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A B S T R A C T   

Although previous studies have shown that the host immune response is crucial in determining clinical outcomes 
in COVID-19 patients, the association between host immune signatures and COVID-19 patient outcomes remains 
unclear. Based on the enrichment levels of 11 immune signatures (eight immune-inciting and three immune- 
inhibiting signatures) in leukocytes of 100 COVID-19 patients, we identified three COVID-19 subtypes: Im-C1, 
Im-C2, and Im-C3, by clustering analysis. Im-C1 had the lowest immune-inciting signatures and high immune- 
inhibiting signatures. Im-C2 had medium immune-inciting signatures and high immune-inhibiting signatures. 
Im-C3 had the highest immune-inciting signatures while the lowest immune-inhibiting signatures. Im-C3 and Im- 
C1 displayed the best and worst clinical outcomes, respectively, suggesting that antiviral immune responses 
alleviated the severity of COVID-19 patients. We further demonstrated that the adaptive immune response had a 
stronger impact on COVID-19 outcomes than the innate immune response. The patients in Im-C3 were younger 
than those in Im-C1, indicating that younger persons have stronger antiviral immune responses than older 
persons. Nevertheless, we did not observe a significant association between sex and immune responses in COVID- 
19 patients. In addition, we found that the type II IFN response signature was an adverse prognostic factor for 
COVID-19. Our identification of COVID-19 immune subtypes has potential clinical implications for the man-
agement of COVID-19 patients.   

1. Introduction 

The COVID-19 pandemic caused by SARS-CoV-2 has resulted in more 
than 122 million cases and 2.7 million deaths as of March 19, 2021 [1]. 
The host immune defense system and immune response are crucial 
factors responsible for clinical outcomes in COVID-19 patients [2–7]. 
For example, Takahashi et al. demonstrated that sex biases in COVID-19 
were associated with differences in immune responses between males 
and females [2]. The excessive immune response to SARS-CoV-2, known 
as COVID-19 cytokine storm, may cause severe COVID-19 [8]. In fact, 
multiple organ dysfunction caused by aberrant immune responses is 
presented in a substantial number of severe COVID-19 patients [9]. 
Despite these previous studies, the association between host immune 

responses and clinical outcomes in COVID-19 patients is worthy of 
further in-depth investigation. 

Previous studies have explored associations between immune sig-
natures and clinical prognosis based on blood transcriptomic profiling in 
patients [10–11]. For example, based on whole blood gene expression 
profiling, Zhang et al. identified two subtypes of sepsis, which displayed 
different immune responses and clinical outcomes [10]. Shankar et al. 
identified transcriptomic features in blood to predict paediatric patients 
with multiple organ dysfunction in need of intensive care [11]. In this 
study, using a publicly available RNA-Seq gene expression profiles in 
100 leukocyte samples from COVID-19 patients [12], we performed an 
unsupervised learning to identify COVID-19 subtypes based on the 
enrichment levels of 11 immune signatures. Moreover, we characterized 
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the immunological and clinical features of these COVID-19 subtypes. 
Furthermore, we investigated associations between immune signatures 
and clinical features in COVID-19 patients using three publicly available 
datasets, including GSE157103 [12], GSE156063 [13], and GSE152075 
[14] (Table 1). This study aimed to provide new insights into the asso-
ciation between immune responses and clinical prognosis in COVID-19 
patients. 

2. Materials and methods 

2.1. Datasets 

We downloaded the RNA-Seq gene expression profile datasets in 
leukocyte samples from 100 COVID-19 patients (GSE157103) and in 
SARS-CoV-2-infected human tissues from nasopharyngeal swabs 
(GSE152075 and GSE156063) from the Gene Expression Omnibus 
(GEO) (https://www.ncbi.nlm.nih.gov/geo/). Table 1 summarizes these 
datasets. 

2.2. Quantification of the enrichment levels of immune signatures 

We used the single-sample gene-set enrichment analysis (ssGSEA) 
score [15] to evaluate the enrichment level of an immune signature in a 
COVID-19 patient based on the gene expression profiles. The ssGSEA 
score represents the enrichment score of a gene set in a sample based on 
the degree of the genes in the gene set coordinately up- or down- 
regulated in the sample. We analyzed 11 immune signatures, 
including HLA Class II, CD8+ T cells, Tfh, Th1 cells. The gene sets 
representing these immune signatures are listed in Supplementary 
Table S2. 

