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Background: The commercial success of monoclonal antibodies (Mabs) has made biological therapeutics 
attractive to pharmaceutical companies. The priority of biopharmaceutical companies is to acquire and 
develop cell lines that enable them to manufacture biologics quickly, consistently, and economically. Clone 
selection is a critical process for cell line development. However, the traditional clone selection process 
requires the evaluation of large numbers of clones using cell growth rate, cell densities and titer, product 
quality, and so on. 
Methods: To improve efficiency of the clone selection strategies, we developed a relative titer (RT) 
prediction model by the quantitative information extracted from microscope images during the cell line 
development process. The performance of this RT prediction model was further evaluated with 50 clones 
from 5 different cell lines.
Results: The RT prediction model was able to predict high producers from a given data set when the same 
host cells were used. Although inaccurate prediction occurred when different host cell was used, this RT 
prediction model may serve as an excellent proof of concept study that quantitative information from cell 
line development images provides valuable information to facilitate the cell line development process. 
Conclusions: Here, we present the first predictive model that can be used to estimate the relative 
productivity of Chinese hamster ovaries (CHO) clones during the cell line development. Additional 
experiments are currently in process to further improve the RT predictive model. Nevertheless, our current 
study will serve as a foundation for more prediction models for cell line development that can facilitate the 
selection of clones. 
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Introduction 

The commercial success of monoclonal antibodies 
(Mabs) has made biological therapeutics attractive 
to pharmaceutical companies (1). Biopharmaceutical 
companies prioritize the acquisition and development of 
cell lines that enable them to manufacture biologics quickly, 

consistently, and economically (2-8). The improvement 
of cell line development techniques have been focused 
on dilution based plating, robotic high throughput 
methods, fluorescence-activated cell sorting (FACS), and 
so on, and clone selection methods followed by detailed 
characterization of subclones (3,7,9-13). Clone selection is a 
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critical process for cell line development (14); however, the 
traditional clone selection process needs to evaluate large 
numbers of clones by using cell growth rate, cell densities 
and antibody titer, and product quality (6,8,11,15,16). 
Due to the large number of clones that require evaluation, 
clones selection of cell line development is a lengthy, labor-
intensive screening process (6,8,11,15,16). Clone selection 
strategies, omic-profiling, such as genomic, proteomic, 
metabolic studies, and so on, have been developed to 
evaluate the molecular phenotypes underlying productivity 
in Chinese hamster ovaries (CHO) in attempts to improve 
the efficiency of the clone selection process by predicting 
the cellular attributes of productivity (16-19). Omic-
profiling in CHO for clone selection has been not widely 
adopted mainly on account of omic studies generally being 
time consuming and labor intensive (19,20). Moreover, 
these omic-profiling studies usually require additional 
equipment and experiments (3,16,17,19,21) that further 
hinder their use in facilitating clone selection. 

Recent studies have shown that change of metabolic 
profile manifests in change of morphology of the CHO 
cells such as size, circularity, solidity, and so on (22-24). 
Moreover, the average size of CHO cells was different 
during the cell culture media selection process (22), and 
the circuity was used as one of the parameters for clone 
selection (12). Confocal Raman microscopy has recently 
been used as a potentially viable and non-invasive method 
to identify high producing cells during clone selection (25).  
Therefore, we hypothesized that microscope images 
obtained during clone selection experiments could contain 
valuable information to facilitate the clone selection process 
during cell line development. 

To test this hypothesis, we extracted quantitative 
information as predictors from microscope images 
during the cell line development process and developed a 
prediction model using these predictors. The prediction of 
the relative titer (RT) of a clone during the clone selection 
process was used as a proof-of-concept study. This RT 
prediction model was based on the soft independent 
modeling of class analogy (SIMCA) method. The SIMCA 
modeling provides a useful classification of variables in 
graphical data by reducing dimensions of graphical variables 
by principal component analysis (PCA) (26-29). A SIMCA 
model consists of a collection of independent PCA models 
and datasets extracted from images that were able to be 
used for pattern recognition and other statistical analyses. 
The SIMCA method has previously been utilized in 
numerous CHO cell culture applications (9,30-32). It is an 

excellent modeling method to extract information from a 
set of numeric variables and interpret these variables into a 
meaningful and understandable predictive model (28). Here, 
we present the first RT predictive model of CHO clone 
selection based on the image analysis during clone selection 
process. We present the following article in accordance with 
the MDAR reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-2822).

