Height (cm) 172+9 170+10 164+10 172110 169+8 167+10
Weight (kg)tt 76+16 74419 69+14 90+12 86+18 8117
BSA (m?)t 1.8+£0.2 1.840.2 1.740.2 1.9+0.2 1.9+0.2 1.840.2
Heart Rate (bpm) 60+10 56110 61+11 62+15 6318 60+5
Chol (mmol/L)t 4.840.7 4.84+0.6 5.3+1.1 4.8+1.2 4.6£1.0 4.3+1.2
TG (mmol/L)tt 0.8+0.6% 1.0+£0.5 1.1+0.4 1.6+0.7 1.5+0.8 1.3+0.6
HDL (mmol/L)t 1.8+0.6 1.6+0.5 1.6+0.4 1.3+0.3 1.4+0.5 1.6+0.3
LDL (mmol/L)t 2.7+0.8 2.840.5 3.2+0.9 2.8+1.1 2.5+0.8 2.241.0
Duration of HPTN (years) 816 918 9+7
% Thiazide 7 13 36
% ACEi 60 33 45
% ARB 20 33 36
% Alpha 7 7 0
% CCB 20 33 27
%BB 7 13 9
% on 1 med 80 66 54
% on 2 med 20 34 46

BSA: body surface area; Chol: cholesterol; TG: triglycerides; HDL: high density lipoproteins; LDL: low density lipoproteins; HPTN: hypertension; ACE:i:
angiotensin converting enzyme inhibitor; ARB: angiotensin receptor antagonist; alpha: alpha-blocker; CCB: calcium channel blocker; BB: beta-blocker.

1 P<0.05 and

11 P<0.01 normals vs hypertension

1 P =0.06 normals vs hypertension

& P<0.05 vs corresponding hypertensive age group.

https://doi.org/10.1371/journal.pone.0177404.t001

medication was similar across age groups, though there was a higher usage of thiazide diuretics

in older subjects (7% age 50-59 and 36% age 70-79). There were significantly higher levels of
triglycerides, and lower levels of HDL and LDL levels in the hypertensive patients. 60% of the
hypertensive patients were treated with a statin. Informed written consent was obtained for all
patients, and this study was approved by a UK National Health Service Research Ethics Com-
mittee (NRES Committee North East—Newcastle & North Tyneside 1, reference number 12/

NE/0057, and ClinicalTrials.Gov identifier NCT01504828). Subjects were recruited through a
local Newcastle GP practice database and were studied between October 2013 and November
2015.

Cardiac cine imaging

A Philips Achieva 3T scanner and a 6 channel receiver array were employed to acquire cardiac
magnetic resonance imaging (MRI) data. Details of cardiac cine imaging and our algorithm
for contour selection and calculating LV mass and systolic and diastolic parameters have been
previously published [9] (S1 Appendix). The following hemodynamic parameters were
derived: effective arterial elastance, a measure of afterload (Ea = end-systolic pressure (= sys-
tolic blood pressure x 0.9) / stroke volume normalised to body surface area), and end-systolic
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elastance, a measure of left ventricular systolic performance (Ees = end-systolic pressure / end-
systolic volume normalised to body surface area [10]. Ventricular-arterial coupling is derived
by the ratio of Ea/Ees, which is a dimensionless number as both have the same units. Ventricu-
lar-arterial coupling measures the balance between properties of the left ventricle and the arte-
rial circulation, and a decrease in this ratio may suggest that left ventricular properties are a
more dominant abnormality compared to levels of afterload [10].

Assessment of diastolic function from cine images was performed by calculating the ratio of
peak early and late left ventricular filling rates (E/A ratio), and the early filling percentage was
calculated as the volume increase from end-systole to the midpoint divided by the stroke
volume*100 (EFP) (S1 Appendix).

Longitudinal shortening was determined in the four-chamber view by determining the per-
pendicular distance from the plane of the mitral valve to the apex in systole and diastole. The
myocardial wall thickness at systole and diastole was determined at the same level as the car-
diac tagging, and radial thickening was calculated.

