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Whole-genome sequencing reveals activation-
induced cytidine deaminase signatures during
indolent chronic lymphocytic leukaemia evolution
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Patients with chromosome 13q deletion or normal cytogenetics represent the majority of
chronic lymphocytic leukaemia (CLL) cases, yet have relatively few driver mutations. To
better understand their genomic landscape, here we perform whole-genome sequencing on a
cohort of patients enriched with these cytogenetic characteristics. Mutations in known CLL
drivers are seen in only 33% of this cohort, and associated with normal cytogenetics and
unmutated IGHV. The most commonly mutated gene in our cohort, IGLL5, shows a mutational
pattern suggestive of activation-induced cytidine deaminase (AID) activity. Unsupervised
analysis of mutational signatures demonstrates the activities of canonical AID (c-AlD),
leading to clustered mutations near active transcriptional start sites; non-canonical AID
(nc-AID), leading to genome-wide non-clustered mutations, and an ageing signature
responsible for most mutations. Using mutation clonality to infer time of onset, we find that
while ageing and c-AID activities are ongoing, nc-AlD-associated mutations likely occur
earlier in tumour evolution.
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hronic lymphocytic leukaemia (CLL) is a clinically

heterogeneous incurable malignancy of CD5+ CD19 +

B lymphocytes!. Among the strongest predictors of
outcome are the disease-associated chromosome abnormalities,
with 17p and 11q deletion and trisomy 12 associated with more
aggressive disease, while 13q deletion (incidence 50-60%) and
normal cytogenetics (incidence 15-20%) are lower risk according
to Dohner’s cytogenetic classification?. Interestingly, the
recurrent coding mutations identified to date in CLL have
been associated with the higher-risk cytogenetic abnormalities,
and are less commonly seen in CLLs with a lower-risk cytogenetic
profile. We therefore set out to explore the genetic basis of the
lower-risk cytogenetic group by whole-genome sequencing, as
clues to the genetic basis of disease in this more indolent group
may lie elsewhere in the genome.

Whole-genome sequencing provides unique information not
available from prior studies with whole-exome sequencing,
including data on translocations, complex rearrangements and
genome-wide mutational patterns. However, relatively higher
sequencing costs have limited the number of whole-genome
studies (1 = 4, Puente et al.%; n = 28, Alexandrov et al.%, with only
signature analysis reported without detailed cohort description)
and to date, most studies involved larger exome data sets, which
were likely the major driver of the primary findings. Here we
present a comprehensive analysis of structural rearrangements
and somatic mutations in 30 CLL whole genomes having low-risk
cytogenetic aberrations. We deliberately balanced our cohort to
evenly represent higher- and lower-risk IGHV cases, since
different driver events might be relevant to these subgroups, as
in fact turned out to be the case.

Recently developed techniques using Non-negative Matrix
Factorization (NMF)® to perform unsupervised analysis of
somatic mutation data has enabled the unbiased discovery
of genome-wide mutational patterns in multiple tumour
types*®7. One such study, by Alexandrov et al, analysed 28 CLL
WGS and 103 whole-exome sequencing samples and found
that CLL mutations comprise three mutational signatures: (i)
ageing-related mutations (C>T at CpG mutations due to
spontaneous deamination®; signature 1B); (ii) APOBEC signature
(signature 2); and (iii) an activation-induced cytidine deaminase
(AID)-related signature (signature 9). During B-cell development,
AID induces deamination of cytosine to uracil. Resolution of these
lesions by the error-prone DNA polymerase 1 (eta) results in A to
C mutations at WA (W = A or T) motifs; described as signature 9
by Alexandrov et al* However, as noted by Alexandrov et al?,
signature 9 does not exhibit the known mutation features of
canonical AID (c-AID) (C to T/G at WRCY motifs, W=A or T,
R =purine, Y = pyrimidine)®, and is therefore referred to as a
non-canonical AID (nc-AID) signature throughout this paper.
Note that previously the c-AID signature was not separated as a
distinct one in CLL*. However, prior experimental evidence has
suggested that somatic hypermutation could be ongoing in a
limited number of CLLs’. In addition, supervised mutation
analysis®!®11  did  identify c-AID mutations in the
immunoglobulin heavy chain locus in CLL®®, as well as in
multiple myeloma!® and diffuse large B-cell lymphoma
(DLBCL)!!. To the best of our knowledge, at the time of
manuscript submission, genome-wide unsupervised discovery of
c-AID signatures had not been performed in CLL.