Methods

Passage of host CHO cell culture

Suspension culture CHO-K1 cell line [European Collection 
of Authenticated Cell Culture (ECACC, UK)] was 
purchased from Public Health England (Harlow, UK). Cells 
were directly suspended in QUACELL CD04 media. The 
CHO-K1Q (Quacell, CHINA) cell line was purchased from 
Quacell Biotech, and the CHO-S (Gibco, Grand Island, 
NY, USA) cell line was purchased from Thermo Scientific 
(Waltham, MA, USA). All 3 host CHO cell lines were 
adapted by passaging the cells to a viable cell density (VCD) 
of 0.5×106 cells/mL, when the VCD reached 3×106 cells/mL.  
All cells were only selected if there is no aggregate in the 
suspended cell culture.

Electroporation

As previously described (33), the vector containing the 
appropriate expression promoter and the gene of interest 
were transformed into Esherichia coli (Takara, Mountain 
View, CA, USA) for expansion and then the plasmid DNA 
were isolated using endotoxin-free kits (Axygen, Union 
City, CA, USA). High-quality DNA was characterized 
as having an optical density (OD)260/280 ratio between 
1.88 and 1.92, an OD260/230 ratio of 2.1–2.2, and a 
concentration above 0.5 mg·mL−1. Cell growth CD04 
media (Quacell, Zhongshan, Guangdong, China) was 
used to perform at least 5 passages from thawing. As soon 
as cell density reached 3×106 cells/mL (log phase) before 
electroporation, the cell suspension was centrifuged at  
200 ×g for 5 min at room temperature, followed by washing 
cells using cell pellet with electroporation solution (Bio-
Rad, Hercules, CA, USA). The cells were then resuspended 
to final cell concentration of 20×106 cells·mL−1 before 
electroporation by an electroporator (Bio-Rad, USA). 
Cells were incubated for 7 days before single cell cloning 
(SCC) experiments.

https://dx.doi.org/10.21037/atm-21-2822
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Cloning selection experiments

The SCC experiments were performed as previously 
described (11,16) with some modifications. Briefly, 100 µL 
of different compositions of SCC medium were added to 
each well in a 96-well plate except for the A1 well. A total of 
200 µL of cell suspension was added to the A1 well. Then, 
100 µL of cell suspension from A1 was quickly transferred 
into B1. This process was repeated to dilute the cells in the 
first column from A1 to the H1 well. After this dilution, 
100 µL of culture medium was added into each well in the 
first column to bring the final volume to 200 µL. A total of 
100 µL of cell suspension from first column was transferred 
into the second column. The process was repeated to dilute 
column by column until the volume of the twelfth column 
had increased to 200 µL. The 96 well plates were incubated 
at 37 ℃ with 5% CO2 in a humidified incubator (Thermo 
Scientific, USA). The plates were scanned with a Cell-
Metric Imager (Solentim, Dorset, UK) to identify single cell 
clones at 0, 24, 48, and 96 h. Proliferated single cells were 
identified by Cell-Metric Imager at 96 h. Selected clones 
were expanded sequentially to 24-well, 6-well plates and 
TubeSpin bioreactors (TPP, Trasadingen,  Switzerland) in the 
CD004 Media (Quacell, China). The clones were selected 
for cryopreservation and further evaluation. Selection of the 
CHO clones with the phenotye of high productivity and fast 
growth rate were used as the directed evolution method.