Magnetic resonance phase contrast pulse wave velocity

Pulse wave velocity (PWV) is a marker of vascular stiffness and is an important predictor
of cardiovascular events [11]. Phase contrast MRI flow data were acquired at two slice loca-
tions in the descending aorta approximately 10 cm apart, using a high temporal resolution
sequence to measure pulse wave velocity that has been described in detail previously [12,13]
(S1 Appendix).

Cardiac tagging and regional strains

Cardiac tagging works by applying radiofrequency pulses to cancel MR signal from the myo-
cardium in diastole in a rectangular grid pattern and tracking the deformation of these tags
through the rest of the cardiac cycle. Two tagged short axis images were obtained at the same
session as previously described [2,14] (S1 Appendix). The Cardiac Image Modelling package
(University of Auckland) was used to analyse the tagging data by aligning a mesh on the tags
between the endo- and epicardial contours, and is described in detail elsewhere [9]. The
epicardial torsion between the two short axis planes (taken as the circumferential-longitudinal
shear angle defined on the epicardial surface) was calculated (Fig 1). Circumferential strain
was measured at the epicardial, mid and endocardial thirds of the myocardium. The ratio of
the peak torsion (in radians) and the peak circumferential strain in the endocardial third of the
myocardium (%) was derived and is referred to as the torsion to shortening ratio, TSR (radi-
ans) [15,16]. The TSR is a measure of the ability of the subepicardium (as measured by torsion)
to exert a mechanical advantage over the subendocardium (as measured by subendocardial cir-
cumferential shortening). In normal ageing this ratio increases, suggesting that there is systolic
subendocardial dysfunction (Fig 1) [2,15].

Cardiac spectroscopy

Cardiac high-energy phosphate metabolism (phosphocreatine to adenosine triphosphate, PCr/
ATP ratios) was assessed using *>'P magnetic resonance spectroscopy. The PCr/ATP ratio is a
marker of energetic reserve, as phosphocreatine is the source of phosphorous for ATP. A
decrease in this ratio has been associated with an imbalance between oxygen supply and
demand in the myocardium [17] and adverse events in heart failure [18]. Data were collected
using the same 3T Achieva scanner (Philips, Best, NL) with a 10cm diameter *'P surface coil
(Pulseteq, UK) for transmission/reception of signal, and has been described in detail previ-
ously [2,19] (S1 Appendix).
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Healthy Aging

Healthy Young

Normal Young: Ratio C/D = TSR
Normal Aging: Increased TSR: E/F > C/D

Hypertension: Decreased TSR: G/H < E/F
(Due to Shortening H > Shortening F)

Fig 1. Healthy young: lllustration of epicardial torsion and endocardial circumferential shortening
used in the calculation of the torsion to shortening ratio (TSR) and relationship to subepicardial and
subendocardial fiber orientations. Epicardium is red and endocardium blue. A. Obliquely oriented
subepicardial fibers produce rotation of the apex with respect to the base (B.) in a counterclockwise direction
when looking from the apex to base, which is quantified in terms of the circumferential-longitudinal shear
angle (C.). Epicardial torsion acts on the subendocardium with its greater mechanical advantage due to its
larger radius, forcing subendocardial fiber bundles to shorten in a direction at almost 90° away from the
subendocardial fiber direction (in the circumferential plane) (D.). This subepicardial to subendocardial
interaction is quantified as the torsion to shortening ratio (TSR), and an increase in the TSR suggests reduced
subepicardial influence over the subendocardium. Healthy aging: Rotational angle E and torsional angle F
are increased compared to healthy young, there is no change in endocardial circumferential shortening and
so the TSR is increased indicating reduced interactions between subepicardium and subendocardium.
Hypertension: Rotational and torsional angles are unchanged compared to healthy young (angle G), though
there is increased endocardial circumferential shortening (thick blue arrows, shortening H) indicating
increased interaction between the subepicardium and subendocardium and therefore TSR is decreased.

