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Abstract. Colorectal cancer (CRC) is one of the most common 
types of malignant cancer worldwide and poses a significant 
burden on both the individual and healthcare systems. Despite 
advances in treatment options, advanced‑stage CRC has a high 
mortality rate due to its heterogeneity, metastatic potential 
and/or delay in diagnosis. In recent years, an increasing number 
of studies have indicated that circular RNAs (circRNAs) serve 
important roles in several types of cancer, including CRC. Recent 
studies have revealed that circRNAs are aberrantly expressed 
in CRC tissues and function as oncogenic or tumor suppressive 
regulators of CRC carcinogenesis and development. Numerous 
circRNAs have been associated with the clinicopathological 
features of patients with CRC and have been considered as 
potential biomarkers for the diagnosis and prognosis of CRC, as 
well as targets for treatment. However, a deeper understanding 
of their potential function is required. In the present review, the 
current body of knowledge on the biogenesis and functions of 
CRC‑associated circRNAs, and their potential value in clinical 
applications, such as in CRC diagnosis, prognosis and treatment, 
is discussed and summarized.
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1. Introduction

Colorectal cancer (CRC) is responsible for ~10% of all diag‑
nosed cases of cancer and cancer‑associated deaths worldwide, 
with ~900,000 deaths annually (1,2). The incidence and death 
rate of CRC has increased amongst individuals aged <50 years 
old between 2000 and 2013 in the United States, where the 
incidence rate has increased by 22% (3). Although the devel‑
opment of traditional or novel treatment options, including 
endoscopy, surgery, downstaging preoperative radiotherapy, 
systemic therapy, targeted therapy and immunotherapy, has 
extended the overall survival of patients with advanced stage 
disease to ~3 years, the cure rate of patients with metastases 
remains low (2,4). Thus, understanding the underlying biology 
of CRC progression may highlight novel potential biomarkers 
and therapeutic targets for assistance in the early diagnosis of 
CRC, or as treatment targets.

In 1976, circular RNAs (circRNAs/circs) were first 
identified in plant‑based RNA viruses under an electron micro‑
scope (5). However, for decades, circRNAs were considered as 
functionless junk‑RNA or by‑products developed from mRNA 
splicing (6). In 2013, Hansen et al (7) revealed that circRNAs 
can competitively bind to microRNAs (miRNAs/miRs) and 
inhibit their expression, functioning as a miRNA ‘sponge’, 
and in‑turn increasing expression of the downstream miRNA 
target genes. Since then, functional analysis of circRNAs has 
increased the current understanding of several physiological 
and pathophysiological processes. In recent years, due to the 
rapid development of bioinformatics algorithms and experi‑
mental techniques, such as high‑throughput RNA sequencing 
and circRNA microarray screening, thousands of circRNAs 
have been identified and found to be involved in various 
disease processes. In cardiovascular diseases, circRNAs 
regulate the activation of endothelial cells, vascular smooth 
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muscle cells and macrophages, and thus function in the 
initiation and development of atherosclerosis (8). Additionally, 
emerging evidence from in vitro and in vivo experimental 
studies have indicated that circRNAs can regulate adipo‑
genesis and obesity (9,10). Cerebellar degeneration‑related 
protein 1 antisense RNA (CDR1as, also known as CiRs‑7), 
was the first circRNA found to act as a sponge of a miRNA, 
miR‑7 (7), serving important roles in Alzheimer's disease 
and Parkinson's disease, amongst other neurodegenerative 
diseases (11). In 2015, Bachmayr‑Heyda et al (12) first reported 
a global reduction of circRNA abundance in CRC cell lines 
and cancer tissues compared with in normal cells and tissues. 
These results suggest that cells with high proliferative rates, 
particularly tumors, universally trend towards exhibiting low 
levels of circRNA expression. This may suggest that circRNAs 
are not likely to be involved in cancer (13). However, the roles 
of several circRNAs in different types of cancer have emerged 
in recent years. In the present review, the association between 
circRNAs and CRC is discussed. The biogenesis and functions 
of circRNAs are first discussed, followed by a comprehensive 
summary of the role of circRNAs in CRC biological processes, 
their association with clinicopathological features, as well as 
their involvement in the therapeutic response, highlighting 
their potential as CRC biomarkers in diagnosis, prognosis and 
treatment of CRC (Fig. 1).

2. circRNAs: Biogenesis and characteristics

circRNAs are a major type of non‑coding RNA that are 
produced by back‑splicing of exons from pre‑mRNA (14). 
During back‑splicing, a downstream splice‑donor site is cova‑
lently linked to an upstream splice‑acceptor site (15), through 
which a covalently closed RNA molecule is formed. Typically, 
mRNA maturation consists of transcription, splicing, capping, 
polyadenylation, export and final surveillance (16); however, 
in circRNA production, no polyadenylation or capping is 
required (14). Notably, different circRNAs can be produced 
from the same sequence through alternative back‑splicing 
events (17). Generally, according to the different structures 
and cycling mechanisms, circRNA are divided into four 
subtypes: Exonic circRNA, intronic circRNA, exon‑intron 
circRNA and intergenic circRNA, with exonic circRNAs 
being the most common type (15). Although back‑splicing of 
exons takes place in the nucleus, most circRNAs are local‑
ized to the cytoplasm by RNA helicase in a length‑dependent 
manner (18). Compared with the linear mRNA counterpart, 
due to the presence of a covalent bond joining the 3' and 5' end, 
circRNAs form a continuous loop structure and are thus 
resistant to the degradation by RNA exonucleases, as well as 
being highly stable, with a longer median half‑life ranging 
from 18.8‑23.7 h (15,17). How circRNAs are degraded remains 
poorly understood. Park et al (19) demonstrated that N6‑me
thyladenosine (m6A)‑containing circRNAs are selectively 
cleaved by RNase P/MRP, which are essential ribonucleopro‑
tein complexes that function as endoribonucleases, and engage 
in tRNA maturation and the cleavage of ribosomal RNAs, 
long non‑coding RNAs and mRNAs. Other possible mecha‑
nisms have been reviewed elsewhere (17). The characteristics 
of circRNAs can be summarized as universality, diversity, 
stability and conservatism of evolution (20).