2.3. Clustering analysis 

We hierarchically clustered 100 leukocyte samples from COVID-19 
patients (GSE157103) based on the ssGSEA scores of the 11 immune 
cell types. We performed the clustering analysis by using the R function 
“hclust” for hierarchical agglomerative clustering. 

2.4. Logistic regression analysis 

We used logistic regression with five predictors (age, gender, CD8+ T 
cell score, NK cell score, and type II IFN response score) to predict 
intensive care unit (ICU) and mechanical ventilatory support (MVS), 
respectively. The logistic regression analysis utilized the R function 
“glm” to fit the binary model and the R function “lm.beta” in the R 
package “QuantPsyc” to calculate the standardized regression co-
efficients (β values). 

2.5. Identification of gene ontology associated with COVID-19 subtypes 

We used WGCNA [16] to identify the gene modules differentially 
enriched in COVID-19 subtypes and outcomes. The representative gene 
ontology (GO) terms associated with the gene modules were identified. 
The WGCNA analysis was performed by using the R package “WGCNA” 
(version 1.68). 

2.6. Pathway analysis 

We identified differentially expressed genes between ICU and non- 
ICU COVID-19 patients using Student’s t test with a threshold of 
adjusted P-value (false discovery rate (FDR) < 0.05 and fold change (FC) 
of mean expression levels > 2. Based on the differentially expressed 
genes, we identified KEGG [17] pathways differentially enriched be-
tween ICU and non-ICU COVID-19 patients by GSEA [18] with a 
threshold of FDR < 0.05. The FDR was calculated by using the 
Benjamini-Hochberg method [19]. 

2.7. Class prediction 

We predicted ICU versus non-ICU patients based on gene expression 
profiles in leukocyte samples from 100 COVID-19 patients 
(GSE157103). We performed 3-fold cross validation (CV) in the 100 
samples. Within each loop of the CV, we selected the 100 genes with the 
largest absolute t-scores in the comparison of ICU versus non-ICU 

Table 1 
A summary of the datasets.  

GSE157103 (12)   

Tissue resource Leukocyte from COVID-19 patients 
Sample size n = 100  
Demographic characteristics 
Female sex – No. 

(%) 
38 (38)  

Age Range – No. 
(%)   

Younger than 49 22 (22)  
50–59 21 (21)  
60–69 21 (21)  
70–79 19 (19)  
80 and older 16 (16)  
Missing data 1 (1)  
Clinical 

characteristics   
ICU admission – No. 

(%) 
50 (50)  

Hospital free days 
at 45 days 

26 (median)  

Mechanical 
ventilation – No. 
(%) 

42 (42)  

Ventilator-free days 28 (median)  
APACHE II score 21 (median)  
SOFA score 7 (median)  
Laboratory findings   
C-reactive protein 

(mg/L) 
128.2 (median)  

Ferritin (μg/L) 652 (median)  
Procalcitonin (μg/ 

L) 
0.57 (median)  

D-dimer (mg/L) 1.79 (median)  
Lactate (mmol/l) 1.17 (median)  
GSE152075 (14)   
Tissue resource Nasopharyngeal swabs from COVID-19 patients 
Sample size n = 430  
Demographic characteristics 
Female sex – No. 

(%) 
201 (46.7)  

Male sex – No. (%) 176 (40.9)  
Missing data 53 (12.3)  
Age Range – No. 

(%)   
Younger than 49 157 (36.5)  
50–59 84 (19.5)  
60–69 53 (12.3)  
70–79 63 (14.7)  
80 and older 56 (13.0)  
Missing data 17 (4.0)  
GSE156063 (13)   
Tissue resource Nasopharyngeal swabs 

from COVID-19 patients 
Nasopharyngeal swabs from 
patients infected with other 
viruses 

Sample size n = 93 n = 41 
Demographic characteristics 
Female sex – No. 