https://doi.org/10.1371/journal.pone.0177404.9001

Data and statistical analysis

To compare the effects of hypertension and aging, 2-way analysis of variance was used with
hypertension and age groups as the two factors (each factor being a categorical variable).
Additional analysis also examined the effects of gender. No interaction effects were seen
between the factors, so only hypertension and age effects are reported. Post hoc testing

was performed with the Scheffé test. Multiple linear regression analysis was used to deter-
mine predictors of variables associated with hypertension. Differences in proportions were
tested with the Chi Squared test. All statistics were performed using SPSS (version 22).
Data are presented as mean + standard deviation, and P<0.05 was considered statistically
significant.
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Results

Systolic blood pressure, vascular stiffness and ventricular-arterial
coupling (Table 2)

There were significant increases in systolic blood pressure and Ees with age with additional
effects of hypertension (Table 2). PWV and Ea increased with age but not with hypertension.
Ea/Ees was reduced in the hypertension group, reflecting primarily as a consequence of the
higher levels of Ees. This suggests that left ventricular systolic properties are the more domi-
nant abnormality in this group of patients with treated hypertension compared to vascular
abnormalities.

Diastolic function (Table 2)

Diastolic function, as determined by the E/A ratio and EFP, was impaired with aging (i.e.,
reduced values with aging). While hypertension did not have an additional (independent)
effect on the E/A ratio, it further reduced EFP.

Left ventricular structure, function, and energetics (Table 3)

Left ventricular mass index, and ejection fraction were increased and PCr/ATP reduced with
hypertension only, without effects of aging. End-diastolic volume index and stroke volume
index were borderline reduced with age without any additional effect of hypertension. There
was a borderline reduction in end-systolic volume index in hypertension.

Strains and torsion (Table 3 and Fig 1)

With hypertension there was a significant redistribution of systolic strains. Epicardial circum-
ferential shortening decreased, while endocardial circumferential shortening increased. Mid-
wall circumferential shortening was not significantly changed by age or hypertension (S1

Table 2. Pressures, vascular stiffness measures, afterload, and diastolic function in normal and hypertensive patients by age group.

Normals Hypertension
Age Group 50-59 60-69 70-79 50-59 60-69 70-79
Pressure, Vascular Stiffness and VA Coupling
Systolic BP (mmHg)**/11 12318 127+15°% 135+11 139110 144+11 151112
Diastolic BP (mmHg) 69+10 6717 72+9 7310 726 727
PWV (m/s)* 6.1+1.6 7.3+2.4 8.3+1.7 6.5+2.1 7.9+2.8 7.5+4.0
Ea (mmHg/mL)** 2.6+0.7 2.8+0.9 3.3+1.2 2.8+0.8 3.2+0.5 3.8+1.3
Ees (mmHg/mL)*/11 6.2+2.7 6.2+2.7 7.8+2.8 7.3+2.0 8.1+2.1 9.9+2.7
Ea/Ees t 0.46+0.09 0.49+0.13 0.48+0.20 0.38+0.09 0.41+0.14 0.39+0.13
Diastolic Function

E/A** 1.9+0.9 1.5+0.7 0.9+0.2 1.8+0.8 1.4+0.4 1.3+0.8
EFP (%)**/t1 72110 6946 2 6117 6818 5816 60+11

BP: blood pressure; PWV: pulse wave velocity, Ea: arterial elastance, Ees: end-systolic elastance; Ea/Ees: Ventriculo-arterial coupling; E/A ratio of early to
late peak filling rates, EFP: early filling percentage.