Clone expansion and model evaluation

Fed-batch evaluations were performed in TubeSpin 
bioreactors (TPP, Switzerland). Individual tubes were set 
up with a working volume of 30 mL of production media, 
incubated at 37 ℃, 5% CO2, 85% relative humidity, and 
shaken at 225 rpm at 50 mm orbital diameter in a ISF4-X 
incubator (Kuhner, Birsfelden, Switzerland). Cultures were 
inoculated at a target cell density ranging from 8×105 to 
1×106 cells/mL and fed a single bolus Feed02 (Quacell, 
China) at days 3, 6, and 9. In-process samples were taken 
from cultures on days 3, 5, 7, 9, 11, 13, and 14 for cell 
image analysis and cell count by Bio-Rad TC-1000 (Bio-
Rad, USA). Antibody titers were measured by affinity 
Protein A high-performance liquid chromatography (Agilent 
Technologies, Inc., Santa Clara, CA, USA).

Titer and protein quality assessment

Antibody titers were measured by the affinity Protein 

A chromatography in a  high performance l iquid 
chromatography (HPLC) (Agilent, USA) system equipped 
with a quaternary pump, solvent degasser, column oven, 
and variable-wavelength UV detector. A POROS A/20 of  
100 mm × 4.6 mm (Thermo Scientific, USA) column was 
used with the column temperature set at 25 ℃. There were 
3 mobile phases (A: 0.05 M phosphate buffer, 0.02% sodium 
azide, pH 7.5 for equilibration of the column; B: 0.25 M 
glycine, pH 2.5 for product elution; C: 0.25 M glycine, pH 
6.1) used with the flow rate at 2 mL/min for washing of 
impurities before product elution. The injection volume 
of the samples and curve calibration was 50 μL. The final 
profile was obtained after subtracting the profile of a blank 
to assist in the integration of the baseline. Ion exchange 
chromatography (IEC) of the protein was analyzed on an 
HPLC system (Agilent, USA) after protein A purification. A 
MAbPac SCX-10 4 mm × 250 mm column (Thermo, USA) 
was equilibrated at 25 ℃. The mobile phases consisting 
of 20 mM Na2HPO4 (Buffer A) and 20 mM of Na2HPO4 
with 250 mM of NaCl (Buffer B) at pH 7 were operated at  
0.7 mL/min. After an isocratic elution at 20% of Buffer B 
for 5 min, a linear gradient was applied from 20% to 50% 
of B in 40 min. The column was then washed for 5 min at 
70% of B and further equilibrated for 25 min at 20% of B. 
Elution was monitored by UV absorbance at 280 nm. The 
acidic peaks, basic peaks, and main IEC peaks were obtained 
after subtraction of a blank to assist in the integration of the 
baseline. The main peak percentage was calculated by the 
main IEC peak divided by all the peaks.

The same HPLC system (Agilent, USA) was used for all 
size exclusion chromatography (SEC) measurements. An 
injection volume of 20 μL into A TSKgel G2000SWXL 
column (Tosoh Bioscience, Griesheim, Germany; 7.8 mm 
i.d. ×30 cm, 5 μm particle size, 125 Å pore size) with a flow 
rate of 0.8 mL/min at a column temperature of 25 ℃. For 
the mobile phase, stock solutions of 0.05 M of ammonium 
salt were prepared using ultrapure water and filtered over 
Whatman Ltd. (Maidstone, United Kingdom) regenerated 
cellulose membrane filters (0.45 μm). Adjustment of the 
solution’s pH was performed after filtration. Equilibration 
of the column with the respective mobile phase was 
performed for at least 5 column volumes prior to protein 
injection. The low molecular weight peaks, high molecular 
weight peaks, and main SEC peaks were obtained after 
subtraction of a blank to assist in the integration of the 
baseline. The main SEC peak percentage was calculated by 
the main SEC peak divided by all the peaks.
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Image acquisition

Images of cells were obtained on a TC-1000 Cell Counter 
(Bio-Rad, USA) and quantified using the Fiji software 
package in ImageJ (https://imagej.net/Fiji) (34). 