(%) 
50 (53.8) 19 (46.3) 

Age Range – No. 
(%)   

Younger than 49 59 (63.4) 23 (56.1) 
50–59 10 (10.8) 3 (7.3) 
60–69 16 (17.2) 6 (14.6) 
70–79 7 (7.5) 5 (12.2) 
80 and older 1 (1.1) 4 (9.8)  

Z. Chen et al.                                                                                                                                                                                                                                    

https://www.ncbi.nlm.nih.gov/geo/


International Immunopharmacology 96 (2021) 107615

3

Fig. 1. Identification of COVID-19 immune subtypes. A. Hierarchical clustering of 100 COVID-19 patients based on the enrichment scores of 11 immune sig-
natures in leukocytes. B. Comparisons of the ratios of immune-stimulatory to immune-inhibitory signatures between the three COVID-19 subtypes. The ratios were 
the mean expression levels of the marker genes of immune-stimulatory signatures over those of immune-inhibitory signatures (log2-transformed). The Student’s t test 
P-values are indicated. * P < 0.05, ** P < 0.01, *** P < 0.001 (This also applies to the following figures). C. Principal component analysis confirming that COVID-19 
can be divided into three subgroups based on the enrichment scores of the 11 immune signatures. D. Proportions of COVID-19 patients admitted to intensive care unit 
(ICU) or requiring mechanical ventilatory support (MVS) in the COVID-19 subtypes. E. Comparisons of the scores of the Acute Physiology and Chronic Health 
Evaluation (APACHE II) and the Sequential Organ Failure Assessment (SOFA), ventilator-free days, and the hospital-free days at day 45 (HFD-45) values between the 
three COVID-19 subtypes. F. Comparisons of the COVID-19 severity-associated laboratory measurements between COVID-19 subtypes. G. Comparisons of the age 
between COVID-19 subtypes. The one-tailed Mann–Whitney U test P-values are shown. 
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patients in the training set; based on the 100 genes, we trained the 
Random Forest (RF) classifier and predicted ICU versus non-ICU patients 
in the test set. We reported the prediction performance (accuracy and 
the area under the ROC curve (AUC)) as the average of them in the 3-fold 
CV. We carried out the prediction algorithm in Weka [20] with the 
number of trees in the RF set to 500. 

2.8. Statistical analysis 

In comparison of two classes of data, we used Mann–Whitney U test if 
they were not normally distributed and used Student’s t test if they were 
normally distributed. We used Spearman’s correlation test to evaluate 
the correlation between two groups of data on the assumption that they 
were not normally distributed. We used Fisher’s exact test to evaluate 

Fig. 1. (continued). 
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Fig. 2. Associations between immune signatures and clinical features in COVID-19 patients. A. Associations between immune signature scores and HFD-45 
values and ventilator-free days. The Spearman’s correlation test P-values and correlation coefficients are shown. B. Comparisons of immune signature scores be-
tween ICU and non-ICU patients and between MVS and non-MVS patients. The one-tailed Mann–Whitney U test P-values are shown. C. Associations between immune 
signature scores and age. D. Comparisons of immune signature scores between COVID-19 patients and the patients infected with other viruses. E. Comparisons of the 
scores of three immune-inhibiting signatures (type II IFN response, Treg, and neutrophils) between non-MVS and MVS patients. F. The scores of type II IFN response 
have negative correlations with HFD-45 values and ventilator-free days and are higher in ICU than in non-ICU patients. 
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the association between two categorical variables. All statistical ana-
lyses were performed in the R programming environment (version 
4.0.2). 

3. Results 

3.1. Identification of COVID-19 subtypes based on immune signature 
enrichment levels 

Based on the enrichment levels of 11 immune signatures, using the 
hierarchical clustering method, we identified three COVID-19 immune 
subtypes, termed Im-C1, Im-C2, and Im-C3 (Fig. 1A). Im-C1 had the 

Fig. 2. (continued). 
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lowest enrichment levels of HLA Class II, CD8+ T cells, Tfh, Th1 cells, 
Th2 cells, NK cells, pDCs, and cytolytic activity (termed immune- 
inciting signatures) while high enrichment levels of type II IFN 
response, Treg, and neutrophils (termed immune-inhibiting signatures). 
Im-C2 had medium immune-inciting signatures and high immune- 
inhibiting signatures. In contrast to Im-C1, Im-C3 had the highest 
immune-inciting signatures and the lowest immune-inhibiting signa-
tures. Thus, Im-C3 and Im-C1 displayed the strongest and weakest 
antiviral immune responses, respectively. As expected, the ratios of 
immune-stimulatory to immune-inhibitory signatures (CD8+/CD4+
regulatory T cells and pro-/anti-inflammatory cytokines) were the 
highest in Im-C3 and the lowest in Im-C1 (one-tailed Mann–Whitney U 
test, P < 0.01) (Fig. 1B). Principal component analysis confirmed that 
these COVID-19 cases could be divided into three subgroups based on 
the ssGSEA scores of these immune signatures (Fig. 1C). 

