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ABSTRACT: Unlike native proteins that are amenable to structural analysis
at atomic resolution, unfolded proteins occupy a manifold of dynamically
interconverting structures. Defining the conformations of unfolded proteins
is of significant interest and importance, for folding studies and for
understanding the properties of intrinsically disordered proteins. Short chain
protein fragments, i.e., oligopeptides, provide an excellent test-bed in efforts
to define the conformational ensemble of unfolded chains. Oligomers of
alanine in particular have been extensively studied as minimalist models of the intrinsic conformational preferences of the peptide
backbone. Even short alanine peptides occupy an ensemble of substates that are distinguished by small free energy differences, so
that the problem of quantifying the conformational preferences of the backbone remains a fundamental challenge in protein
biophysics. Here, we demonstrate an integrated computational-experimental-Bayesian approach to quantify the conformational
ensembles of the model trialanine peptide in water. In this approach, peptide conformational substates are first determined
objectively by clustering molecular dynamics snapshots based on both structural and dynamic information. Next, a set of
spectroscopic data for each conformational substate is computed. Finally, a Bayesian statistical analysis of both experimentally
measured spectroscopic data and computational results is carried out to provide a current best estimate of the substate
population ensemble together with corresponding confidence intervals. This distribution of substates can be further
systematically refined with additional high-quality experimental data and more accurate computational modeling. Using an
experimental data set of NMR coupling constants, we have also applied this approach to characterize the conformation ensemble
of trivaline in water.

1. INTRODUCTION

An emerging field in protein science is the study of intrinsically
disordered proteins (IDPs),1−3 which do not fold into well-
defined 3D structures in vitro but are functional in vivo. IDPs
appear to be abundant in natureit has been predicted that
about one-third of eukaryotic proteins contain extended
disordered regions, including histone tails, α-synuclein, tau
protein, p53, and BRCA1.4 IDPs have been implicated in
cellular functioning, especially in regulation and signaling.5−7

Over 50 years ago, Tanford’s sedimentation and viscosity
measurements on denatured proteins led to a proposal of the
random coil model for unfolded proteins,8 which assumes that
the polypeptide backbone freely samples all sterically allowed
regions of the Ramachandran plot. In this view, unfolded
proteins and peptides represent featureless “freely coiling”
chains that occupy a multiplicity of conformations with very
large associated backbone entropy. However, recently several
lines of compelling spectroscopic evidence have converged to
reveal that the backbone conformation of short unfolded
peptides, including dipeptides and tripeptides, is structurally
much more ordered than predicted by the random coil
model.9−14 The unfolded peptide backbone clearly has
conformation preferences that are sequence and context
dependent.15−20 Thus, defining the conformations of peptides
in unfolded states has become a problem of current interest and

importance. Advances in this effort will enable construction of
more accurate models of intrinsically disordered proteins,
enable elucidation of fundamental principles of protein folding,
and potentially help design novel functional peptide modulators
of biological processes.
In contrast to folded globular proteins, which are routinely

characterized at atomic resolution by X-ray crystallography and
NMR spectroscopy, a comparably detailed characterization of
unfolded peptides and proteins is much more challenging due
to their multiplicity of conformational states and dynamic
nature. For a given peptide, precise measurements can be made
using a variety of spectroscopic methods, but data interpreta-
tion often requires ad hoc assumptions,16,21−23 which introduce
significant uncertainty and/or subjectivity into the final results.
These make it difficult to utilize the complete set of available
experimental data. For example, in one key study to determine
polyproline II conformation propensities for a host−guest
series of peptides AcGGXGGNH2, only one experimental data
set (3JαN) was employed to fit each peptide to a two-state
model, assuming that the experimental data are a weighted
average of data from two representative basins, PII and β.24 On
the other hand, limitations in sampling and force field accuracy
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place direct determination of the relative stability of different
conformational substates beyond the predictive power of
molecular dynamics simulations using current force fields.25−27