* P<0.05 and

** P<0.01 for age effect

1 P<0.05 and

11 P<0.01 normals vs hypertension

@ P<0.05 vs corresponding hypertensive age group.

https://doi.org/10.1371/journal.pone.0177404.t1002
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Dataset). Additionally, longitudinal shortening was reduced in the hypertension group. With
aging, there was an increase in torsion. As endocardial circumferential shortening was
unchanged with normal aging, the TSR was increased with aging, indicating reduced ability of
the subepicardium to affect subendocardial shortening as previously described [2,15]. How-
ever, the opposite effect was seen in hypertension. As endocardial circumferential shortening
was increased, and torsion unchanged, TSR decreased. This suggests enhanced subendocardial
function with increased interactions between the subepicardium and subendocardium in
hypertension. Radial thickening was not significantly different with either age or hypertension.

Effects of gender

Females had significantly lower left ventricular mass index (62.3 + 10.6 vs 77.4 + 14.8 g/m?,
P<0.01), and higher ejection fraction (66 + 6 vs 69 + 6, P<0.05). All circumferential strains
(whole, epicardial, midwall and endocardial) were elevated in females (e.g., whole wall:
19.5+2.3vs 17.8 + 3.5%, P<0.01).

Predictors of hypertension-related effects on left ventricular mass index,
longitudinal shortening, endocardial circumferential shortening and
PCr/ATP ratio (Table 4)

We concentrated further analysis on 4 parameters that were uniquely and highly significantly
associated with hypertension: left ventricular mass index, longitudinal shortening, endocardial
circumferential shortening, and the PCr/ATP ratio. Fig 2 illustrates that there is a significant

Table 3. Measures of left ventricular structure, systolic function, energetics and strains in normal and hypertensive patients by age group.

Age Group

LV Mass Index (g/m?) tt
End-Diast. Vol Index (mL/m?)§
End-Syst. Vol Index (mL/m?)}
Stroke Vol Index (mL/m?)§
Ejection Fraction (%)t
PCr/ATP tt

Epi. Circ. Strain (%) 1
Endo. Circ. Strain (%) 11
Torsion (°)*

TSR (radians)*/ 11
Long. Shortening (%) 11
Radial Thickening (%)

Normals Hypertension
50-59 60-69 70-79 50-59 60-69 70-79
LV Structure, Global Systolic Function and Energetics
64113 65+11 61+10 7919 78+13 73120
68+18 65+15 60+14 68.0+15 61+12 55+16
2348 23+8 2048 20+6 1948 165
45412 42+9 4049 48+11 4117 39+12
67+5 65+6 67+9 70+6 69+6 70+6
1.89+0.28 1.90+0.34 1.90+0.45 1.72+0.62 1.54+0.19 1.45+0.43
Systolic Torsion and Strains
12.0£3.5 13.1£2.9 11.6+1.9 11.6+2.9 9.5+2.5 9.8+2.5
24.8+3.7 26.1+4.6 24.2+2.8 29.7+3.3 28.9+4.8 28.6+3.8
5.7+1.0 7.9+2.1 7.7£2.7 6.5t1.4 7.211.4 6.712.6
0.41+0.10 0.54+0.13 0.56+0.21 0.39+0.11 0.44+0.11 0.41+0.15
20.0+3.72 19.014.0 19.244.4 14.7£3.2 15.743.7 14.1£2.2
59.0+£16.1 66.8+17.9 71.0£16.0 64.1£31.1 57.3113.4 56.8+14.3

LV: left ventricular; Diast: diastolic; Vol: volume; Syst: systolic; PCr/ATP: phosphocreatine to adenosine triphosphate ratio; epi: epicardial: mid: midwall;
endo.: endocardial; circ.: circumferential; TSR: torsion to shortening ratio; long: longitudinal.

* P<0.05 and
** P<0.01 for age effect
1 P<0.05 and

11 P<0.01 normals vs hypertension
1 P =0.05 normals vs hypertension

§ P =0.06 age effect.

3 P<0.05 vs corresponding hypertensive age group.

https://doi.org/10.1371/journal.pone.0177404.t003
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Table 4. Multiple linear regression analysis of four principal factors associated with hypertension: left ventricular mass index, longitudinal short-
ening, endocardial circumferential shortening, and the PCr/ATP ratio.

