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A phase resetting curve (PRC) measures the transient change in the phase of a neural oscillator subject to an external perturbation.
The PRC encapsulates the dynamical response of a neural oscillator and, as a result, it is often used for predicting phase-locked
modes in neural networks. While phase is a fundamental concept, it has multiple definitions that may lead to contradictory results.
We used the Hilbert Transform (HT) to define the phase of the membrane potential oscillations and HT amplitude to estimate the
PRC of a single neural oscillator. We found that HT’s amplitude and its corresponding instantaneous frequency are very sensitive
to membrane potential perturbations.We also found that the phase shift of HT amplitude between the pre- and poststimulus cycles
gives an accurate estimate of the PRC.Moreover, HT phase does not suffer from the shortcomings of voltage threshold or isochrone
methods and, as a result, gives accurate and reliable estimations of phase resetting.

1. Background

Oscillatory activities over a wide range of spatial scales, from
single neural cells to whole brain regions, are believed to
be relevant for brain activities from sensory information
processing to consciousness [1]. The phase of low frequency
theta oscillations (4–8Hz) has been often associated with a
clock that drives the pyramidal cells and has a crucial role in
processing of both spatial and nonspatial information in the
hippocampus [2–4] or induces possible long-term potentia-
tion effects [5, 6]. The phase of oscillations is also important
in the fast frequency gamma band (30–70Hz) where event-
related phase resettings correlate with visual stimuli [7]. A
strong correlation between the phase of theta rhythm and
the amplitude of gamma oscillations is also believed to be
related to visual stimuli processing and learning [1, 8, 9] and
fear-related information processing [10, 11]. In the phase-reset
model of cognitive processes [12], the phase of theta rhythm
drives the learning.

The phase of oscillations is also used for bridging a much
wider frequency range from slow theta rhythms of large
neural networks, such as those in the hippocampus, up to the
individual fast spiking neurons used for speech decoding [13].
It was found that speech resets background (rest) oscillatory

activity in specific frequency domains corresponding to the
sampling rates optimal for phonemic and syllabic sampling
[13, 14].

The phase of the intrinsic oscillatory rhythm in the
suprachiasmatic nucleus of the hypothalamus is constantly
reset by light-induced stimuli to produce stable circadian
oscillations [15]. The circadian clock generates rhythms and
synchronizes them to the environment [16]. The molecular
mechanism that generates the circadian rhythm is based on
transcription-translation feedback loops [17, 18]. It was found
that light pulses phase reset mPER1 gene expression in the
suprachiasmatic nucleus [19].

Phase resetting curve method was extensively used for
predicting the behavioral response from the activity of large
neural networks [20, 21] and also connected with the control
theory [22]. PRC was successfully used for controlling the
epileptic seizures [23] and Parkinson’s tremor [24, 25] and
was implemented in neuromorphic circuits to allow real-time
seizure prediction and control [26].

If oscillation and phase of oscillation are fundamental
concepts and phase resetting is a ubiquitous phenomenon,
how can we define unambiguously the concept of phase?
How do we define the concept of phase resetting using an
unambiguous phase definition?
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Figure 1: Phase resetting in response to a single inhibitory stimulus. (a)The unperturbed trajectory (continuous line) with an intrinsic firing
period 𝑃𝐼 is perturbed at a stimulus time 𝑡𝑠 measured from an arbitrary voltage threshold (phase reference 𝜑 = 0). As a result, the new firing
period is 𝑃1, which induces a permanent phase shift (resetting) in all subsequent cycles. (b) Phase space portrait of a stable limit cycle. The
voltage (dashed) and slow variable (dotted) nullclines show a fixed point that leads to large amplitude, stable, limit cycle oscillations. The
20, equally spaced, solid dots along the limit cycle suggest that the figurative point moves at different speeds through the phase space. (c) A
typical type 1 PRC for excitatory perturbations for a class I excitable cell has a unimodal shape. In this case, regardless of the stimulus phase,
the next spike is always advanced (negative resetting) (d). For a class II excitable cell, the corresponding type 2 PRC is usually bimodal. The
thick vertical arrow shows the timing of a brief current stimulus delivered at 𝜑 = 0.2.