3. circRNA function

Numerous studies have shown that circRNAs function as 
miRNA sponges, protein sponges, decoys, scaffolds, recruiters 
and translation templates, and can promote transcription in 
multiple biological processes.

circRNAs as miRNA sponges. In 2013, Hansen et al (7) revealed 
that circRNAs can competitively bind to a miRNA, inhibit their 
expression and thus increase the expression of the downstream 
miRNA target genes. Specifically, Hansen et al (7) found that 
CDR1as is universally co‑expressed with miR‑7 in the brain, 
contains >70 binding sites complementary to miR‑7 and acts 
as a potent sponge of miR‑7. Since then, an increasing number 
of circRNAs have been identified to interact with miRNAs 
with the development of RNA‑sequencing techniques and 
bioinformatics algorithms. Several circRNAs contain miRNA 
response elements and binding sites, and weaken miRNA 
activity through sequestration, thus upregulating the expres‑
sion levels of the miRNA target genes (21). This has been 
termed ‘miRNA sponging’ and is the most significant mecha‑
nism involved in regulation of the initiation and progression of 
human cancer and several other diseases.

circRNAs regulate protein expression. RNA binding proteins 
(RBPs) participate in gene transcription and translation, 
and interaction with RBPs is regarded as a central role of 
circRNAs (22). circRNAs can interact with regulatory RBPs, 
through which they act as protein sponges, decoys, scaffolds 
or recruiters, and further affect their target mRNAs (23). For 
example, circular antisense non‑coding RNA in the INK4 
locus (circANRIL) impairs pre‑ribosomal RNA processing 
and ribosome biogenesis by binding to pescadillo homo‑
logue 1, an essential 60S pre‑ribosomal assembly factor, in 
human vascular smooth muscle cells and macrophages (24). 
As a result, circANRIL increases nucleolar stress and p53 
activation, which may improve the atheroprotective effect 
by promoting the removal of hyperproliferative cells from 
atherosclerotic plaques (24). circFOXO3 functions as a protein 
scaffold and promotes MDM2‑induced mutant p53 ubiquitina‑
tion and subsequent degradation, causing an overall reduction 
in p53 levels (25). Another nuclear circRNA, circ‑potassium 
sodium‑activated channel subfamily T member 2, functions as 
a protein recruiter, and inhibits basic leucine zipper ATF‑like 
transcription factor (Batf) expression by recruiting the nucleo‑
some remodeling deacetylase complex onto the Batf promoter, 
which then represses IL‑17 expression, and thereby inactivates 
group 3 innate lymphoid cells (ILC3), to promote resolution 
of innate colitis (26). Certain circRNAs possess dual roles in 
the regulation of protein expression. For example, circ‑mito‑
chondrial ribosomal protein S35 (circMRPS35) functions as a 
protein scaffold to recruit the histone acetyltransferase lysine 
acetyltransferase 7 to the promoters of FOXO1 and FOXO3a 
genes, which leads to acetylation of H4K5 in their promoters. 
circMRPS35 specifically and directly binds to the FOXO1/3a 
promoter regions, significantly increasing their transcription, 
and thus triggering activation of their downstream target 
genes, including p21, p27, Twist1 and E‑cadherin (27). Thus, 
circMRPS35 contributes to a suppressive effect on cell prolif‑
eration and invasion.
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circRNAs as templates for translation. Previously, circRNAs 
have been regarded as non‑coding RNAs due to their circular 
structure, which lacks 5' and 3' untranslated regions that are 
crucial for the initiation of translation in eukaryotic cells (28). 
However, more recently, circRNAs have been found to 
encode peptides, where an Internal Ribosome Entry site and 
N6‑methyladenosines mediated cap‑independent translation 
initiation were suggested as potential mechanisms involved in 
the translation of circRNAs. Detailed mechanisms of circRNA 
translation are reviewed elsewhere (28‑30). Legnini et al (31) 
provided an example of translatable circRNAs in eukaryotes, 
suggesting that circ‑zinc finger protein 609 (circZNF609) 
was translated into protein in a splicing‑dependent and 
cap‑independent manner, and this was shown to be involved in 
regulating myogenesis. Translation of circβ‑catenin, another 
translatable circRNA, produces a novel β‑catenin isoform 
that can antagonize GSK3β‑induced β‑catenin phosphoryla‑
tion and degradation, and thus stabilize full‑length β‑catenin, 
resulting in the activation of the Wnt signaling pathway and 
promoting liver cancer cell proliferation (32).

circRNAs regulate transcription. In addition to the aforemen‑
tioned functions, nucleolar circRNAs promote transcription. 
Li et al (33) showed circRNAs that contain introns that regu‑
late gene transcription in cis by specifically interacting with 
the U1 small nuclear ribonucleoprotein RNA (snRNA). The 
intercommunication between U1 snRNA and the U1‑binding 

sites of exon‑intron circRNAs, EIciEIF3J and EIciPAIP2, 
enhance eukaryotic translation initiation factor 3 subunit J and 
poly(A) binding protein interacting protein 2 transcription, 
respectively (33).