We found that the proportion of the COVID-19 patients admitted to 
ICU was the lowest in Im-C3 (23.5%) and the highest in Im-C1 (92.6%) 
(Fisher’s exact test, P < 0.001) (Fig. 1D). Moreover, the proportion of 
COVID-19 patients requiring MVS was the lowest in Im-C3 (8.8%) and 
the highest in Im-C1 (81.5%) (Fisher’s exact test, P < 0.001). The scores 
of the Acute Physiology and Chronic Health Evaluation (APACHE II) and 
the Sequential Organ Failure Assessment (SOFA), both of which measure 
the severity of ICU patients [21], were significantly different between 
the three subtypes: Im-C3 < Im-C2 < Im-C1 (one-tailed Mann–Whitney 
U test, P < 0.001; mean APACHE II score: 13 versus 19 versus 26; mean 
SOFA score: 5 versus 8 versus 10) (Fig. 1E). The numbers of ventilator- 
free days, which is an outcome measure in treatments for acute respi-
ratory distress syndrome [22], and the hospital-free days at day 45 
(HFD-45) values, which correlated inversely with disease severity, were 
significantly different between the three subtypes: Im-C3 > Im-C2 > Im- 
C1 (one-tailed Mann–Whitney U test, P < 0.001; mean ventilator-free 
days: 26 versus 20 versus 11; mean HFD-45: 32 versus 23 versus 8) 
(Fig. 1E). Additionally, some laboratory measurements, such as C- 
reactive protein, D-dimer, procalcitonin, ferritin, and lactate, whose 
elevation was associated with COVID-19 severity, tended to display the 
lowest levels in Im-C3 while the highest levels in Im-C1 (Fig. 1F). 
Altogether, these results showed that the Im-C3 subtype of COVID-19 
had the best outcomes, while the Im-C1 subtype had the worst out-
comes. It suggests that antiviral immune responses can reduce COVID- 
19 disease severity. Furthermore, we found that the patients in Im-C3 
were younger than those in Im-C1 (one-tailed Mann–Whitney U test, 
P = 0.04) (Fig. 1G). It indicates that younger persons tended to have a 
stronger antiviral immune response than older persons after SARS-CoV- 
2 infection. However, we did not observe a significant difference in the 
proportions of female and male patients between Im-C3 and Im-C1 
(Fisher’s exact test, P = 0.61). 

3.2. Associations between immune signatures and clinical features in 
COVID-19 patients 

We further analyzed associations between immune signatures and 
clinical features in COVID-19 patients. As expected, the elevated 
enrichment of the eight immune-inciting signatures were correlated 
with higher HFD-45 values and more ventilator-free days (Spearman’s 
correlation test, P < 0.01, ρ > 0.3) (Fig. 2A). Moreover, their enrichment 
levels were significantly higher in non-ICU versus ICU patients and in 
non-MVS versus MVS patients (one-tailed Mann–Whitney U test, P <
0.01) (Fig. 2B). Collectively, these results indicate that the elevated 
enrichment of these immune-inciting signatures is associated with better 
outcomes in COVID-19 patients. In addition, we found five immune- 
inciting signatures (HLA Class II, CD8+ T cells, Th1 cells, Th2 cells, 
and NK cells) whose enrichment levels correlated inversely with ages of 
COVID-19 patients (P < 0.1, ρ < -0.18) (Fig. 2C). However, none of the 
eight immune-inciting signatures showed significantly different 
enrichment levels between female and male patients. Again, these re-
sults indicate that younger patients have a stronger immune response to 