Dependent Variable: LV Mass Index: Long. Short. Endo. Circ. Short. PCr/ATP
beta = beta = beta = beta P=
Age -0.141 0.189 0.144 0.293 -0.107 0.448 0.031 0.862
Gender -0.516 0.000 0.089 0.537 0.265 0.086 -0.336 0.065
BSA 0.090 0.416 -0.177 0.221 0.202 0.185 -0.159 0.398
Heart Rate 0.153 0.117 -0.109 0.372 -0.041 0.747 0.219 0.166
Systolic P 0.391 0.001 -0.443 0.004 0.335 0.031 -0.590 0.001
Diastolic P -0.185 0.068 0.092 0.503 -0.272 0.049 0.307 0.048
VA Coupling 0.242 0.006 0.021 0.848 -0.321 0.007 0.050 0.705
PWV 0.088 0.294 -0.063 0.569 0.050 0.669 -0.027 0.837
EFP -0.194 0.086 0.136 0.323 0.035 0.811 -0.271 0.126
SVi 0.621 0.000 - - - - 0.397 0.029
(R?=0.545) (R?2=0.184) (R2=0.190) (R2=0.164)

LV: left ventricular; long: longitudinal, short: shortening; endo: endocardial; circ: circumferential; PCr/ATP: phosphocreatine to adenosine triphosphate ratio;
BSA: body surface area; P: pressure; VA: ventricular-arterial; PWV: pulse wave velocity; EFP: early filling percentage; SVi: stroke volume index.

https://doi.org/10.1371/journal.pone.0177404.t1004

effect of age on systolic blood pressure and diastolic function (early filling percentage), and
that this effect is added to by the diagnosis of hypertension (Fig 2A and 2B with parallel shift in
linear regression line that is also significantly related to age). However, there is no relationship
of aging to left ventricular mass index, longitudinal shortening, endocardial circumferential
shortening, or the PCr/ATP ratio (Fig 2C-2F), showing that these parameters are uniquely
related to hypertension only (as shown with ANOV A statistics in Tables 2 and 3).

We used multiple linear regression analysis from the whole dataset combining normal and
hypertensive patients to determine predictors and potential mechanisms of these 4 principal
effects of hypertension. Variables included in the model were basic demographic factors: age,
gender, BSA; vascular: systolic and diastolic blood pressure, Ea/Ees and pulse wave velocity;
diastolic function: early filling percentage; systolic function: stroke volume index; and heart
rate. Stroke volume index was not included in the models with longitudinal and endocardial
circumferential shortening as these are all direct manifestations of systolic function. Likewise,
we did not perform a multiple linear regression analysis for ejection fraction as it is closely
related to stroke volume and other systolic strains.

For left ventricular mass index as dependent variable, significant predictors were gender
(lower mass in females), systolic blood pressure (positive relationship), Ea/Ees (positive), and
stroke volume index (positive). This suggests that higher levels of left ventricular mass in this
mixed group of normals and hypertensives are associated with higher systolic blood pressure and
adverse ventricular-arterial coupling, but increased left ventricular mass preserves stroke volume.
This model accounted for over 50% of the variance associated with left ventricular mass index.

For the other 3 models, there were also significant relationships with systolic blood pressure
for all the dependent variables. For longitudinal shortening, the opposite effect of systolic
blood pressure was seen compared to left ventricular mass index, in that longitudinal shorten-
ing decreased as systolic blood pressure increased. With endocardial circumferential shorten-
ing, higher levels of systolic blood pressure were associated with higher values of endocardial
circumferential shortening. Higher levels of systolic blood pressure were also significantly
associated with lower levels of PCr/ATP. Fig 3 illustrates scatter plots of these 4 dependent var-
iables versus systolic pressure with univariate linear regression analysis.
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Fig 2. Scatter plots of the effects of aging on A. systolic blood pressure, B. early filling percentage
(measure of diastolic function), C. left ventricular mass index, D. endocardial circumferential (endo.
circ.) shortening, E. longitudinal shortening and F. PCr/ATP ratio. Both aging and hypertension are
associated with significant effects on A and B (linear regression slope increases in both groups and shifted
parallel in hypertension), however for C-F there is no significant relationship of aging. Normal subjects are in

blue and hypertensive patients in red.
https://doi.org/10.1371/journal.pone.0177404.g002