One seminal attempt to overcome these difficulties is a
combined molecular-dynamics/NMR (MD-NMR) approach
developed by Graf et al.,28 which aims to combine the accuracy
of experimentally measured spectroscopic data with detailed
information on the set of conformational substates provided by
simulations. Taking the trialanine peptide in aqueous solution
at 300 K as a model system, they experimentally measured a set
of 15 J-coupling constants and carried out 100 ns of explicit
water molecular dynamics simulations in parallel. Snapshots
from the MD trajectory were assigned to three conformational
substates (α, β, PII) based on the Ramachandran plot of the
dihedral angles of the central residue. J-coupling values for each
substate were calculated from corresponding Karplus equations.
Finally, eight J-coupling constants for the central residue were
employed to determine substate weights by performing a global
fit to a three-state model, i.e., minimizing the difference
between measured and calculated weight-average NMR
parameters. This strategy represents a significant advance
over studies that rely on either an experimental or computa-
tional approach alone. Nevertheless, this MD-NMR approach
still has limitations: the analysis is restricted to a three-state
model of an individual residue; the substates are predefined
according to the Ramachandran plot, and only part of the
experimental data set is used.
In this paper, we present an integrated computational-

experimental-Bayesian framework (outlined in Figure 1) to

characterize peptide conformational ensembles. This aims to
overcome limitations in the published MD-NMR approach28 by
introducing two key features: (1) peptide conformational
substates are assigned by clustering molecular dynamics
snapshots based on both structural and dynamic information,
rather than on subjectively defined rectangular regions of the
Ramachandran plot; (2) a Bayesian statistical reweighting
algorithm is used to provide an integrated analysis of both the
experimental and computational data, which yields a current
best estimate of substate populations with corresponding
confidence intervals. This approach allows us to construct
and assess multistate models of trialanine peptide in aqueous
solution based on the full set of 15 measured J-couplings. Our
results show that the two most dominant conformational
substates of trialanine in water share the same polyproline II

helix-like structure (PII) at its central residue, while differing at
the C terminal residue. Our approach naturally allows for
further systematic refinement using supplemental data sets and
more accurate computational modeling of the relevant
parameters.

2. METHODS
The central idea of the integrated computational-experimental-
Bayesian framework to characterize peptide conformational
propensities is illustrated in Figure 1. There are three steps in
the computational stage: (1a) Extensive molecular dynamics
simulations are carried out to generate an ensemble of peptide
structure snapshots. (1b) MD snapshots are clustered into
peptide conformational substates with a “divide-and-merge”
approach based on both structural and dynamics information,
allowing MD population weights of conformational substates to
be calculated. (1c) For each conformational substate i, a set of
values of spectroscopic data is computed. In the experimental
stage, the key task is to obtain the corresponding
experimentally measured spectroscopic data, either from the
literature or by carrying out new experiments, or both. Finally, a
Bayesian statistical algorithm is employed to provide an
integrated analysis of both computational and experimental
data, which yields a current best estimate of the substate
populations as well as the corresponding confidence intervals.
In comparison with Graf’s approach, two key components of

this new integrated framework are the clustering step and the
Bayesian statistical algorithm, which we discuss in more detail
below.

2.1. Clustering. In most studies, peptide conformation
substates are predefined with roughly rectangular regions of a
Ramachandran plot. Typically, conformation assignment only
considers backbone torsion angles of one single residue in a
polypeptide.16,26,28 Here, we present a more objective and
robust method to define and assign peptide conformational
substates, i.e., a “divide-and-merge” two-stage clustering
approach. In the first stage, given a set of structural snapshots
from molecular dynamics simulations, we use Markov state
models to identify residue-based conformational macrostates
based on both structural similarity and dynamics information
by employing the program MSMBUILDER2.29 Specifically, for
each residue, MD trajectories are clustered into residue-based
microstates using a hybrid k-centers k-medoids clustering
algorithm29 with the backbone RMSD as the structural
similarity criteria. Then, kinetically related microstates are
grouped together into residue-based macrostates using Perron
Cluster Cluster Analysis (PCCA+).30 In the second stage, these
residue-based macrostates are merged to yield substates of the
whole peptide.31 For each substate i, its MD population weight
iWmd and a set of experimental observables

iD can be computed.
2.2. Bayesian Statistical Weighting Algorithm. With

experimental data expD collected as well as the corresponding
computed results iD for each conformational substate, a
conventional approach to estimate substate population weights
iW, i = 1,...,n, is to minimize an objective function, such as