4. circRNAs as potential invasive/non‑invasive diagnostic 
or prognostic biomarkers, and their association with CRC 
clinicopathological features

Using RNA‑sequencing, microarray or other sequencing 
techniques combined with reverse transcription‑quantitative 
(RT‑q)PCR, differential expression levels of circRNAs in 
cancerous vs. non‑cancerous tissues have been previously 
detected (34,35). With their special circular structure making 
them resistant to the degradation of RNase (15), circRNAs are 
considered as promising candidates for liquid biopsy, which 
is a non‑invasive tool to reflect the disease state using body 
fluids, such as plasma or urine (36). Studies have demonstrated 
that the variations in the expression levels of circRNAs are 
significantly associated with several clinicopathological 
features of patients with CRC, including overall survival, 
prognosis, TNM stage, lymphovascular invasion and lymph 
node metastasis (37‑39). Thus, these circRNAs are likely to 
serve as novels target genes for screening, diagnosis and moni‑
toring of CRC.

Three circRNAs (hsa_circ_0082182, hsa_circ_0000370 
and hsa_circ_0035445) have been validated to be 

Figure 1. Roles of circRNAs in colorectal cancer. circRNA/circ, circular RNA; ERBIN, ERBB2 interacting protein; FNDC3B, fibronectin type III domain 
containing 3B; AGFG1, ArfGAP with FG repeats 1; CTIC1, colon tumor initiating cells 1; PNN, pinin demosome associated protein; CCDC66, coiled‑coil 
domain containing 66; KRT6C, keratin 6C; ZNF609, zinc finger protein 609.
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differentially expressed (increased for hsa_circ_0082182 and 
hsa_circ_0000370, and decreased for hsa_circ_0035445) in 
CRC plasma compared with in normal plasma by microarray 
analysis, with area under the curves (AUCs) of 0.815, 0.737, 
and 0.703, respectively (40). Moreover, the expression levels of 
hsa_circ_0082182 and hsa_circ_0035445 were significantly 
different between preoperative and postoperative stages (40). 
Lin et al (41) investigated the plasma levels of circ‑coiled‑coil 
domain containing 66 (CCDC66), circ‑ATP binding cassette 
subfamily C member 1 and circ‑STIL centriolar assembly 
protein (STIL) by RT‑qPCR, revealing that their plasma 
expression levels were significantly decreased in patients with 
CRC (n=45) compared with those in healthy controls (HC; 
n=61) (41). Receiver operating characteristic (ROC) curve 
analysis demonstrated that the AUC of the three‑circRNA 
panel was 0.780, exceeding that of carcinoembryonic antigen 
(CEA; AUC, 0.695) and carbohydrate antigen 19‑9 (CA19‑9; 
AUC, 0.678) (41). Combining the circRNA panel with CEA 
and CA19‑9 further improved the accuracy of CRC diagnosis 
(AUC, 0.855) (41). It has been also found that circ‑CCDC66 and 
circ‑STIL may be used for the diagnosis of early‑stage CRC, 
and the three‑circRNA panel may be useful in diagnosing 
CEA‑negative and CA19‑9‑negative CRC (41). However, 
using the same techniques, Hsiao et al (42) verified increased 
expression levels of circCCDC66 in polyps and colon cancer 
using RT‑qPCR (n=48) and demonstrated its association with 
a poor prognosis. This controversy may be explained by the 
heterogeneity of CRC; thus, large cohorts of patients of various 
ethnicities, possibly through multicenter studies, are required 
for further confirmation.

Xie et al (37) revealed that exosomal levels of circ‑pinin 
demosome associated protein (PNN; hsa_circ_0101802) 
were significantly upregulated in CRC cases compared with 
those in the HC group. ROC curve analysis indicated that 
circ‑PNN was significantly valuable for diagnosing CRC, 
with an AUC of 0.855 and 0.826 in the training and valida‑
tion sets, respectively (37). Additionally, the AUC of serum 
exosomal circ‑PNN for early‑stage CRC was 0.854 (43). 
Another circulating exosomal circRNA, hsa‑circ‑0004771, 
has been found to be upregulated in the serum of patients with 
CRC compared with HCs and those with benign intestinal 
diseases (BIDs) by RT‑qPCR (44). The AUCs of circulating 
exosomal hsa‑circ‑0004771 were 0.59, 0.86 and 0.88 when 
used to differentiate between BIDs, stage I/II CRC cases and 
patients with CRC from the HCs, respectively (44). The AUC 
was 0.816 when differentiating stage I/II CRC cases from 
patients with BIDs (44). Overall, the aforementioned results 
suggest that serum exosomal circRNAs may serve as prom‑
ising non‑invasive biomarkers for early detection of CRC.

Using microarrays, Chen et al (45) found that circ‑catenin α1 
expression was significantly upregulated in colon cancer (CC), 
and its aberrant expression was associated with advanced 
TNM stages and a poor prognosis in patients with CC. Using 
next‑generation RNA sequencing from eight CRC and paired 
matching non‑cancerous tissues. Zhou et al (46) found that 
circ‑calmodulin regulated spectrin associated protein 1 
expression was significantly upregulated in CRC tissues 
compared with in matched non‑cancerous tissues, and its high 
expression was significantly associated with advanced TNM 
stages and shortened overall survival.

Overall, the aforementioned studies indicate the 
potential value of circRNAs as diagnostic and prognostic 
biomarkers, as well as therapeutic targets for CRC. Other 
circRNAs with similar potential functions are presented in  
Table I (34,37‑39,41‑61).

5. circRNAs regulate CRC cell proliferation, migration, 
invasion and apoptosis

Understanding the underlying mechanisms by which CRC 
cells progress is key to the identification of novel therapeutic 
targets. Emerging studies have shown the role of circRNAs 
in numerous biological processes associated with the devel‑
opment and/or progression of CRC. circRNAs exert their 
oncogenic or suppressive roles by promoting or inhibiting 
CRC cell proliferation, migration, invasion and apoptosis.

hsa_circ_0007142 is significantly upregulated in CRC 
tissues compared with in neighboring para‑cancerous 
tissues (62). Bioinformatics analysis and luciferase reporter 
assays have revealed that hsa_circ_0007142 sponges 
miR‑103a‑2‑5p, and silencing of hsa_circ_0007142 using small 
interfering (si)RNAs decreases the proliferation, migration 
and invasion of HT‑29 and HCT‑116 cells (62). Yin et al (63) 
showed that knockdown of circ_0007142 decreased cell 
division cycle 25A expression by sponging miR‑122‑5p, and 
repressed CRC cell proliferation, colony formation, migration 
and invasion.