Statistical analysis

Image analysis, data analysis, data visualization, and 
predictive modeling were performed using SIMCA P14 
Trial Version (Sartorious, Goettingen, Germany) and 
Python (3.7.3) (35) with libraries Numpy (v1.16.5), Pandas 
(v0.25.1), Matplotlib (v3.1.1), Seaborn (v0.9.0), and Scipy 
(v1.3.1). 

Results

Database generation

A total of 45 K1Q Clones expressing Mab A (K1Q-Mab A 
clones) were successfully expanded and cryopreserved. These 
clones were evaluated by their growth curves (Figure 1).  
The maximum cell densities were between 5.98×106 and 
15.89×106 cells per mL. Most of the clones had titer 
between 4 and 7 g/L, indicating that these clones are 
relevant to the titer in most industrial cases (3,7,36,37). 
Since the volumetric productivities were different among 
different molecules, RT was used to generate the predictive 
model for clone selection. The RT were calculated by the 

Figure 1 Growth curve of the 45 clones in Feb batch. Growth curve of 45 K1Q Clones expressing Mab A (K1Q-Mab A clones). The 
maximum cell densities were between 5.98×106 and 15.89×106 cells per mL.
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ratio of the clonal volumetric productivity to the average 
volumetric productivity of all 45 clones. The RT were 
found between 0.35 and 1.97 for K1Q-Mab A expressing 
clones with an average RT of 1.09, and standard deviation 
(SD) at 0.35 (Figure 2). A total of 5 clones with RT above 
1.66 were considered extremely high producers as they 
were 3 SD away from the average. The RT range of clones 
below 0.43, and between 1.44 and 1.66 were considered low 

producers and high producers, respectively, since they were 
both 2 SD away from the average. The classification of the 
45 K1Q Mab A expressing clones are shown in Figure 3. 

Predictors identification

Day 3 cell counting images by TC1000 were selected for 
image analysis as they were in the early stage of culture 
while enough generations had passaged for statistical 
significance. The representative images from day 3 cell 
counting images of a low producer (Figure 4A), medium 
producer (Figure 4B), high producer (Figure 4C), and 
an extreme producer (Figure 4D) are shown in Figure 4. 
The quantified data extracted from the image analysis 
is displayed in Table 1. Quantitative image analysis 
(QIA) is a range of techniques for extracting objective, 
quantitative information from microscopy, spectroscopy, 
and chromatography images (38-40). The main steps 
of QIA are image capturing, image storage, correcting 
imaging defects, image enhancement, segmentation of 
objects in the image, and image quantification (41-43). It 
has long been used by medical professionals and researchers 
for omics and pathological studies (19,21,44,45). The 
QIA of microscopy have been recently been applied to 
extract information from microscope-generated images 
(28,38,40,46). Here, we generated the images (Figure 5) 
using TC-1000 cell counter. The qualification of these 
images was performed by converting the image signal into 
numerical information using the Fiji software package. The 

Figure 2 Titer of the 45 clones in Feb batch. The RT of 45 clones of 45 K1Q clones expressing Mab A (K1Q-Mab A clones) were found 
between 0.35 and 1.97. The average RT is 1.09 with standard deviation at 0.35. RT, relative titer.
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Figure 3 RT Classification of the 45 clones. Forty-five K1Q 
Clones expressing Mab A (K1Q-Mab A clones) were classified into 
4 categories: extremely high producers, high producers, medium 
producers, and low producers. Clones with RT above 1.66 were 
considered extremely high producers. The RT range of clones 
below 0.43, and between 1.44 and 1.66 were considered low 
producers and high producers, respectively. RT, relative titer.
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Figure 4 Images of cell with different productivity. The representative images from day 3 cell counting images of a low producer (A), 
medium producer (B), high producer (C), and an extremely high producer (D) stained by Trypan Blue.