∑ ∑χ = − ×W D W D( ) [ ]
j

j
i

i i
j

2 exp 2

in Graf’s approach. This method tends to be limited to two to
three substates of a single residue and fails to account for the
uncertainty/error in either computed results or experimental
data. In addition, slightly different objective functions can lead

Figure 1. A schematic illustrating the Integrated Computational-
Experimental-Bayesian approach.
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to distinct results, so that this minimization may not distinguish
among several different solutions. In order to overcome the
above limitations, here we employ a Bayesian statistical
algorithm to provide an integrated analysis of both computa-
tional and experimental data32,33 and determine conformational
substate weights. In Bayesian inference, the belief in a
hypothesis (H) is updated as additional evidence (E) is
acquired by employing Bayes’ rule:34 P(H|E) = (P(E|H)·
P(H))/P(E). The posterior probability of Bayesian inference
P(H|E), the updated belief in the hypothesis after incorporating
additional evidence, is a function of two antecedents, a prior
probability P(H), which is the initial belief in the hypothesis,
and a “likelihood function” P(E|H), which is a conditional
probability for evidence to be acquired given a hypothesis. P(E)
is the integrated likelihood of additional evidence, which is the
same for all possible hypotheses being considered. In our
characterization of peptide conformations, a set of substate
weights W can be considered to be the hypothesis while
experimental data (expD) are treated as additional evidence,
which leads to the following formulation:

∫
| =

· |

· |
P

P P

P P
W D

W D W

W D W W
( )

( ) ( )

( ) ( ) d
exp

exp

expposterior
prior likelihood

prior likelihood

(1)

where W = {1W,...,nW} is the vector of weights for n substates
subject to the constraint ∑i=1

n iW = 1 and iW ≥ 0; expD =
{expD1,...,

expDz} is the vector of z experimental data.
Prior Distribution. Pprior(W) represents a priori knowledge

about the weights of n conformational substates of the peptide.
For each substate i, given its initial weight iWinitial and its
corresponding uncertainty σ2(iWinitial), a priori knowledge about
the weight of this substate can be represented by a Gaussian
distribution:

πσ
= σ− −P W

W
( )

1

2 ( )
ei

i
W W W

prior 2
initial

( ) /2 ( )i i i
initial

2 2
initial

(2)

Thus, the overall joint prior distribution can be expressed as

∏=
=

P P WW( ) ( )
i

n
i

prior
1

prior
(3)

with the constraints that ∑i=1
ni W = 1 and iW ≥ 0. There are

multiple ways to estimate values of iWinitial and σ(iWinitial) for eq
2. A straightforward approach is to employ information
obtained from the MD simulations, the MD prior, which uses
MD derived population weight iWmd as the iWinitial. For
σ(iWinitial), we assign it an arbitrary large value of 20% when
its uncertainty is not clear. As a control, if we do not use
information from MD simulations, we calculate a simple
random-coil (RC) based prior distribution, which assumes that
each substate is equally populated, i.e., iWinitial = 1/n, where n is
the total number of substates being considered.