Wu et al (64) demonstrated that circZNF609 expression 
was upregulated in CRC tissues compared with in mucosal 
tissues using RT‑qPCR. Moreover, circZNF609 expres‑
sion has been positively correlated with glioma‑associated 
oncogene 1 expression, knockdown of circZNF609 or overex‑
pression of miR‑150 has resulted in inhibition of migration of 
HCT116 cells by sponging miR‑150, and co‑transfection with 
circZNF609 siRNA and miR‑150 inhibitor promoted HCT116 
cell migration (64). However, another study performed by 
Zhang et al (65) obtained contrasting results. Zhang et al (65) 
found significantly downregulated expression levels of 
circZNF609 in CRC tissues compared with in matched normal 
tissues, as well as in the serum of patients suffering CRC 
compared with the HC group. Mechanistically, it was revealed 
that circZNF609 increased apoptosis and upregulated the 
expression levels of p53 and the pro‑apoptotic protein, Bax, 
while downregulating the expression of the anti‑apoptotic 
protein, Bcl‑2 (65).

Thus, distinct mechanisms exerted by the same circRNA 
and the effects of expression levels of the same circRNA 
highlight the heterogeneity and complexity of circRNAs. A 
deeper understanding of the biological behaviors of circRNAs 
is required to reconcile these differences and other contrasting 
results.

6. circRNAs regulate epithelial‑mesenchymal transition 
(EMT) and metastasis

EMT is a process in which dynamic changes occur in the 
cellular organization transforming cells from an epithelial 
phenotype to a mesenchymal phenotype, and this facilitates the 
development of migratory and invasive cells (66). Metastasis 
or advanced CRC are the major causes of cancer morbidity, 
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mortality and tumor burden. Several studies have shown that 
circRNAs regulate EMT and metastasis in CRC.

Using secondary sequencing, Xu et al (67) identified 
66,855 differentially expressed circRNAs in the cancer tissue 

Table I. circRNAs, their associated clinicopathological features in colorectal cancer and their potential functions.

 Potential functions Associated
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ clinicopathological
First author, year circRNAs Expressiona AUC P D T B features (Ref.)

Lin et al, 2019 circ‑CCDC66,  ↓ 0.780  P  P  (41)
 Circ‑ABCC1, 
 Circ‑STIL
Hsiao et al, 2017 circ‑CCDC66 ↑  P    Prognosis (42)
Xie et al, 2020 circ‑PNN  ↑ 0.854    P  (43)
Pan et al, 2019 hsa‑circ‑0004771 ↑ 0.816  P    (44)
Chen et al, 2020 circCTNNA1 ↑   P P  TNM stage, prognosis (45)
Zhou et al, 2020 circCAMSAP1 ↑  P P P P TNM stage, OS (46)
Chen et al, 2020 circHUWE1 ↑ 0.732  P P P Lymphovascular invasion, lymph (37)
        node and distant metastasis, 
        TNM stage
Li et al, 2019 circVAPA ↑ 0.724   P P Tumor stage, lymph node and (38)
        distant metastasis,TNM stage, 
        lymphovascular invasion
Wang et al, 2018 hsa_circ_0000567 ↓ 0.865  P  P Tumor size, lymph node and distal  (39)
        metastasis, TNM stage
Zhang et al, 2018 hsa_circ_0007534 ↑ 0.780 P   P Tumor and node stage, distant (47)
        metastasis, differentiation
Zhang et al, 2018 hsa_circ_0007534 ↑    P  Tumor stage, lymph (48)
        node metastasis
Ji et al, 2018 circ_0001649 ↓ 0.857    P Pathological differentiation (49)
Wang et al, 2020 circITGA7 ↓ 0.879  P    (50)
Zhuo et al, 2017 circ_0003906 ↓ 0.818  P P  Lymphatic metastasis,  (51)
        differentiation
Ruan et al, 2019 circ_0002138 ↓ 0.725  P P P  (52)
Wang et al, 2015 circ_001988 ↓ 0.788  P P P Differentiation,  (53)
        perineural invasion 
Li et al, 2018 circ_0000711 ↓ 0.810 P P  P OS (54)
Yuan et al, 2018 circ_0026344 ↓  P    Tumor stage, lymphoid node (55)
        metastasis, prognosis
Wang et al, 2019 circPVT1 ↑    P  Prognosis, TNM stage,  (56)
        liver metastasis
Ge et al, 2018 circMTO1 ↓    P P TNM stage, lymph node (57)
        metastasis, OS
Ren et al, 2020 hsa_circ_0001178 ↑    P  Metastasis, TNM stage, prognosis (58)
Chen et al, 2019 hsa_circ_101555 ↑  P  P  Prognosis (59)
Ge et al, 2019 hsa_circ_0142527 ↓   P  P Age, CEA, invasion, differentiation,  (34)
        distal metastasis, TNM stage
Li and Zhou, 2019 hsa_circ_102209 ↑    P  Histology grade, liver metastasis (60)
Li et al, 2018 circDDX17 ↓    P P Lymphovascular invasion,  (61)
        tumor stage, lymph node and
        distant metastasis, TNM stage