A B

C D

500 um

500 um

500 um

500 um

Table 1 Summary of the imaging quantitative information (IQI)

Cell density Cell size Cell shape

Viable cell density (cells per mL) Average diameter (µm) Clumping rate

Total density (cells per mL) No. of cells with 12 µm diameter (CD12) No. of cells clumping with 2 cells (CC2)

Viability (%) No. of cells with 14 µm diameter (CD14) No. of cells clumping with 3 cells (CC3)

Dead cell density (cells per mL) No. of cells with 16 µm diameter (CD16) No. of cells clumping with 4 cells (CC4)

Total cells No. of cells with 18 µm diameter (CD18) No. of cells clumping with 5 cells (CC5)

Live cells No. of cells with 20 µm diameter (CD20) No. of cells clumping with 6 cells (CC6)

Dead cells No. of cells with 22 µm diameter (CD22) No. of cells clumping with 7 cells (CC7)

No. of Cells with 24 µm diameter (CD24) No. of cells clumping with 8 cells (CC8)

No. of cells with 26 µm diameter (CD26) No. of cells clumping with 9 cells (CC9)

No. of cells with 28 µm diameter (CD28) No. of cells clumping with 10 cells (CC10)

No. of cells with 30 µm diameter (CD30) No. of cells clumping with 11 cells (CC11)

No. of cells with 32 µm diameter (CD32) No. of cells clumping with 12 cells (CC12)

No. of cells with 34 µm diameter (CD34) No. of cells clumping with 13 cells (CC13)

No. of cells with 36 µm diameter (CD36) No. of cells clumping with more than 14 cells (CC14+)

No. of cells with 38 µm diameter (CD38) Standard deviation of no. of cell clumping (CC STD)

No. of cells with 40 µm diameter (CD40) Circularity

Standard deviation of diameters of cells (CD STD)
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A
B

C

numerical information consisted of the grey scale values 
that described the brightness of every pixel within the image 
of the cell population. The background noise of the images 
was optimized by discrimination between different cells in 
an image and the uniformity of illumination in the whole 
image. Image enhancement, reduction of background noise, 
extraction of edges, identification of points, strengthening 
texture elements, and improving contrast were used 

to ensure more accurate quantification of cell density, 
cell shape, and cell size. The summary of the imaging 
quantitative information (IQI) extracted from QIA by Fiji 
software is presented in Table 1. 

The IQI was then qualified as a predictor for RT using 
Python software (35). The IQIs, such as VCD, viability, 
average diameter, circularity, clumping rate, and RT were 
calculated to generate a pair-plot (Figure 5) with the pair-

Figure 5 Pairplot of IQIs. The IQIs were used to generate a pair-plot in Seaborn library. The diagonal axis represents the distribution of 
the IQIs (A). The lower triangle represents the KDE (kdeplot with default parameters, Seaborn) of the respective IQIs on x-axis and y-axis (B). 
The upper triangle represents the regression model estimation (regplot with default parameters, Seaborn) of the respective variables on the 
x-axis and y-axis (C). IQI, imaging quantitative information; KDE, kernel density estimation.
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plot function in the Seaborn library in Python. The diagonal 
axis represents the distribution of the IQIs (Figure 5A);  
it should be noted that the data for VCD and viability was 
poorly distributed. This was due to the use of day 3 data 
cells which were still in log phase, where most of the cell 
density was close to 2−4×106, and viability was mostly above 
95% (Figure 5A). The lower triangle represents the kernel 
density estimation (KDE) (kdeplot with default parameters, 
Seaborn) of the respective IQIs on the x-axis and y-axis 
(Figure 5B). The KDE plot showed the estimated probability 
of IQIs on the y-axis as the density function of the variables 
on the x-axis. For example, when the average VCD was at 
0.5×107, the highest probability for RT was 0.4 (Figure 5B).  
However, it should be noted that KDE is limited to 
estimation of the density function for homogenous cells (47).  
Therefore, KDE probability function needed to be 
coupled with regression model estimation to ensure the 
data was accurately correlated (47,48). The upper triangle 
represented the regression model estimation (regplot with 
default parameters, Seaborn) of the respective variables 
on x-axis and y-axis (Figure 5C). The deep slope of the 
regression plot indicated that there was a correlation among 
the IQIs (Figure 5A). The regression model indicated that 
RT showed little correlation with the IQIs (Figure 5C, last 
column). However, correlations were identified with some 
of the IQIs, such as the correlation of average diameter 
and VCD (Figure 5B). These correlations indicated that 
interactions existed among these variables. 