1.1. What Is Phase Resetting? Although the concepts of phase
and phase resetting are used in phenomena spanning wide
temporal and spatial scales, frommolecular oscillations in the
suprachiasmatic nucleus that controls the circadian rhythm
to the synchronization of large neural populations, here we
only referred to the definition of phase for a single neural
oscillator model. A phase resetting curve (PRC) tabulates the
transient change in the firing frequency of an oscillator in
response to an external stimulus.There are two experimental
protocols for measuring the PRC in single, isolated, neurons:
(1) single stimulus and (2) repeated (periodic) entrainment.
In the case of a single stimulus protocol, a free running neural
oscillator with the intrinsic period 𝑃𝐼 is perturbed at a certain
instant, called stimulus time, 𝑡𝑠, measured from an arbitrary
phase reference 𝜑 = 0. As a result of the perturbation,
the length of the current cycle that contains the stimulation

(see Figure 1(a)) may be transiently shortened or lengthened
to a new duration 𝑃1. The relative change of the current
cycle duration with respect to the unperturbed duration 𝑃𝐼
determines the first-order PRC:

𝐹1 (𝜑) = 𝑃1𝑃𝐼 − 1. (1)

A negative value of the PRC means that the next spike was
advanced; otherwise it was delayed. Oftentimes, the effect of
a stimulus extends to subsequent cycles and is measured by
higher order PRCs [27–29]. In the case of repeated period
stimuli (entrainment) method, a recurring external stimulus
with a fixed period is used [30]. The interpretation of the
resetting induced by recurring stimuli and their usage in
neural network phase-lockedmode prediction is complicated
by the facts that (1) the measured resetting is a nonlinear
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sum of multiple PRC orders and (2) slow currents and/or
long-term potentiation/depression may be activated under
repeated stimulation.

In addition to the PRCs due to a single stimulus per cycle
which is the subject of this study, there are also generalized
PRC definitions [31, 32] that attempt to predict the amount
of resetting when one neuron receives multiple inputs per
cycle; for example, every single neuron in mammalian brains
receives thousands of inputs during the same cycle.

The focus of this study is not on how the PRC is inter-
preted and used for predicting network’s activity based on
the response of individual neural oscillators (reviews of PRC
applications can be found in [27–29]). Here we rather focused
on how the phase of an oscillator can be consistently defined
and how the PRC can be reliably extracted from data using
a consistent and reproducible definition of phase. For this
purpose, we only used single stimulus PRCs, although there
is nothing in our procedure that changes when recurrent
entrainment is used (for a review of generalized PRCmethod
see [31, 32]).

1.2. How Is PRC Extracted from Experimental Data? We as-
sumed that a hyperbolic, attractive, and stable limit cycle
describes the neural oscillations [33, 34]. There are at least
two widely used definitions of the phase of a neural oscillator.
A straightforward technique that is often implemented in
experimental electrophysiology uses an arbitrary voltage
threshold that is considered as a phase reference 𝜑 = 0
whenever it is crossed with a positive slope (see Figure 1(a)).
At issue is not only the arbitrariness of the voltage threshold
reference but, more importantly, the fact that the above
definition of phase gives a phase reference value even when
the figurative point travels outside the stable limit cycle
due to, for example, strong presynaptic perturbations. In
such cases, the phase should be undefined (unless a broader
definition of phase is adopted based on isochrones; see
below). Moreover, since our approach to PRC definition is
not limited to “infinitesimal” perturbations, the duration
of the stimulus could be quite significant compared to the
intrinsic firing period of a neuron. Therefore, the issue of
the undefined phase poses a significant conceptual difficulty
when deriving phase resetting based on the voltage threshold
definition and is exacerbatedwhen attempting to use the PRC
for phase-locked mode prediction in neural networks.

If themodel equations are known, an alternative approach
for phase definition uses the isochrones method [35–37].
Whenever it is possible to reduce the known nonlinear equa-
tions of themodel to phase equations, the isochronesmethod
allows PRC extraction either directly [35, 37, 38] or by solving
the corresponding adjoint problem [39, 40].The caveat is that
the theoretically predicted PRCs are valid very near the bifur-
cations of periodic firing and only under the assumptions
that allow a phase model reduction, usually weak pertur-
bations [41, 42].