Likelihood Function. Plikelihood(
expD|W) represents the like-

lihood of observing the experimental data expD given a certain
substate weight W. For each given experimental observable
expDj, the associated likelihood function can also be modeled
with a Gaussian density function:

π σ σ
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Figure 2. “Divide-and-Merge” two-stage clustering of a trialanine MD trajectory simulated with Amber99SB forced field and TIP3P water. (a)
Trialanine at pH = 2 with each residue labeled. (b) Stage 1, population distribution with residue-based clustering based on Markov state models. (c)
Stage 2, residue-based macrostates are merged to yield a total of 30 substates for the whole peptide in principle, but only 22 substates existed in MD
simulation. (d) Structures and populations of nine substates with above 1% population in MD simulation.
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where iDj denotes the computed experimental observable j for
the conformational substate i, σ(expDj) refers to the uncertainty
in the experimental measurement of each observable j, and
σ(compDj) is the error in theoretical prediction of the observable
j. The overall joint likelihood function can be written as

∏| = |
=

P P DD W W( ) ( )
j

z

j
exp

likelihood
1

likelihood
exp

(6)

Once the prior distribution and the likelihood function are
specified, the posterior distribution, Pposterior(W|expD), our
current best estimate of the conformational substate weights,
is calculated using eq 1 by employing a Markov chain Monte
Carlo (MCMC) algorithm.35−37 The posterior distribution for
each substate i can be computed by

∫| = | −

+

P PW D W D W W

W W

( ) ( ) d ...d

d ...d

i i

i n

posterior
exp

posterior
exp 1 1

1 (7)

The final Bayesian estimate of the weight and uncertainty of

substate i can be computed by

∫= |W P W W WD( ) di i i iexp
bayesian posterior (8)

∫
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Table 1. Nine-State Results for Trialanine Using the Amber99SB Force Field and TIP3P Water with Both MD Prior and
Random Coil Priora

α β PII

1 2 3 4 5 6 7 8 9

Amber 99SB & TIP3P A-α-II A-α-I A-α-III A-β-II A-β-I A-β-III A-PII-II A-PII-I A-PII-III χ2

MD Prior Winitial(σ) 2.1(20) 2.7(20) 4.8(20) 5.4(20) 10.7(20) 16(20) 10.3(20) 19.8(20) 28.1(20) 10.52
Wbayesian(σ) 3.6(3.1) 2.4(2) 4(3.3) 1.5(1.4) 1.2(1.1) 1.8(1.7) 12.3(6.5) 4.3(3.2) 69.0(6.7) 3.17

RC Prior Winitial(σ) 11.1(20) 11.1(20) 11.1(20) 11.1(20) 11.1(20) 11.1(20) 11.1(20) 11.1(20) 11.1(20) 14.63
Wbayesian(σ) 3.8(3.2) 2.4(2.1) 4.6(3.6) 1.5(1.4) 1.2(1.1) 1.9(1.8) 13.7(7.1) 4.1(3.1) 66.9(7.1) 3.23

aWinitial refers to a priori knowledge about weights of n conformation substates of the peptide. Wbeysian refers to the current best estimate of substate
weights and their confidence interval. χ2 = z−1∑j=1

z (expDj − compDj)
2/(σ2(expDj)) + σ2(compDj)).

Figure 3. Nine-state results for trialanine with the Amber99SB force field and TIP3P water with the Bayesian algorithm and the MD prior: (a)
Simulated prior distribution based on the MD prior. (b) Simulated posterior distribution of the final Bayesian model. (c) The differences between
computed J-coupling constant and experimental J-coupling constant for both MD simulation and our approach. (d) Two dominant substates in the
final Bayesian model.
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3. COMPUTATIONAL DETAILS