aRelative circRNA expression in cancerous tissues/cell lines compared with in non‑cancerous tissues/cell lines. P, prognostic; D, diagnostic; 
T, therapeutic; B, biomarker; TNM, Tumor‑Node‑Metastasis; circRNA/circ, circular RNA; OS, overall survival; CEA, carcinoembryonic 
antigen; AUC, area under the curve. 
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samples from patients with CRC liver metastasis (CRLM) 
and three matched tissue samples from patients with CRC, 
of which 92 circRNAs were significantly upregulated and 
21 circRNAs were significantly downregulated in CRLM 
tissues. Aiming at screening promising biomarkers for CRLM, 
Ma et al (68) used a high‑throughput microarray to screen 
circRNAs; circ_0115744 was detected significantly elevated 
in patients with CRLM and mechanistic experiments revealed 
that circ_0115744 functioned as a competing endogenous 
RNA (ceRNA) of miR‑144, thus removing the suppressive 
effect of miR‑144 on its target enhancer of zeste homolog 2. 
Ren et al (58) demonstrated that high hsa_circ_0001178 
expression was associated with metastatic clinical features, 
a higher TNM stage and an adverse prognosis of patients. 
Stable knockdown of hsa_circ_0001178 using short hairpin 
RNAs largely impaired CRC cell migration and invasion 
in vitro, as well as in lung and liver metastases in vivo (58). 
Mechanistically, hsa_circ_0001178 acted as a ceRNA or as 
a sponge of miR‑382/587/616 to upregulate zinc finger E‑box 
binding homeobox 1, which is a crucial initiator of EMT, 
and thus promoted CRC metastasis (58). The aforementioned 
study suggests that circRNAs are crucial in EMT of CRC, as 
well as in metastasis, and also highlights a promising target 
for patients with end‑stage CRC. Similar mechanisms have 
been elaborated in another study by Xiao and Liu (69), in 
which it was revealed that knockdown of hsa_circ_0053277 
suppressed CRC cell proliferation, migration and EMT by 
upregulating expression of matrix metalloproteinase 14, 
another key molecule involved in the process of EMT, and that 
hsa_circ_0053277 possessed a binding site for miR‑2467‑3p 
and acted as a sponge of it.

Although the field of EMT research has seen increased 
interest over the past two decades, particularly in the past 
5 years, there remain several unknowns (64). It is necessary 
to explore the various roles of numerous circRNAs, either as 
oncogenic or suppressive agents, to delay the progression of 
EMT and metastasis. Other circRNAs involved in EMT and 
metastasis are summarized in Table II.

7. circRNAs are involved in the cell cycle

In addition to the aforementioned biological functions, 
circRNAs can regulate other processes. circ‑MDM2 (hsa_
circ_0027492) is coded by the MDM2 gene, which is regarded 
as a transcriptional target of p53 (70). Based on a previous 
study, which revealed that MDM2 is crucial in suppressing p53 
activity and p53 protein expression (71), Chaudhary et al (72) 
knocked down circ‑MDM2 using siRNAs, resulting in an 
increase in basal p53 levels and growth defects, both in vitro 
and in vivo. Further transcriptome profiling following knock‑
down of circMDM2 showed upregulation of several direct 
p53 targets, decreased expression of retinoblastoma protein 
phosphorylation and G1‑S progression defects (72). Overall, 
a new role for the circRNA derived from the MDM2 locus 
was identified in cell cycle progression, which preceded 
the suppression of p53 levels (72). High expression levels of 
hsa_circ_0136666 and hsa_circ_0014717 result in arrest 
of CRC cells in the G0/G1 phase (73). Mechanistically, hsa_
circ_0136666 increases SH2B adaptor protein 1 expression 
by sponging miR‑136 (73), whereas hsa_circ_0014717 induces 

cell cycle G0/G1 phase arrest in vitro partly by upregulating p16 
expression, a cell cycle inhibitory protein (74).

8. circRNAs regulate cellular metabolism

circRNAs can exert their roles in the complex processes of 
cellular metabolism. circRNA differentially expressed in 
normal cells and neoplasia domain containing 4C has been 
found to accelerate proliferation and migration, as well as 
glycolysis, in CRC cells by increasing glucose transporter 1 
expression by sponging miR‑760 (75). Knockdown of 
hsa_circ_0000231 blocks CRC glycolysis and progression 
via Myosin VI downregulation by sponging miR‑502‑5p (76). 
During serum deprivation, circ‑ACC1, which derives from 
preACC1 mRNA, increases glycolysis and fatty acid oxidation 
to adapt the metabolic change of HCT116 cells (77). Another 
novel circRNA, circRUNX1, has been found to promote 
glutamine metabolism and to repress apoptosis by upregu‑
lating solute carrier family 38 member 1 SLC38A1 through 
miR‑485‑5p (78).

9. circRNAs are involved in angiogenesis

circ‑001971 functions as an oncogenic ceRNA, which 
aggravates the proliferation, invasion and angiogenesis of 
CRC by relieving miR‑29c‑3p‑induced inhibition of vascular 
endothelial growth factor A (79). circ‑ERBB2 interacting 
protein (ERBIN), which derives from exons 2 to 4 of the 
ERBIN gene, promotes angiogenesis, proliferation, invasion 
and migration of CRC cells by targeting miR‑125a‑5p and 
miR‑138‑5p; this sponging effect increases eIF4E‑binding 
protein 1 expression, which then increases hypoxia induc‑
ible factor‑1α (HIF‑1α) translation and activates the HIF‑1α 
signaling pathway (80). Zeng et al (81) revealed significantly 
decreased expression levels of circ‑fibronectin type III domain 
containing 3B (FNDC3B) in CRC tissues, cell lines and 
exosomes. Functional experiments indicated that overexpres‑
sion of circFNDC3B suppressed CRC angiogenesis, which 
could be reversed by overexpression of miR‑937‑5p (81). 
Furthermore, it was demonstrated that tumor growth, angio‑
genesis and liver metastasis were suppressed by overexpression 
of circFNDC3B or circFNDC3B‑exosome treatment (81).