For the remainder of this subsection, we used the voltage
threshold definition of phase reference due to its simplicity.
Voltage traces (see Figure 1(a)) represent one-dimensional
projections of stable and attractive limit cycle oscillations (see
Figure 1(b)). The PRC can be easily extracted by tabulating

the relative change in the firing period of the cycle that
contains the perturbation. Figure 1(c) shows a typical type
1 PRC in response to a brief excitatory rectangular current
perturbation (phase advance corresponds to negative reset-
ting). A type 1 PRC looks unimodal and is often associated
with class I excitable cells, that is, cells that can produce
stable oscillatory activity with arbitrarily low frequency [42–
44]. Usually, such excitable cells produce stable oscillations
via a saddle-node bifurcation on an invariant circle (SNIC)
[45]. A type 2 PRC looks bimodal (see Figure 1(d)) and is
often associated with class II excitable cells [42–44]. Class
II oscillations emerge through a Hopf bifurcation [45] (see
Figure 1(b)). The equally spaced phases along the limit cycle
show that phase space speed changes along the limit cycle,
which means that perturbations at different phases lead to
different recovery speeds and variable phase resettings (see
the solid circles in Figure 1(b)). As a side note, it was recently
shown that type 1 unimodal PRCs do not always come from a
class I excitable cell [46] and that, in fact, all PRCs are bimodal
with varying degrees [29, 47].

Another obvious shortcoming of the voltage threshold
reference for 𝜑 = 0 phase is revealed when the threshold is
not “appropriately” selected. For example, for some voltage
thresholds (see dashed line in Figure 2(a)) a relatively large
response to an excitatory perturbation may be counted as
new cycles, which wrongly suggests a PRC discontinuity
(see Figure 2(c)). Moving around the voltage threshold to
avoid spurious PRC discontinuities is not the right answer
since there will always be perturbations that would cross any
arbitrarily selected voltage threshold. For example, a lower
threshold may wrongfully count an inhibitory response as a
new cycle (see Figure 2(b)). Two additional shortcomings of
defining zero phase by a voltage threshold are worth men-
tioning. First, additional discontinuities of the PRC can occur
when a class II excitable cell receives an appropriate stimulus
that completely suppresses the oscillations (see Figure 2(d))
[48]. Secondly, in the case of bursting neurons that have a low
frequency envelope with superimposed trains of fast spikes,
it is particularly challenging to define a phase reference by a
voltage threshold. Some external stimuli could easily induce
“hard resetting” bymoving the figurative point across a phase
plane separatrix to a different basin of attraction, which leads
to the unsolved question: is what follows the stimulus a
new burst (i.e., “hard resetting”) or the continuation of the
previous one (i.e., “soft resetting”)? [27, 28].

Although it might be possible for the transiently
deformed voltage shape to encode important information re-
garding the stimulus, we assumed that stimulus characteris-
tics (phase, amplitude, and duration) are only encoded and
transmitted to the postsynaptic neurons as permanent phase
shifts. Therefore, rather than focusing on the minute changes
of the voltage trace shape during the cycle that contains the
perturbation, we chose to focus on stable, long-term effects
of the stimulus, such as the phase shift of the firing pattern.

1.3. Hilbert Transform-Based PRC. Can the PRC be extracted
from data without the arbitrariness and artifacts produced by
voltage threshold method or the inherent limiting assump-
tions embedded into the isochrone method?
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Figure 2: Spurious phase resetting discontinuities. (a) A phase reference defined by an arbitrary voltage threshold (see the horizontal dashed
line) counts strong excitatory responses as new cycles. (b) A too low voltage threshold wrongfully counts the response to a strong inhibition
as a new cycle. (c) As a result, in both cases the PRC has spurious discontinuities. (d) Additional discontinuities of the PRC are determined
by perturbations that abolish the oscillations.

In this study, we systematically used the Hilbert Trans-
form (HT) approach to compute the PRC from experimental
data and showed that the results are independent of the
arbitrary and often problematic definition of phase reference.
It was previously suggested that HT could offer an objective
definition of phase [49, 50] and here we expanded on these
ideas and used them to extract the PRC of a single, isolated,
neural oscillator.