Discussion

In this study we demonstrate in a group of normal subjects and patients with treated hyperten-
sion (though no other cardiovascular diagnosis or diabetes) that hypertension has both addi-
tive effects to the normal effects of the aging process, and also effects uniquely associated with
hypertension (Fig 4). Increases in systolic blood pressures and Ees seen with aging are added
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Fig 3. Scatter plots of A. left ventricular (LV) mass index, B. endocardial circumferential (endo. circ.)
shortening, C. longitudinal shortening and D. PCr/ATP ratio versus systolic pressure with univariate
linear regression analysis. Normal subjects are in blue and hypertensive patients in red. The regression line
refers to the combined cohort.

https://doi.org/10.1371/journal.pone.0177404.9003

to by hypertension, and diastolic function is also further impaired (EFP). Unique effects asso-
ciated with hypertension are increases in left ventricular mass index, increase in ejection frac-
tion, reduction in longitudinal shortening, redistribution of circumferential strains with
reduced epicardial and increased endocardial shortening, and impaired energetics (PCr/ATP).
Unique effects of aging are increases in PWV and Ea, reduction in the E/A ratio, and increase
in torsion. The TSR is a measure of the subepicardial influence over the subendocardium, with
reduced subepicardial effects on subendocardial shortening increasing TSR (Fig 1). There are
opposite effects with aging and hypertension. In aging this ratio is increased. In hypertension,
this ratio is decreased due to enhanced ability of the subepicardium to effect subendocardial
shortening. The reduction in the ratio of Ea/Ees (VA coupling) in hypertension, due to the
increase in Ees highlights that the dominant abnormalities that we see in hypertension are left
ventricular as opposed to afterload or vascular stiffness which were not significantly different
between these treated hypertension subjects and aged-matched controls.

Mechanisms of hypertension effects: Role of systolic blood pressure and
stroke volume

Systolic blood pressure appears particularly important in the multiple linear regression analy-
sis. Higher levels of systolic blood pressure are related to increased left ventricular mass,
reduced longitudinal and endocardial circumferential shortening and reduced PCr/ATP. Also
higher levels of stroke volume index are strongly related to higher levels of left ventricular
mass index. This suggests that increases in left ventricular mass help preserve stroke volume in
the presence of higher systolic pressure. The hypertensive patients were on treatment though
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Fig 4. Summary results figure. Both aging and hypertension are associated with unique effects, and additive effects are shown in the overlapping center.
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shortening, and the PCr/ATP ratio (highlighted with ‘*’) suggesting that these effects are potentially modifiable. Abbreviations as in Tables 2 and 3.

https://doi.org/10.1371/journal.pone.0177404.9g004

these data suggest that despite treatment, there was potential to reduce effects of hypertension
on the left ventricle by more intensive reduction of systolic blood pressure. Recently the Sys-
tolic Blood Pressure Intervention Trial (SPRINT) [20] has shown that intensive lowering of
blood pressure reduces a composite end-point of several cardiovascular outcomes, and as a
secondary outcome there was a significant reduction in heart failure. Our data suggest that
more intensive lowering of blood pressure could potentially reduce adverse effects of hyperten-
sion by reducing left ventricular mass and endocardial circumferential shortening, and
improving cardiac energetics and longitudinal function. Increases in left ventricular mass are
associated with adverse prognosis [21] and increased risk of heart failure [18]. Likewise reduc-
tions in PCr/ATP ratios in heart failure predict prognosis [22], and reduced longitudinal short-
ening also is an adverse prognostic marker in hypertension [23]. It should be noted that the
target blood pressure in the standard treatment arm of the SPRINT trial was between 135-139
mm Hg, which is lower than a significant proportion of our hypertensive patients. To under-
stand the mechanisms of the reduced heart failure with intensive blood pressure lowering as
shown in the SPRINT trial, it would be important to study the effects of intensive blood pres-
sure lowering with the imaging methods as used in this study.
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Altered systolic strains in hypertension