10. circRNAs regulate cancer stem cells (CSCs) or tumor 
initiating cells (TICs)

Recent findings have indicated the role of circRNAs in the 
self‑renewal of CSCs and the maintenance of stemness in CRC. 
Silencing of circRNA ArfGAP with FG repeats 1 (circAGFG1) 
markedly suppresses CRC cell stemness and promotes apop‑
tosis (82). Further experiments have revealed that circAGFG 1 
sponges miR‑4262 and miR‑185‑5p, and promotes CTNNB1 
gene (also known as β‑catenin) transcription in CRC cells (82). 
Circular colon tumor initiating cells 1 (circCTIC1) is upregu‑
lated in colon TICs compared with in non‑TICs; depletion of 
this circRNA impairs the self‑renewal capacity of colon TICs, 
while its overexpression promotes colon TIC self‑renewal (83). 
Mechanistically, circCTIC1 recruits the nuclear remodeling 
factor complex to the c‑Myc promotor and drives the initiation 
of c‑Myc transcription (83).
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Table II. Biological processes regulated by circRNAs and targets of circRNAs.

 Biological processes
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
First author, year circRNA Expressiona Targets P Mi I M C A Me S An (Ref.)

Zhu et al, 2019 hsa_circ_0007142 ↑ miR‑103a‑2‑5p P P P       (62)
Yin et al, 2020 hsa_circ_0007142 ↑ miR‑122‑5p/CDC25A P P P       (63)
Zhang et al, 2019 circZNF609 ↓ Bax, Bcl‑2, p53 P     P    (65)
Wu et al, 2018 circZNF609 ↑ miRNA‑150  P    P    (64)
Ren et al, 2020 hsa_circ_0001178 ↑ miR‑382/587/616/ZEB1  P P P      (58)
Xiao et al, 2020 hsa_circ_0053277 ↑ miR‑2467‑3p/MMP14 P P        (69)
Chaudhary et al,  circ‑MDM2 ↑ p53     P     (72)
2020
Jin et al, 2019 hsa_circ_0136666 ↑ miR‑136/SH2B1 P P P  P     (73)
Wang et al, 2018 hsa_circ_0014717 ↓ p16 P    P     (74)
Zhang et al, 2020 circDENND4C ↑ miR‑760/GLUT1 P P     P   (75)
Chen et al, 2020 circ‑001971  ↑ miR‑29c‑3p P  P       (79)
Lu et al, 2020 circ‑FARSA ↑ miR‑330‑5pLASP1 P P P P      (87)
Li and Zhou, 2020 hsa_circ_102209 ↑ miR‑761/RIN1 P P P  P P    (60)
Lu et al, 2019 circ‑FBXW7 ↓ NEK2/mTOR/PTEN  P P P       (88)
Chen et al, 2019 circ‑NSD2 ↑ miR‑199b‑5p/DDR1, JAG1   P  P      (89)
Chen et al, 2020 circCTNNA1 ↑ miR‑149‑5p/FOXM1  P P P       (45)
Chen et al, 2019 circ101555 ↑ miR‑597‑5p/CDK6 & RPA3 P     P    (59)
Chen et al, 2020 circRUNX1 ↑ miR‑145‑5p/IGF1 P P    P    (90)
Cui et al, 2019 circCDYL ↑ miR‑105‑5p  P P   P    (91)
Du et al, 2020 hsa_circ_0038646 ↑ miR‑331‑3p/GRIK3 P P        (92)
Ge et al, 2018 circMTO1 ↓ Wnt/β‑catenin signaling P  P       (57)
   pathway
Geng et al, 2019 hsa_circ_0009361 ↓ miR‑582/APC2 P P P P      (93)
Han et al, 2020 circLONP2 ↑ miR‑17   P P      (94)
He et al, 2018 circRNA‑ACAP2 ↑ miR‑21‑5p P P P       (95)
Jian et al, 2020 circ_001680 ↑ miR‑340/BMI1 P P        (96)
Jin et al, 2018 hsa_circ_0000523 ↓ miR‑31/Wnt/β‑catenin  P     P    (97)
   signaling
Li et al, 2019 circRNA CBL.11 ↑ miR‑6778‑5p/YWHAE P         (98)
Li et al, 2019 hsa_circ_102958 ↑ miR‑585/CDC25B  P P P       (99)
Li et al, 2020 circCCT3  miR‑613/VEGFA   P   P    (100)
Zheng et al, 2019 circPPP1R12A ↑ Hippo‑YAP signaling pathway P P P       (101)
Zhao et al, 2020 circ‑ABCC1 ↑ Wnt/β‑catenin signaling    P      (102)
Zhang et al, 2020 circNOL10 ↓ miR‑135a‑5p, miR‑135b‑5p P P P  P     (103)
Zhang et al, 2017 hsa_circ_0020397 ↑ miR‑138   P   P    (104)
Zhang et al, 2020 circVAPA ↑ miR‑125a/CREB5  P P  P  P   (105)
Li et al, 2018 circVAPA ↑ miR‑101 P P P   P    (38)
Zhang et al, 2019 circPIP5K1A ↑ miR‑1273a/AP‑1, IRF‑4,   P P       (106)
   CDX‑2, Zic‑1
Zhang et al, 2020 circAGFG1 ↑ miR‑4262, miR‑185‑5p/   P P P P  P    (82)
   CTNNB1, Wnt/
   β‑catenin pathway
Zeng et al, 2018 circHIPK3 ↑ c‑Myb P P P P  P    (107)
Yuan et al, 2018 circ_0026344 ↓ miR‑21, miR‑31   P   P    (55)
Shen et al, 2019 circ_0026344  miR‑183/Wnt/β‑catenin  P P       (108)
   pathway
Yong et al, 2018 hsa_circ_0071589 ↑ miR‑600/EZH2  P P       (109)
Yang et al, 2020 hsa_circ_0137008 ↓ miR‑338‑5p P P P       (110)
Yang et al, 2020 hsa_circ_0004277 ↑ miR‑512‑5p/PTMA P     P    (111)
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11. circRNAs are possibly involved in immune evasion