TheHilbert Transform (HT) is named after DavidHilbert
(1862–1943), who used it for generating analytical functions
in connection with the Riemann problem. The HT is mainly
used for extending real functions into analytic functions.
Among other useful properties, the HT is bounded on 𝐿𝑝
for 1 < 𝑝 < ∞ and it is also bounded on various Sobolev
and Lipschitz spaces. In higher dimensions, the HT is used to
construct analytic disks with applications in cosmology [51].

Compared to other time-frequency spectral methods,
such as short time Fourier transform [52], HT gives sharper
frequency and time resolutions [53]. Compared to wavelet
and Gabor transforms [54], HT does not require ridge
extraction [55, 56]. Compared to Wagner-Ville distribution
method [57, 58], which is limited to only linear and stationary
data, HT can handle both nonlinearities and nonstationary
data. Here we detailed how the amplitude and the phase of
HT could be used to extract the PRC from data.

2. Model and Method

2.1. Model. All numerically generated data used a Morris-
Lecar (ML) model neuron [59] that has the advantage of
working both as a class I and as a class II excitable cell by
changing a small number of parameters [43, 60]. For each
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excitability class, we used rectangular current pulses with
both positive and negative amplitudes to mimic excitatory
and inhibitory perturbations, respectively. We only discuss
PRCs in response to a single rectangular stimulus applied
at a stimulus time 𝑡𝑠 measured from an arbitrary reference
phase. Unless otherwise stated, the zero voltage crossing
with positive slope is the phase reference. As a result of the
perturbation, the intrinsic firing period 𝑃𝐼 changes to 𝑃1 (see
Figure 1(a)). The corresponding phase resetting induced by
the stimulus applied at a phase 𝜑 = 𝑡𝑠/𝑃𝐼 is given by (1).
In our data, the first two cycles are free runs (no stimulus)
only used for determining the intrinsic firing period 𝑃𝐼.
The perturbation is applied during the third cycle and we
recorded at least five subsequent cycles after the perturbation.

2.2. Method. The Hilbert Transform (HT) of a time series
(membrane potential) 𝑥(𝑡) is defined as [49]

𝐻𝑥 (𝑡) = 1𝜋P.V.∫
∞

−∞

𝑥 (𝜏)𝑡 − 𝜏𝑑𝜏
= 1𝜋 lim
𝜖→0+

(∫𝑡−𝜖
𝑡−1/𝜖

𝑥 (𝜏)𝑡 − 𝜏𝑑𝜏 − ∫𝑡+1/𝜖
𝑡+𝜖

𝑥 (𝜏)𝑡 − 𝜏𝑑𝜏) , (2)

where P.V. stands for Cauchy principal value of the improper
integral. The analytical signal 𝑥(𝑡) associated with a time
series 𝑥(𝑡) is

𝑥 (𝑡) = 𝑥 (𝑡) + 𝑖𝐻𝑥 (𝑡) = 𝐴 (𝑡) 𝑒𝑖𝜃(𝑡), (3)

where 𝑖 = √−1. The amplitude 𝐴 and the phase 𝜃 in (3) can
be extracted from

𝐴 = √𝑥 (𝑡)2 + 𝐻𝑥 (𝑡)2,
𝜃 = arctan(𝐻𝑥 (𝑡)𝑥 (𝑡) ) . (4)

3. Results

3.1. The Hilbert Transform. The first step in extracting the
PRC from experimental data is performing a HT on the
original voltage time series using (2). Although all high level
languages (Mathematica, MATLAB, etc.) have predefined
functions for HT computation, here we only use MATLAB
as a convenient computational tool. For a time series 𝑥(𝑡),
the MATLAB code for computing its HT is simply 𝐻𝑥(𝑡) =
hilbert(𝑥). The HT has the same amplitude and frequency
content as the original sequence and also includes phase
information that depends on the phase of the original signal.
The HT is useful in calculating instantaneous attributes of a
time series, such as its Hilbert amplitude and instantaneous
frequency. The instantaneous amplitude is the amplitude of
the complex HT (analytical signal) and the instantaneous
frequency is the rate of change of the instantaneous phase
angle (see (4)).