The initial simulation system was prepared by immersing
peptide Ala3 in a rectangular water box with a minimum
solute−wall distance 15 Å, neutralized by adding one Cl−

counterion. Since the experiment was conducted at pH = 2, the
N-terminus of the peptide would be protonated, as shown in
Figure 2a. The AMBER 1238 package with the Amber99SB
force field27,39−41 was used to perform classic MD simulations,
and water molecules were described by the TIP3P42 water
model. Following multistep minimizations and MD equilibra-
tions, a 200 ns NPT MD simulation was carried out. During the
MD simulation, periodic boundary conditions were employed
with a 10 Å cutoff for nonbonded interactions. Long-range
electrostatic interactions were treated with the particle mesh
Ewald (PME)43,44 method. All bonds involving hydrogen
atoms were constrained with the SHAKE45 algorithm, and a
time step of 2 fs was set. System temperature was controlled at
300 K with the Berendsen thermostat,45 and the pressure was
maintained at 1 atm. Snapshots were saved every 0.2 ps.
With 1 million snapshots from the MD simulations, a

“divide-and-merge” two-stage clustering approach is employed
to define and assign peptide conformational substates. In the
first stage, for each residue, MD snapshots are clustered into
residue-based microstates by employing the program
MSMBUILDER2.29 As illustrated in Figure 2b, the first residue
of the trialanine peptide is clustered into two residue-based
macrostates, the second into five macrostates, and the third into
three macrostates. In the second stage, these residue-based
macrostates are merged to yield a maximum of 2 × 5 × 3 = 30
substates in principle for the whole peptide (see Figure 2c), of
which only 22 substates are populated sufficiently. We consider
those substates that have >1% population in the MD
simulations for further analysis, which includes nine conforma-
tional substates (see Figure 2d). The MD population for each
substate i is then calculated based on the clustering results. The
J-coupling constants for each snapshot are calculated from
parametrized Karplus equations46−49 (see Table S1), and
average J-couplings constants iD are then computed for each
substate i.
With the experimental data expD collected for 15 J-coupling

constants,28 as listed in Table S2, and the corresponding
computed values iD, we carry out a Bayesian statistical analysis,
implemented with Python, to obtain the posterior distribution
Pposterior(W|expD) in eq 1. The random walk Metropolis-
Hastings algorithm35−37 is used to sample the posterior
distribution Pposterior(W|expD) in eq 1, and each posterior
distribution has been sampled in 1 million steps. The random
walk steps are obtained from a uniform distribution, and the
step size of the random walk is adjusted to achieve a desired
acceptance probability of 30%−70%.

4. RESULTS AND DISCUSSION

With the protocol described above, we have characterized a 9
substate ensemble for trialanine in aqueous solution with both
MD prior (initial weights calculated from MD simulations) and
RC prior (initial weights from a random-coil model, which
assumes equal population among all substates). From Table 1,
we can see that although the initial weights of the two prior
distributions are very far apart, the Bayesian estimates of
substate weights are consistent, and their final confidence
intervals (σ) as well as the error in reproducing the
experimental data (χ2) are significantly smaller than employing T
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initial substate weights. Figure 3a and b illustrate a prior
distribution from MD simulations as well as the posterior

distribution of the final Bayesian model, and Figure 3c
illustrates the significant reduction of error in reproducing the

Table 3. Five-State Results for Trialanine with Amber99SB Force Field and TIP3P Water with Both MD Prior and Random Coil
Prior

Amber99SB & TIP3P Y αL α β PII χ2

MD Prior Winitial(σ) 0.024(20) 1.3(20) 9.8(20) 31.7(20) 57.2(20) 9.46
Wbayesian(σ) 3.2(2.6) 3.5(2.7) 5.5(4.1) 2.0(1.8) 85.8(4.9) 2.10

RC Prior Winitial(σ) 20.0(20) 20.0(20) 20.0(20) 20.0(20) 20.0(20) 20.78
Wbayesian(σ) 4.0(3.0) 3.9(2.9) 7.6(5.1) 2.1(1.9) 82.4(5.6) 2.32

Table 4. Five-State Results for Trialanine with Amber99SB Force Field and TIP4PEW Water with MD Prior and Random Coil
Prior

Amber99SB & TIP4PEW Y αL α β PII χ2

MD Prior Winitial(σ) 1.4(20) 6.9(20) 11.0(20) 28.0(20) 52.7(20) 8.99
Wbayesian(σ) 3.3(2.6) 3.7(2.8) 6.5(4.6) 2.0(1.9) 84.5(5.2) 1.96