SARS-CoV-2 infection than older patients, while the strength of immune 
response is not different between female and male patients. We further 
demonstrated the significant negative correlation between the immune- 
inciting signatures and ages of COVID-19 patients in two other RNA-Seq 
gene expression profiling datasets for COVID-19 patients (GSE156063 
[13] and GSE152075 [14] (Fig. 2C). Likewise, the associations between 
gender and these immune-inciting signatures were not significant in 
both datasets. Interestingly, in GSE156063, six immune-inciting signa-
tures displayed significantly lower enrichment levels in COVID-19 pa-
tients than in the patients infected with other viruses (one-tailed 
Mann–Whitney U test, P < 0.01) (Fig. 2D). It suggests that SARS-CoV-2 
causes a weaker human host immune response compared to other vi-
ruses, a potential explanation for the higher infectivity and pathoge-
nicity of SARS-CoV-2 versus other viruses. In contrast to the immune- 
inciting signatures, the immune-inhibiting signatures were likely to 
have a negative correlation with outcomes in COVID-19 patients, as 
evidenced by that the three immune-inhibiting signatures (type II IFN 
response, Treg, and neutrophils) displayed significantly higher enrich-
ment levels in MVS than in non-MVS patients (one-tailed Mann–Whitney 
U test, P < 0.05) (Fig. 2E). In addition, the type II IFN response signature 
had inverse correlations with ventilator-free days and HFD-45 values (P 
< 0.05, ρ < -0.21) and was significantly higher in ICU versus non-ICU 
patients (Fig. 2F). 

3.3. Comparison of the contribution of different factors in the prediction 
of COVID-19 outcomes 

To compare the contribution of different factors in the prediction of 
outcomes in COVID-19 patients, we used the logistic regression model 
with five predictors (age, gender, CD8+ T cell score, NK cell score, and 
type II IFN response score) to predict ICU (=1) versus non-ICU (=0) and 
MVS (=1) versus non-MVS (=0) patients, respectively. In predicting 
MVS versus non-MVS, age, CD8+ T cells, and NK cells were significant 
negative predictors, while type II IFN response was a significant positive 
predictor (P < 0.05) (Fig. 3). In predicting ICU versus non-ICU, CD8+ T 
cells and NK cells were significant negative predictors (P < 0.1), while 
type II IFN response was a positive predictor (P = 0.186, β = 1.98). These 
results indicate that COVID-19 outcomes are correlated positively with 
immune-inciting signatures and negatively with immune-inhibiting 
signatures and age, consistent with previous results. Meanwhile, logis-
tic regression analyses indicate that the adaptive immune response 
(CD8+ T cells) has a stronger impact on COVID-19 outcomes than the 
innate immune response (NK cells), as evidenced by the larger β values 
of CD8+ T cells versus NK cells in predicting ICU and MVS. 

Fig. 3. Prediction of ICU versus non-ICU and MVS versus non-MVS pa-
tients using five predictors (age, gender, CD8þ T cell score, NK cell score, 
and type II IFN response score) by logistic regression analyses. The stan-
dardized regression coefficients (β values) are shown. 
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International Immunopharmacology 96 (2021) 107615

8

3.4. Identification of gene ontology differentially enriched between 
COVID-19 subtypes 

WGCNA identified seven gene modules (indicated in cyan, light 
yellow, brown, light green, magenta, black, and turquoise color, 
respectively) that significantly differentiated COVID-19 patients by 
COVID-19 subtypes (Im-C1, Im-C2, and Im-C3) and outcomes (HFD-45, 
ICU, and MVS) (Fig. 4). The representative GO terms associated with the 
gene modules highly enriched in Im-C3 while lowly enriched in Im-C1 
included viral transcription, mitochondrial protein complex, RNA pro-
cessing, and endoplasmic reticulum part. Consistently, these modules 
were associated with better outcomes of COVID-19. Besides, the immune 
response downregulated in Im-C1 was positively associated with 
COVID-19 outcomes. In addition, the protein modification process rep-
resenting the black module, which was downregulated in Im-C3 while 
upregulated in Im-C2, correlated with worse outcome of MVS. 