Immune evasion is a crucial problem in effective anticancer 
therapeutic strategies (84). Emerging evidence has shown that 
utilization of immune checkpoints by cancer cells is important 
for immune evasion (85). Recently, Jiang et al (86) revealed 
the association between circRNAs and immune evasion in 
CRC. It was demonstrated that circ‑keratin 6C (KRT6C), 
which is encoded from the KRT6C gene, functioned as a 
miR‑485‑3p sponge and promoted immune evasion by upregu‑
lating programmed cell death receptor ligand 1, which is the 
ligand for the immune check point programmed cell death 
protein 1 (86). This suggests the possible role of circRNAs in 
immune regulation and immune evasion.

Additional potential biological functions of circRNAs are 
now under exploration to provide a deeper understanding of the 
roles of circRNAs in CRC progression. Additionally, as a clearer 
picture of the complex network of non‑coding RNA regulation 
is built, the clinical value of circRNAs has become more evident. 
The roles of other circRNAs in biological processes in CRC are 
listed in Table II (38,45,55‑60,62‑65,69,72‑76,78‑82,87‑126).

12. circRNAs can mediate resistance to cancer therapy

In addition to surgical resection, chemotherapy and radio‑
therapy constitute some of the primary therapeutic options 
utilized for the treatment of CRC. However, escaping from 
chemotherapy‑ or radiotherapy‑induced cell death is one of 
the characteristics of cancer cells, and numerous mechanisms 
contribute to therapeutic resistance (127). Although limited 
in number, some studies have investigated the role of certain 
circRNAs in CRC therapeutic resistance, highlighting poten‑
tial targeted strategies to overcome or inhibit the acquisition 
of resistance.

Recently, Wang et al (128) reported on an M2 isoform 
of pyruvate kinase (PKM2)‑mediated transition from 
chemo‑sensitive to chemo‑resistant cells. Wang et al (128) 
confirmed that oxaliplatin resistance can be acquired 
through exosomal delivery of ciRS‑122, which acts as a 
sponge for miR‑122, and finally upregulates PKM2, a key 
molecule that mediates glycolysis. The underlying mecha‑
nism of action includes the promotion of glycolysis through 
a ciRS‑122/miR‑122/PKM2 pathway, which provides ATP for 

Table II. Continued.

 Biological processes
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
First author, year circRNA Expressiona Targets P Mi I M C A Me S An (Ref.)

Li et al, 2018 circ‑ITGA7 ↓ miR‑3187‑3p/ITGA7 P P  P      (112)
Yang et al, 2019 circ‑ITGA7 ↓ miR‑3187‑3p/ASXL1 P   P      (113)
Yang et al, 2020 circPRMT5 ↑ miR‑377/E2F3 P         (114)
Xu et al, 2017 hsa_circ_000984 ↑ miR‑106b/CDK6 P P P       (115)
Xian et al, 2020 circABCB10 ↑ miR‑326/CCL5      P    (116)
Wang et al, 2019 circRNA PVT1 ↑ miR‑145    P      (56)
Wang et al, 2020 circRNA 0060745 ↑ miR‑4736/CSE1L P   P      (117)
Wang et al, 2020 circ_0008285 ↓ miR‑382‑5p/PTEN P P        (118)
Wang et al, 2020 circ‑SMAD7 ↓ EMT‑related proteins  P P       (119)
Pei et al, 2020 circ_0000218 ↑ miR‑139‑3p/RAB1A P   P      (120)
Ma et al, 2020 circ5615 ↑ miR‑149‑5p/TNKS, Wnt/ P     P    (121)
   β‑catenin pathway
Lu et al, 2019 hsa_circ_0079993 ↑ miR‑203a‑3p/CREB1 P         (122)
Li et al, 2020 circRNA_101951 ↑ KIF3A P P P       (123)
Li et al, 2019 circFMN2 ↑ miR‑1182/hTERT  P P        (124)
Li et al, 2020 circCCT3 ↑ miR‑613/WNT3, VEGFA   P   P    (100)
Liu et al, 2020 hsa_circ_0000231 ↑ miR‑502‑5p/MYO6 P P P   P P   (76)
Chen et al, 2020 circ‑ERBIN ↑ miR‑125a‑5p‑5p/  P P  P     P (80)
   miR‑138‑5p/4EBP‑1,
   HIF‑1α activation
Zeng et al, 2020 circFNDC3B ↓ miR‑937‑5p/TIMP3 P P P P    P P (81)
Zhang et al, 2020 circAGFG1 ↑ miR‑4262、miR‑185‑5p/ P P P P  P  P  (82)
   CTNNB1
Yu et al, 2021 circRUNX1 ↑ miR‑485‑5p/SLC38A1  P P P  P P   (78)
Chen et al, 2021 circ1662 ↑ YAP1, SMAD3 pathway  P P P      (125)
Liu et al, 2021 circ_0000372 ↑ miR‑495 and IL6 P P P       (126)

aRelative circRNA expression in cancerous tissues/cell lines compared with in non‑cancerous tissues/cell lines. miR, microRNA; P, proliferation; 
Mi, migration; I, invasion; M, metastasis; C, cell cycle; A, apoptosis; Me, metabolism; S, stemness; An, angiogenesis; circRNA/circ, circular RNA. 
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the oxaliplatin‑chemo‑resistant cells (128). Another circRNA, 
circ_001680, which sponges miR‑340, affects the expression 
levels of the downstream target gene B cell‑specific Moloney 
murine leukemia virus integration site 1, which is an important 
cancer stem cell self‑renewal factor, and is involved in gene 
silencing (96). circ_001680 may serve as a novel molecule to 
determine the success of irinotecan‑based chemotherapy (96).