RC Prior Winitial(σ) 20.0(20) 20.0(20) 20.0(20) 20.0(20) 20.0(20) 20.35
Wbayesian(σ) 4.0(3.0) 4.0(2.9) 8.8(5.5) 2.1(1.9) 81.1(5.9) 2.17

Figure 4. “Divide-and-merge” two-stage clustering of a trivaline MD trajectory simulated with the Amber99SB forced field and TIP3P water. (a)
Trivaline at pH = 2 with each residue labeled. (b) Stage 1, population distribution with residue-based clustering based on Markov state models. (c)
Stage 2, residue-based macrostates are merged to yield a total 10 substates for the whole peptide in principle, but only eight substates exist in the MD
simulation.

Table 5. Eight-State Results for Trivaline with Amber99SB Force Field and TIP3P Water with MD Prior and Random Coil
Prior

αL 1 αL 2 α β PII

Amber 99SB & TIP3P 1 2 3 4 5 6 7 8 χ2

MD Prior Winitial(σ) 0.1(20) 0.1(20) 0.2(20) 16.2(20) 5.5(20) 25.6(20) 8.2(20) 44.1(20) 3.13
Wbayesian(σ) 6.0(4.1) 6.1(4.1) 2.9(2.4) 19.2(7.6) 2.7(2.2) 8.8(5.5) 3.4(2.7) 51.1(7.1) 1.99

RC Prior Winitial(σ) 12.5(20) 12.5(20) 12.5(20) 12.5(20) 12.5(20) 12.5(20) 12.5(20) 12.5(20) 7.13
Wbayesian(σ) 6.4(4.3) 6.5(4.3) 2.9(2.5) 20.8(8) 2.8(2.4) 8.9(5.6) 4(3.1) 47.7(7.2) 2.05

Table 6. Five-State Results for Trivaline with Amber99SB Force Field and TIP3P Water with MD Prior and Random Coil Prior

Amber99SB & TIP3P αL 1 αL2 α β PII χ2

MD Prior Winitial(σ) 0.1(20) 0.1(20) 16.4(20) 31.0(20) 52.3(20) 4.39
Wbayesian(σ) 5.8(4.2) 7(4.5) 22.8(8.0) 10.5(5.9) 53.9(6.9) 2.46

RC Prior Winitial(σ) 20.0(20) 20.0(20) 20.0(20) 20.0(20) 20.0(20) 9.46
Wbayesian(σ) 6.2(4.4) 7.6(4.7) 25.7(8.2) 10.5(6) 50.0(6.9) 2.51
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experimental data. These results clearly demonstrate the
applicability and robustness of our integrated Bayesian
approach.
In our nine substate ensemble, the A-PII-III substate is the

most dominant conformation, with a population of ∼67%; the
A-PII-II substate is the second most dominant conformation,
with a population of ∼13%, as shown in Figure 3d. Both
substates have the center amino acid in the PII conformation
but differ in the terminal dihedral angles. It should be noted
that this level of characterization cannot be achieved by
previous methods, which only focus on a single residue.
In order to assess the role of water models on our results, we

have carried out molecular dynamics simulations using
Amber99SB for the peptide and TIP4P-Ew50 for water
molecules, which previously have been shown to yield results
in closer agreement with experimentally measured J-coupling
data than the Amber99SB/TIP3P combination.27 All other
components in our computational and analysis protocol are the
same as the above. From Table 2, we see that MD simulations
with the Amber99SB/TIP4P-Ew force field yield 12 conforma-
tional substates with population levels above 1% after two-stage
clustering. In comparison with results in Table 1, the three
additional conformation substates have the central residue in
the αL conformation. We have characterized the corresponding
12 substate ensemble for trialanine with both MD prior and RC
prior, as shown in Table 2. Not only are the results for the
different priors very consistent, the first and second major
substates with populations of ∼65% and ∼12% are the same as
in the nine-state model, which has populations of ∼66% and
∼13%, respectively. This further demonstrates the robustness
of the integrated Bayesian approach.
To further examine its applicability and reliability, we have