To further investigate interactions among IQI and their 
relation to RT, all IQIs were used as input to calculate 
a correlation matrix with the corr function  (default 
parameters) in Pandas of Python. The resulting heatmap 
based on this correlation matrix is displayed in Figure 6 
with the heatmap function (default parameters) of Seaborn. 
The red color in the correlation matrix represents positive 
correlation coefficient and blue color represents negative 
ones. Correlation matrix data visualization with the 
right tools facilitates data interpretation from multiple 
dimensions. For example, Figure 5 shows that diameter 
had 2 clusters centering at about CD17 and CD23, which 
could potentially reveal characteristics of this cell line and 
possible predictor for RT. The circularity was negatively 
correlated with average diameter, which could potentially 
indicate that these 45 clones were actively undergoing cell 
division. The correlation matrix in Figure 4 shows that RT 
had the strongest correlations with IQIs that were related 
to cell shape (CC04, Pearson Correlation Coefficient, 
PCC =0.30) and cell size (CD12, PCC =0.32). Moreover, 

these IQIs showed a strong correlation data in the heat 
maps, indicating that the IQIs relevant to cell shape 
and cell size should be considered as predictors for our 
predictive models. Consistent with the KDE estimation 
and distribution observation in Figure 4, the cell density 
related IQIs such cell density and viability were not able to 
reveal a strong correlation cluster in the correlation matrix. 
Therefore, these cell density-related IQIs were not used as 
predictors to construct our predictive model. 

Model construction

The SIMCA method was used to build an RT predictive 
model that can associate the titer with the predictors and 
interactions of the predictors. It is a supervised statistical 
classification technique that is based on PCA (26,30), and it 
is particularly powerful for building multiple class models 
for prediction (49). Using SIMCA for image analysis data 
has previously been described and elaborated on in several 
papers (50-52). Here, we used our image data from the 45 
clones as the training data set to build a predictive model 
with R2=0.75, and Q2=0.48 (Figure 7). This RT predictive 
model was based on an orthogonal projection to latent 
structures (OPLS) modeling. The OPLS model was an 
extension of the PLS model that separated the predictors 
in Table 1 into 2 categories of X variables: the first category 
was linearly related to titer while the second category was 
orthogonal to titer. Hence, the linearly related X variables 
are modeled by the predictive components, while orthogonal 
X variables are modeled by the orthogonal components. 
This partitioning of the X data provides improved model 
transparency and interpretability (53). The visualization 
of the predictive components was labelled as t1, t2, and 
so on, and the orthogonal components had a subscript 
o, for example, to 1 for the first orthogonal component 
in X variables (Figure 8). The scores of the scatter plot 
of the RT predictive model are shown in Figure 8,  
where the predictors listed in Table 1 were summarized 
as scores t[1] and t0[1]. This RT model scatter plot of 
scores is a visual representation for the model space of the 
predictors in Table 1, and it illustrates how these predictors 
are situated with respect to each other. The scatter plot 
shows the presence of 3 outliers (clone #04, #07, and #17), 
and no specific groups or patterns were presented in the 
data from the 45 clones. The Hotelling’s T2 plot (Figure 9) 
summarizes the clone from all the predictors listed in Table 1.  
The T2 range in the y-axis represents how far away the 
combinations of all the predictors of a clone are from the 
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OPLS model (Figure 9). The Hotelling’s T2 plot showed 
that the T2 range of 3 clones (clone #04, #07, and #17) 
were greater than the 95% critical value (8.89), indicating 
that these clones were far away from the RT predictive 
model. Hence, the model was unable to accurately predict 
the RT of these clones. Nevertheless, the outliers were 
not eliminated during adjustment of the RT prediction 
model for calibration purposes when more data was added. 
Together with scattering score plots, this data indicated that 

the outliers emerged during construction of the predictive 
model and thus a limitation of the predictive models 
became apparent, even though the RT predictive model had 
a goodness of fit for most of the clones. 