In the hypertensive patients we have documented reduced longitudinal shortening, increased
endocardial circumferential shortening, preserved midwall circumferential shortening, and
reduced epicardial circumferential shortening. Several conclusions can be drawn from these
findings based on the anatomical fiber orientations in the left ventricle. Fibers are oriented at
74%3° at the subepicardium (with respect to the circumferential plane), circumferentially at
the midwall, and -70+4° at the subendocardium [24,25]. Thus, midwall circumferential short-
ening is along the plane of the fiber orientation in that plane and so reflects fiber shortening.
This is unchanged in the hypertensive subjects, suggesting systolic function at a fiber level is
preserved in these patients. At the subendocardium, maximal shortening is close to 90° from
the actual fiber direction in that plane (cross fiber shortening) and this is due to compression
of subendocardial fiber bundles by the contracting outer layers of the left ventricle, exerting a
greater mechanical advantage due to the greater radius [24,25] (Fig 1). In the hypertensive sub-
jects, endocardial circumferential shortening is increased. As it is known that fiber orientations
in hypertensive left ventricular hypertrophy are not different than normal hearts [26], this sug-
gests increased endocardial cross fibre shortening and thus increased interactions from the
epicardium on the endocardium. Consistent with that the TSR is reduced. There is greater
shortening in the endocardial circumferential direction with correspondingly less shortening
in the longitudinal direction. Epicardial circumferential shortening is reduced. As for the sub-
endocardium, there are interactions from other layers of the left ventricle on the subepicar-
dium, albeit to a much lesser extent (epicardial cross fiber shortening) [24]. Epicardial cross
fiber shortening will be in a plane close to the epicardial circumferential plane, so the reduction
in epicardial circumferential shortening implies a reduction in epicardial cross fiber shorten-
ing. Thus, subepicardial to subendocardial interactions are increased, while in the opposite
direction they are reduced.

Preserved left ventricular systolic function and reduced longitudinal shortening are consis-
tent findings in hypertension [27-30]. There are, however, apparent inconsistencies with
respect to circumferential shortening. Using MR tagging, Palmon et al [30] have shown that
circumferential shortening was reduced in all layers of the left ventricle in subjects with hyper-
tensive left ventricular hypertrophy, albeit with a higher left ventricular mass/body surface
area than the current study (127 £ 37 g/ m?). In contrast to this, Narayanan et al [28] have
shown using echocardiography that absolute strains were not significantly different between
normals and hypertension in patients with mild hypertension (though also in a group of
patients with higher LV mass than our cohort; LV mass index 89 + 21, g/m?). Ahmed and col-
leagues [27] have shown with MR tagging in resistant hypertension (mean of 4 + 1 medica-
tions, though similar LV mass index to our cohort 64 + 18 g/m?), that circumferential strains
were reduced, though no details were provided of variations through the left ventricular wall.
Our data showing a more complex pattern in a group with relatively mild hypertension and
mild left ventricular hypertrophy suggests that there may be an evolution of changes in cir-
cumferential shortening as hypertensive heart disease progresses—from preserved fibre short-
ening and increased endocardial circumferential shortening in mild hypertension (as seen in
this study) to reduced fibre shortening and reduced circumferential shortening in all layers of
the left ventricle in advanced hypertensive left ventricular hypertrophy.