The very first check that theHT gives awell-defined phase
is a plot of the membrane potential 𝑥(𝑡) versus its HT,𝐻𝑥(𝑡)
(see Figure 3(a)), which is very similar (except for a phase
shift) to the phase space plot shown in Figure 1.

Based on (4), we extracted from the analytic signal 𝑥 its
amplitude (see Figure 3(b)) and its phase (see Figure 3(c)).
The first two cycles are free runs (shaded areas in Figures
3(b) and 3(c)), the third cycle contains the perturbation (thick
vertical arrow), and the following cycles allow the neuron to
recover from the perturbation. As with all HTs, the beginning
(the first cycle) and the end (the last cycle) of the data are
distorted due to windowing effects [61, 62] and were dropped
from our analysis. A solution often used for correcting HT
distortion is signal windowing [52]. Both the amplitude (see
Figure 3(b)) and unwrapped phase (see Figure 3(c)) show
clear distortions during the third cycle, which contains the
perturbation, compared to the second (unperturbed) cycle.
The rate of change of phase (instantaneousHilbert frequency)
of the analytical signal clearly indicates a significant distor-
tion due to the external perturbation (see Figure 3(d)).

3.2. PRCExtraction Based onHilbert Amplitude of theAnalytic
Signal. We used Hilbert amplitude profile of the second
unperturbed cycle (Figure 3(b)) as a reference pattern to
determine the phase shift induced by the perturbation (see
shaded area in Figure 4(a) that corresponds to the second,
unperturbed cycle).

To determine the phase resetting (permanent phase shift),
we compared by howmuch shouldHilbert amplitude trace of
a cycle recorded long after the perturbation effect dissipates
be circularly shifted to perfectly overlap with the Hilbert
amplitude of an unperturbed cycle (see Figure 4(b)). The
circular shift we performed is due to the periodicity of the
unperturbed signal. Hilbert phase could be used in a similar
manner to extract the PRC.

We estimated the amount of phase resetting using (1)
the correlation of two amplitude profiles (one before the
perturbation and the other one after the perturbation effect
dissipates) and (2) by least square minimization between the
two selected cycles shaded in Figure 4(a).

How long is long enough for the effect of the perturbation
to dissipate? It all depends on how strongly attractive is the
limit cycle [39, 43]. For the model parameters we selected,
the limit cycle is strongly attractive; that is, the phase space
trajectory returns to the unperturbed trajectory after one
cycle. Although there are no formal rules and different studies
used variable number of cycles to remove the transients
[63, 64], in our case a minimum of two cycles after the
perturbation suffice.

In order to quantitatively determine the appropriate delay
for the perturbation to dissipate, we used the root mean
square (rms) of the pre- and poststimulus HT amplitude and
frequency profiles as measures of how close the poststimulus
profile is to the unperturbed limit cycle. In our simulations,
themembrane voltage 𝑥(𝑡) contained two unperturbed cycles
that are on the steady limit cycle such that the prestimulus
HT amplitude is 𝑎(𝑡 + 𝑃𝐼), where 𝑡 ∈ (0, 𝑃𝐼) and 𝑃𝐼 is the
intrinsic period of oscillation. We used a 4th-order Runge-
Kutta integration method for stiff differential equations and
sampled the solution with the sampling timeΔ𝑡, that is, using𝑁 = 1000, equally spaced, sampling points per cycle. As a
result, the discrete prestimulus Hilbert amplitude profile was𝑎(𝑁 + 𝑘), with integer index 1 ≤ 𝑘 ≤ 𝑁. The poststimulus
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Figure 3: Analytical signal from Hilbert Transform. (a) A typical membrane potential (real part of HT) plot versus its imaginary (phase
shifted) part of HT shows a well-defined limit cycle. The arrow indicates the synaptic stimulus that transiently moved the figurative point
outside the stable limit cycle.The plot is very similar (besides a phase shift) to the phase space plot shown in Figure 1(b). (b)The amplitude of
HT shows the first two unperturbed limit cycles followed by the perturbed cycle and a few recovery cycles. The third cycle that contains the
perturbation clearly shows a significant amplitude distortion due to the external stimulus. (c) The unwrapped phase of the analytical signal
is also sensitive to external stimuli (although less obvious from the plot). (d) A full period of oscillation of Hilbert frequency (rate of change
of Hilbert phase) measured one period before the stimulus (blue trace) clearly shows a permanent phase shift (resetting) when compared
against a full period far away from the perturbation (red trace).