Model performance evaluation and model validation

The overall model performance of our RT predictive model 
was evaluated by the difference between the predicted RT 

Figure 6 Correlation matrix for IQIs and RT. Correlation matrix by IQIs with the corr function (default parameters) in the Panda library of 
Python 35. IQI, imaging quantitative information; RT, relative titer.
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and the actual RT. These differences are related to the 
concept of “goodness of fit” of a model, with better models 
having higher correlation between predicted and observed 
outcomes (54,55). Therefore, new datasets were used to 
evaluate the “goodness of fit” of our RT predictive model. 

To assess the goodness of fit of our RT predictive model, 
5 clones were used to test the predicted RT against the 
actual RT (Figure 10). The predictive data were generated 
by inserting the predictors into the RT predictive model, 
and the predicted RT and actual RT are listed in Table 2. 
The growth curve and the correlation plot between the 
predictive and actual RT are shown in Figure 10. 

Using the RT predictive model to predict relative 
predictivity of CHO-K1Q clones that were expressing Mab 
B (Figure10A) and Mab C (Figure 10B) provided a good 
accuracy (r2=0.74, 0.70 for K1Q-Mab B and K1Q-Mab C, 
respectively). Since the RT predictive model was based on 
data from K1Q host cells clones that were expressing Mab 
A, a K1Q clone expressing a fusion protein was used to test 
the predictivity when a different type of molecule was being 
expressed (Figure 10C). The correlation of the predicted RT 
to the actual RT for K1Q FP expressing clones was 0.72. 
The r2 was similar to that of the K1Q Mab expressing clone. 
Therefore, our OPLS model was shown to have the ability 
to distinguish a low producer from high producer (Figure 10)  
when CHO-K1Q was used as host cell. 

To evaluate the goodness of fit of the RT predictive 
model among other host cells, we correlated the predicted 
RT obtained from predictive model to the actual RT of 
the CHO-K1 Mab A expressing clones, as well as that of 
the CHO-S Mab A expressing clones. The correlation of 

Figure 7 Summary of fit for the RT predictive model. A predictive 
model based on an OPLS using 45 K1Q-Mab A clones data 
was built with R2=0.75, and Q2=0.48. RT, relative titer; OPLS, 
orthogonal projection to latent structures.

Figure 8 The scatter plot of scores of the RT predictive model. The scores scatter plot of the RT predictive model where the predictors 
listed in Table 1 were summarized as scores t[1] and t0[1]. RT, relative titer.
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Figure 9 The scatter plot of scores of the RT predictive model. The Hotelling’s T2 plot showed that the T2 range of three clones (clone 
#04, #07 and #17) was greater than the 95% critical value (8.89), indicating that these clones are far away from the RT predictive model. RT, 
relative titer.

CHO-K1 Mab A clones and the CHO-S Mab A clones 
to their predictive titer was 0.31 and 0.17, respectively  
(Figure 10D,E). The K1Q host cell was a sub-clone of a K1 
host cell line. Therefore, it is surprising that the current RT 
predictive model was not able to provide a good prediction 
of the RT of CHO-K1 Mab A clones (r2=31) (Figure 10D). 
It has been reported that sub-cloning of CHO cells can 
lead to diversity of size, shape, and cell surface glycan 
content (56); therefore, it is reasonable to speculate that 
the changes in size and shape of the CHO-K1 cells affected 
the predictors, and thus led to a poor prediction of RT. 
Similarly, CHO-S also showed a poor goodness of fit for the 
actual RT when compared to the predicted RT generated 
by the RT predictive model (r2=0.17). The RT predictive 
model were not able to distinguish a high producer 
from a low producer (Figure 10E). The poor prediction 
of the model on CHO-S cells was expected because of 
the significant genomic and metabolic difference among 
different host cells (20). Moreover, the current model was 
used to test its application for protein quality prediction. 
The main SEC and IEC peaks were measured and reported 
in Figure 11A,B, respectively. A model with statistical 