Elevated end-systolic elastance in aging and hypertension

End-systolic elastance is elevated both by normal aging, and this effect augmented by hyper-
tension. This has been previously recognised [2,31]. In the context of aging and hypertension
the significance of this finding is that it reflects stiffness of the left ventricle in systole (a passive

PLOS ONE | https://doi.org/10.1371/journal.pone.0177404 May 11,2017 12/16


https://doi.org/10.1371/journal.pone.0177404

@° PLOS | ONE

Effects of aging and hypertension on left ventricular function

property), as opposed to an increase in contractility (an active property) [31]. We have previ-
ously shown in a mouse model of muscular dystrophy cardiomyopathy that steroid-induced
increases in left ventricular fibrosis are related to increases in end-systolic elastance [32]. In
HF pEF increases in end-systolic elastance are further increased, and this enhanced slope of
the relationship of pressure to volume may explain in part the susceptibility to clinical heart
failure of these patients to increased blood pressure [33].

Limitations

Our aging data are from a relatively short time span, limited by the age ranges when we can
find community patients with hypertension, and are also cross-sectional. We have previously
shown that the PCr/ATP ratio is reduced with aging over a wider range of ages [2], though
there was no aging effect seen in this study. In that study we studied a separate group of
patients from the ages of 20 and 69, though in the current study patients range from 50 to 79.
The wider age range in the previous study allowed the detection of a significant effect of aging
on the PCr/ATP ratio, that we could not reproduce in the smaller age range in the current
study. The smaller age range in this study was specifically chosen to allow us to recruit subjects
with hypertension at matched age ranges, as it is more difficult to recruit younger hypertensive
patients. Nevertheless, the values in the hypertension patients in the current study are lower
than the values for normal aging in the previous study suggesting that hypertension is indeed
associated with impaired cardiac energetics. Also, these data are cross-sectional and so repre-
sent a snap shot of representative subjects at different ages, rather than a longitudinal progres-
sion. The hypertension patients were all treated according by local GP practices, and so there
is some variation in medications used across the age groups, particularly with thiazide diuretics
being more frequently prescribed in the older age group. We do not know how this may have
affected measures of left ventricular function. The duration of hypertension was similar across
the age groups, but additional longitudinal studies are required to determine how onset of
hypertension at a younger fixed age (i.e. 40 years) effects our measurements in the 6, 7 and
8™ decades.

PWYV was not increased in our hypertensive patients. Using arterial tonometry, hyperten-
sion is a significant risk factor for increased PWV [34]. Our findings of no increase in markers
of vascular stiffness may in part be explained by the relatively small number of patients, but
also because our hypertensive patients were all treated, had relatively mild hypertension, and
had no other risk factors for increased vascular stiffness such as diabetes, other cardiovascular
diagnoses or renal failure. Some of our normal patients may have been suitable for treatment
with antihypertensive agents according to NICE guidance [35], which may result in an under-
estimation of the differences between the 2 groups.

Relaxation of the left ventricle is intrinsically related to afterload [36], and we have recently
shown that in normal aging the E/A ratio is significantly related to afterload (as measured by
effective arterial elastance [8]. Thus, the measurements of impaired relaxation may in part
relate to changes in afterload.

Conclusions

Hypertension, when treated and without other cardiovascular diagnosis or diabetes, is associ-
ated with significant changes in left ventricular structure, function and energetics in addition
to normal aging effects. These are, at least in part, related to the level of systolic blood pressure,
and so are potentially modifiable. Recent studies have suggested that intensive blood pressure
lowering can improve left ventricular systolic and diastolic function [37], though the effects of
intensive blood pressure lowering on the parameters that we have identified have not been
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studied. Also, beneficial effects on left ventricular function are less in older subjects [38], so it
is important that younger hypertensive patients are targeted before the age-related changes in
left ventricular function compound the effects of hypertension that we have demonstrated.
Future studies should build on these data to determine how the accumulation of risk factors
such as hypertension, diabetes, and aging result in heart failure in the elderly.
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