steady amplitude of HT was selected as 𝑎(delay ∗ 𝑁 + 𝑘),
where delay ≥ 3 because delay = 2 corresponds to the cycle
containing the perturbation (see Figure 3(b)). We defined the
rms as

𝑎rms = √ 1𝑛
𝑛∑
𝑖=1

(𝑎shifted (delay ∗ 𝑁 + 𝑖)𝑎 (𝑁 + 𝑖) − 1)2, (5)

where 𝑎shifted was the circularly shifted HT amplitude (or
frequency) with a certain appropriate delay after the stimulus.

Ideally, after the effect of the perturbation dissipated, one
should find zero rms of the difference between the pre-
and temporarily shifted poststimulus HT amplitude (or
frequency) profiles. The rms of pre- and shifted poststimulus
profiles served as a selection tool that provided a clear answer
as to how long we should wait until the figurative point
returned back to the limit cycle. In our numerical simulations,
we found that by selecting the poststimulus profile at least two
cycles (delay ≥ 3) after the perturbation led to a very low rms
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Figure 4: Amplitude of HT analytical signal. (a)The plot of HT amplitude of the first cycle before the perturbation (continuous line) is shifted
with respect to a full cycle recorded long after the perturbation dissipates (dashed line). (b) The amount of phase shift (resetting) could be
visually estimated by plotting the two cycles together and was automatically computed using the correlation function.
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Figure 5: Phase resetting from HT analytic signal. The phase resettings obtained using the arbitrary voltage threshold method (dashed line)
and Hilbert amplitude phase shift method (continuous line) are virtually identical both for type 1 unimodal (a) and for type 2 bimodal (b)
PRCs.

that was below 0.1% of the reference amplitude.The small rms
did not increase with delay suggesting that we do not need
to consider a poststimulus cycle farther than two cycles after
the perturbation.The small nonzero rms value comes mostly
from the discretization errors.

The resulting PRC from Hilbert amplitude shift method
(continuous lines in Figure 5) matches very well the PRC
obtained with the traditional method of the arbitrary voltage
threshold crossing for both PRC types. Similar results were
obtained using Hilbert instantaneous frequency profiles. The
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HTmethod does not require a formal definition of zero phase
and can be applied to arbitrary stimuli.

4. Conclusions

In this paper we found that using either the amplitude or
the phase of the HT of membrane potential recorded from
electrophysiological data in response external stimulations
of neurons is an effective and straightforward approach to
extracting phase resetting curves. Compared to the tradi-
tional PRC method (see Figure 1) that relies on an arbitrary
voltage threshold, extracting the PRC from the analytic signal
obtained using HT of membrane potential does not make
any assumption other than the fact that the poststimulus
membrane potential eventually returns to the unperturbed
limit cycle. The closeness of the poststimulus cycle to the
unperturbed limit cycle is quantitatively estimated with
the rms and can be used to increase the accuracy of the
PRC evaluations. As a result, we were able to automatically
select the pre- and poststimulus HT amplitude or frequency
patterns and find the PRC in real time.

In the presence of noise, the PRC extraction from
experimental data is more challenging. For noisy data, there
are multiple approaches that have been used and they were
selected based on the signal-to-noise ratio. One commonly
usedmeasure of noise level is the coefficient of variation (CV)
of the interspike interval of the free running neuron. For
low CV, that is, low noise level, such as in the case of the
experiments carried out by Preyer andButera [65] onneurons
of the abdominal ganglia of Aplysia californica, a spline fit of
the recorded signal can successfully remove data noise and
give the PRC. Others used smoothing with a Gaussian filter
[66] or nonlinear regression [67, 68] or approximated the
PRC by the solution of a stochastic (noisy) Langevin phase
equation [69, 70].
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