significance was not able to be generated. The SEC 
predictive model had R2=0.13 and Q2=−0.17 (Figure 11C).  
The IEC predictive model had R2=0.22 and Q2=−0.09 
(Figure 11D). Both of these predictive models will need 
more training data to build a predictive model for protein 
quality. These studies are currently in progress. 

Discussion

In our current study, an RT prediction model was 
generated by the quantitative information extracted from 
microscopic images during a cell line development process. 
The performance of this RT prediction model was further 
evaluated by 50 clones engineered from 5 different host 
cells. While there is a caveat of the current RT prediction 
model, that is, inaccurate prediction when different host 
cell prediction is used, this RT prediction model served as 
a proof of concept study that quantitative information from 
cell line development images provides valuable information 
to facilitate the cell line development process. Moreover, 
it is speculative that the current RT model can be adapted 
to directly to evaluate the early productivity and product 
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Figure 10 Growth curve and correlation to the predicted RT of K1Q Mab-B clones, K1Q-Mab C clones, K1Q-Mab FB clones, K1-Mab A 
clones, and S-Mab A clones. A total of 5 clones were used to test the predicted RT vs. actual RT. The growth curve and the correlation plot 
between the predictive and actual RT of 5 different projects. RT, relative titer.
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Figure 11 Protein quality analysis. SEC, size exclusion chromatography; IEC, ion-exchange chromatography. 

Table 2 Cells used to build and evaluate the RT prediction model

Clones designation Host cell Type of protein expressed Product description Description

K1Q-Mab A K1Q Mab A Humanized IgG1 For data training set

K1Q-Mab B K1Q Mab B Humanized IgG4 Testing the model when different Mab is 
expressed by the same host cell

K1Q-Mab C K1Q Mab C Human IgG1 Testing the model when different Mab is 
expressed by the same host cell

K1Q-FP K1Q Fusion protein (FP) Fc domain linked with cytokine Testing the model when different type of 
protein is expressed by the same host cell

K1-Mab A K1 Mab A Humanized IgG1 Testing the model when same protein is 
expressed by a different host cell

S-Mab A CHO-S Mab A Humanized IgG1 Testing the model when same protein is 
expressed by a different host cell

RT, relative titer.
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quality of complex multi-subunit vaccine antigens during 
the development of Chinese hamster ovary cell lines by 
using HPLC and protein interactions data to build the 
RT model specifically. Similarly, improved viability and 
capacity of single cell clones could also be selected using 
such predictive model. As big data, deep learning, artificial 
intelligence, and other computational techniques have 
recently been applied to bioprocess development and 
biological data analysis (44,57-61), using data science to 
facilitate the efficiency of bioprocess development seems 
inevitable. Here, we have presented the first predictive 
model that can be used to estimate the relative productivity 
of CHO clones during cell line development. This current 
RT prediction model requires more clonal data and images 
to improve its prediction accuracy. Moreover, images from 
SCC experiments for prediction will also provide earlier 
prediction during cell line engineering. The application 
of imaging flow cytometry to characterize recombinant 
cell lines at the single-cell level can potentially predict 
even earlier. These experiments are currently in process. 
Nevertheless, our current study will serve as a foundation 
for more predication models for cell line developments to 
facilitate the selection of the clones using quantitative image 
analysis. By predicting the high producers, this prediction 
model provide investigator a higher probability to select 
high producing clones, and the earlier indication by the 
model can minimize the duration of the selection process.
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