circCCDC66 (hsa_circ_0001313) has recently been 
identified to be aberrantly upregulated in CC tissues (42). 
Wang et al (129) found that circCCDC66 was significantly 
increased in CRC cells following radiation treatment, 
whereas knockdown of circCCDC66 decreased cell viability 
and colony formation rate, and increased caspase‑3 activity. 
Another circCCDC66 study conducted by Lin et al (130) 
indicated increased circCCDC66 expression in oxalipl‑
atin‑resistant CRC cells, and knockdown of circCCDC66 
decreased oxaliplatin‑resistance. Notably, it was found that 
phosphatidylinositol 3‑kinase‑related kinases‑mediated 
DExH‑box helicase 9 phosphorylation, which favors oncogenic 
circCCDC66 expression, was involved in the development 
of oxaliplatin resistance (130). The discovery of the roles of 
circRNAs in acquisition of therapeutic resistance is an impor‑
tant avenue for future research. Other circRNAs associated 
with acquisition of therapeutic resistance are summarized 
in Table III (96,131‑140).

13. Conclusions and future perspective

In the present review, the role of circRNAs in CRC was 
summarized, from their involvement in cellular processes 

to their association with clinicopathological features and 
therapeutic resistance. Additionally, their potential value as 
diagnostic, prognostic and therapeutic targets in patients with 
CRC was highlighted.

However, there are still significant challenges that remain 
to be addressed before circRNAs can be considered in clinical 
applications. First, despite the notable progress in the field of 
circRNA research, relatively few circRNAs with biological 
functions have been discovered, and the exact underlying 
molecular mechanisms of circRNA generation, localization, 
degradation and turnover process remain unclear. Further 
understanding of their biology may demonstrate why circRNAs 
are dysregulated in tumors, and thus accelerate their clinical 
utility. Second, there are controversies amongst different 
studies on the same circRNA, such as the expression levels 
of the same circRNA in different studies. Large cohorts from 
multicenter studies are required for further confirmation. 
Third, the biological functions of circRNAs are complex. One 
circRNA can exert its function through multiple pathways and 
targets. Thus, the roles of circRNAs and their crosstalk with 
the tumor microenvironment requires further study. Roles of 
circRNAs and their crosstalk with the tumor microenviron‑
ment, cancer cell metabolism and therapeutic resistance need 
further investigations. Finally, although certain circRNAs 
have been suggested as promising diagnostic and prognostic 
biomarkers, especially as non‑invasive biomarkers, increasing 
their sensitivity and specificity for clinical use is challenging. 
Utilization of circRNAs in clinical practice has several hurdles 
to overcome. Understanding how to block those with oncogenic 
properties and magnify those with tumor suppressive effects 

Table III. circRNAs in the therapeutic response in colorectal cancer.

First author, year circRNA Expression Targets Therapy (Ref.)

Chen et al, 2020 circ‑PRKDC ↑b miR‑375/FOXM1, Wnt/ 5‑FU (131)
   β‑catenin pathway
He et al, 2020 circ_0007031 ↑a miR‑133b/ABCC5 5‑FU (132)
Wang et al, 2020 circ_0007031 ↑a miR‑760/DCP1A 5‑FU, radiotherapy (133)
Xiong et al, 2017 circ_0007031 ↑b miR‑885‑3p 5‑FU‑based chemoradiation (134)
Xiong et al, 2017 circ‑0000504  ↑b miR‑485‑5p 5‑FU‑based chemoradiation (134)
Xu et al, 2020 circ‑FBXW7 ↓b miR‑18b‑5p Oxaliplatin (135)
Wang et al, 2019 circ_0001313 ↑b miR‑338‑3p Radiotherapy (129)
Wang et al, 2020 ciRS‑122 ↑b miR‑122/PKM2 Oxaliplatin (128)
Jian et al, 2020 circ_001680 ↑a miR‑340/BMI1 Irinotecan (96)
Wang et al, 2019 circCCDC66 ↑b miR‑338‑3p Radiotherapy (129)
Lin et al, 2020 circCCDC66 ↑b  Oxaliplatin (130)
Abu et al, 2019 has_circ_103306 ↑b miR‑370‑3p 5‑FU, oxaliplatin (136)
Abu et al, 2019 has_circ_32883  ↑a miR‑130b/PI3K/AKT 5‑FU, oxaliplatin (136)
   pathway
Ren et al, 2020 circ‑DDX17  ↓a miR‑31‑5p/KANK1 5‑FU (137)
Zhang et al, 2021 circ_0071589 ↑b miR‑526b‑3p/KLF12 oxaliplatin (138)
Zhao et al, 2021 circ_0000338 ↑b miR‑217, miR‑485‑3p 5‑FU (139)
Xi et al, 2021 circCSPP1 ↑b miR‑944/FZD7 Doxorubicin (140)

aRelative circRNA expression in cancerous tissues/cell lines compared with in non‑cancerous tissues/cell lines; brelative circRNA expression 
in resistant tissues/cell lines compared with in sensitive tissues/cell lines. miR, microRNA; circRNA/circ, circular RNA; 5‑FU, 5‑fluorouracil.
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may be helpful. Notably, an artificial synthesized circRNA from 
linear RNA molecule containing miR‑21 binding sites using 
simple enzymatic ligation steps has been proven to function as a 
miR‑21 sponge and to suppress the downstream cancer protein 
death domain‑associated tumor suppressor protein (141). The 
artificial synthesis of circRNAs may be another effective tool 
in clinical application. With the development of new technolo‑
gies, the crosstalk between circRNAs and tumor biogenesis will 
be further explored, and this may lead to the development of 
promising clinical approaches for the treatment of CRC.
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