also carried out clustering and Bayesian analysis focusing on the
central amino acid of Ala3. The clustering results in five
substates, as shown in Figure 2b. Only eight out of 15
experimental J-couplings (see Table S1 for those J-couplings
labeled red) are related to dihedral angles of the center residue
and were used to characterize this five-state ensemble. As
shown in Tables 3 and 4, we can see that all results are very
consistent, with the PII conformation most dominant with a
population of 86% ± 5%, 82% ± 6%, 84% ± 5%, and 81% ±
6%, respectively, for different priors and force fields. Mean-
while, all our results (Tables 1−4) consistently indicate that if
focusing on the central residue, the α basin would be the
second most populated (less than 10%) while the β
conformation substate would be the least populated. It should
be noted that Graf’s three-state model28 for the central residue
of Ala3 results in close to 0 population for the α conformation,
which seems puzzling given the helix propensity of Ala.
Finally, we applied this integrated computational-experimen-

tal-Bayesian approach to characterize the conformational
ensemble in trivaline in aqueous solution, as illustrated in
Figure 4a. We carried out 200 ns molecular dynamics
simulations using the Amber99SB/TIP3P force field, and
snapshots were clustered into eight conformation substates as
shown in Figure 4b and c. Using Graf’s experimental data set of
NMR coupling constants,28 we determined an eight substate
conformational ensemble for trivaline (Table 5) with a five-
substate conformation ensemble for the central residue of
trivaline (Table 6) using both MD and RC priors. The results
are again very consistent despite employing different priors or
different numbers of conformational substates. The most
dominant conformation substate for trivaline has the center

residue in the PII conformation with a population ∼49% ± 7%,
much lower than that for trialanine.

5. SUMMARY
Conformational analysis of unfolded peptides is notoriously
challenging, due to the intrinsically dynamic nature of the
ensemble of accessible states that are distinguished by small free
energy differences. Data from a variety of different spectros-
copies including UVCD, VCD, Raman, and ROA have been
used to demonstrate that there are in fact strong conforma-
tional preferences in unfolded states, modeled here by the
trialanine and trivaline peptides in water. As pointed out in a
detailed review by Adzhubei et al.,51 the PII conformation plays
a major role in unfolded peptide structure. The main problem
has been to quantify this or any other substate preference. In
this work, we have demonstrated an integrated computational-
experimental-Bayesian approach to characterize conformational
ensembles. In comparison with previous methods, this
integrated approach offers several novel attractive features: (i)
It characterizes the whole chain rather than a single residue. (ii)
It provides an objective and robust method to define and assign
peptide conformational substates. (iii) It naturally includes
uncertainty estimations, taking errors in both experimental data
and computational results into account. (iv) Bayesian estimates
of peptide conformational substates and their confidence
intervals can be further systematically refined with additional
high-quality experimental data and more accurate computa-
tional modeling, including more reliable force fields, more
extensive sampling, and more accurate methods to compute
experimental observables. Work along this line is currently in
progress.
Here, we have applied this integrated approach to define the

conformational ensembles of trialanine and trivaline in aqueous
solution. Our results concur with other studies that disprove
the random-coil model (a detailed review by Adzhubei et al.51)
and indicate that PII conformation is dominant in both
tripeptides, to different degrees. One conclusion of the new
approach is that the picture of a simple two-state distribution
between β and PII conformations is oversimplified. Our current
analysis points to significantly lower populations of β structure
than predicted by earlier studies.18,28 The integrated strategy
reported opens a way to quantitatively define the populations of
conformation ensembles in unfolded peptides using a system-
atic and consistent procedure. Inclusion of different sequences
and experimental data sets is currently being investigated.
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