3.5. Identification of genes and pathways differentially expressed between 
ICU and non-ICU COVID-19 patients 

We identified 67 and 309 genes upregulated and downregulated in 
ICU versus non-ICU COVID-19 patients (Fig. 5A and Supplementary 
Table S1). We found a number of immune-related pathways associated 
with the upregulated genes in non-ICU, including antigen processing 
and presentation, natural killer cell mediated cytotoxicity, hematopoi-
etic cell lineage, intestinal immune network for IgA production, T cell 
receptor signaling, cytokine-cytokine receptor interaction, chemokine 
signaling, Toll-like receptor signaling, RIG-I-like receptor signaling, 
cytosolic DNA-sensing, Jak-STAT signaling, NOD-like receptor 
signaling, and Fc epsilon RI signaling (Fig. 5B). Again, these results 
indicate the stronger immune response in non-ICU versus ICU COVID-19 
patients. Furthermore, we performed a prediction of ICU versus non-ICU 
patients based on gene expression profiles in leukocyte samples from 
100 COVID-19 patients (GSE157103). The 3-fold CV accuracy was 
83.1%, and the AUC was 91.5% (Fig. 5C). It indicates that the gene 
expression profiles in leukocytes of COVID-19 patients could be a 
potentially useful predictor for the severity of COVID-19. 

4. Discussion 

Based on the enrichment levels (ssGSEA scores) of 11 immune sig-
natures in leukocytes of COVID-19 patients, we identified three COVID- 
19 subtypes: Im-C1, Im-C2, and Im-C3, by clustering analysis. The 
ssGSEA scores-based clustering method has been shown to be more 
robust than the gene expression values-based method in identifying 
subtypes of diseases [23–25]. Im-C1 had the lowest immune-inciting 
signatures and high immune-inhibiting signatures. Im-C2 had medium 
immune-inciting signatures and high immune-inhibiting signatures. Im- 
C3 had the highest immune-inciting signatures while the lowest 
immune-inhibiting signatures. Im-C3 and Im-C1 COVID-19 patients had 
the best and worst clinical outcomes, respectively, suggesting that 
antiviral immune responses alleviated the severity of COVID-19 pa-
tients. We further demonstrated that the adaptive immune response 
exerted a greater impact on COVID-19 outcomes than the innate im-
mune response. The patients in Im-C3 were younger than those in Im-C1, 
indicating that younger persons have stronger antiviral immune re-
sponses than older persons. Nevertheless, we did not observe a signifi-
cant association between sex and immune responses in COVID-19 
patients. In addition, we found that the type II IFN response signature 
was an adverse prognostic factor for COVID-19 in the dataset 
GSE157103. This result appears inconsistent with previous findings 
[26–27]. The reason behind this needs to be further investigated. 

Our data suggest that a strong antiviral immune response can reduce 
COVID-19 severity. Thus, a strong host immune system is crucial for 
fighting against COVID-19, as bolstered by a recent study [28]. How-
ever, previous studies have revealed that serum inflammatory cytokine 
levels had an inverse association with clinical outcomes in COVID-19 
patients [29–32]. It suggests that excessive immune response, known 
as cytokine storm, may cause immunopathological damage in COVID-19 
patients [7]. We compared the expression levels of several cytokine 
genes in leukocytes between ICU and non-ICU COVID-19 patients, 
including IL-6, IL-1β, TNF, CCL2, CXCL10, IFNG, IL7. We found that 
these genes displayed significantly higher expression levels in non-ICU 
than in ICU patients (Fig. 6). A potential explanation for these 
different results could be the different sources of these cytokine. In 
addition, our findings suggest that weak immune responses are associ-
ated with worse prognosis in COVID-19 patients. It appears to conflict 
with previous indications that strong immune responses may cause se-
vere COVID-19 outcomes [7]. Nevertheless, the present and previous 
results together may indicate that both inadequate and excessive im-
mune responses will lead to severe COVID-19 cases. Certainly, the as-
sociation between host immune responses and clinical outcomes in 
COVID-19 patients needs to be further explored based on large sample 
size. 
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Fig. 5. Genes and pathways differentially expressed between ICU and non-ICU COVID-19 patients. A. Heatmap for 50 and 50 genes showing the highest 
increases and decreases of the fold change of mean expression levels in ICU versus non-ICU patients, respectively. B. Immune-related pathways upregulated in ICU 
versus non-ICU patients. C. Prediction performance of gene expression profiles in leukocyte samples from 100 COVID-19 patients in the prediction of ICU versus non- 
ICU patients by Random Forest. The area under the ROC curve (AUC) is shown for each loop of the 3-fold cross validation (CV). 
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Fig. 6. Comparisons of the expression levels of cytokine genes in leukocytes 
between ICU and non-ICU COVID-19 patients. The Student’s t test P-values 
are shown. 
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Fig. 5. (continued). 
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