In this study, our data set of 30 whole genomes provides
the opportunity to perform an unsupervised analysis of the
mutational patterns giving rise to indolent CLL. Here we
present a modified Bayesian NMF algorithm that we have
developed to analyse the mutation spectrum of CLL and show
that it can successfully delineate both canonical and nc-AID
signatures in an unsupervised genome-wide manner. In the
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context of known CLL and AID biology, our results support a
model of differential activities of the two AID signatures and the
ageing signature throughout tumour evolution.

Results

Structural rearrangements in CLL reveal chromoplexy events.
To assess the degree of genomic structural instability in the 30
CLLs genomes (see Supplementary Tables 1 and 2 for patient
characteristics), we first analysed rearran§ements, and identified a
total of 92 events using the dRanger!? algorithm followed by
BreakPointer!2, This result corresponds to a median of 2.5 (range
0-15) rearrangements per genome, significantly fewer than most
other cancers (Fig. 1a), underscoring the relative stability of these
CLL genomes. Interestingly, deletion of 13q often occurred by an
inter-chromosomal unbalanced translocation (6/16, 37.5% of 13q
deletion cases, Fig. la) rather than a simple deletion (see
Supplementary Data 1 for rearrangement partners). Hruba
et al'® reported a similar frequency of inter-chromosomal 13q
rearrangements by fluorescence in situ hybridization. Apart from
chrl13, three other chromosomes were rearranged in >20% cases;
chr2 (12 cases, 40%), chr14 (9 cases, 30%) and chrl (6 cases, 20%).
Chrl4 accounted for 14% of rearrangements (13/92), mostly
representing deletions. Eleven of these 13 rearrangements (9 cases)
had break points at the 5'IgH region (chr14q32.33). Patients with
chr14q32.33 rearrangements had a shorter time to next treatment
post sampling (TTNT) (P=0.019, log-rank test, Fig. 1b). Although
deletions in this locus have been frequently reported in a variety of
B-cell neoplasms including CLL, they have not been detected in
normal B cells, indicating that they are not a by-product of normal
immunoglobulin rearrangements'1%. Single-nucleotide polymor-
phism (SNP) array analysis of the 30 CLLs revealed a median of 1
somatic copy-number alteration (sCNA) per case (range 0-6),
similar to our previous report'®. Other than 13q loss, we detected
previously described sCNAs such as focal amplifications in 3q25.33
(ref. 15) in two cases (which include PIK3CA) and a focal deletion
at 1q42.2 that was reported by Pfeifer et al.!”

Next, we looked for complex structural rearrangements such
as chromothripsis'® and chromoplexy!® since these may have
disrupted multiple genes in a single event. While chromothripsis
typically involves multiple focal deletions in a single chromosome
(thought to occur during metaphase)?*2!, chromoplexy is defined
as a series of inter-dependent rearrangements among multiple
chromosomes (most likely during interphase)!®. Although we did
not find evidence of chromothripsis, three of the 30 cases had
evidence for chromoplexy (detected by ChainFinder'®—an
algorithm that links close rearrangements to balanced chains of
events). Two of the cases had a single chain (both with three
rearrangements) and one had two chains (with three and
eight rearrangements) (Fig. 1c; Supplementary Data 2). In one
case each, the chain included known common CLL copy-number
changes, namely 13q deletion and 14q32 deletion. Interestingly,
all three of these patients were untreated before sampling
but underwent therapy shortly thereafter, suggesting that these
events may indicate poor outcome (P=0.02, log-rank test),
although this finding needs to be confirmed in a larger cohort.
Our results indicate, for the first time, that chromoplexy events
occur in CLL (involving 17 of the total 92 rearrangements).
Earlier cytogenetic reports of chained translocations may also
have reflected this phenomenon, albeit at much lower resolution.
Statistical ~analysis of the copy-number and structural
rearrangement data by the ChainFinder algorithm suggests that
these events likely occurred at the same time and hence adds
additional information beyond the previous cytogenetic studies.
Taken together, our data suggest that in this indolent cohort a
subset of 13q deletions may occur by inter-chromosomal
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Figure 1 | Summary of structural rearrangements. (a) Circos plot representing the structural rearrangements observed across 30 CLL genomes.
Purple lines indicate inter-chromosomal rearrangements, grey lines indicate intra-chromosomal rearrangements; red arrows point to inter-chromosomal
rearrangements giving rise to 13q deletion. (b) Kaplan-Meier curve showing the relationship between time to next treatment post sampling and
rearrangements in Chr14q32.33 (5'IGH) in the vicinity of KIAA0725. (¢) Circos plots depicting the presence of chained rearrangements detected by the
ChainFinder algorithm. Red arrows indicate deletion bridges and inter-dependent chains. Left—1 chain near LPIN1, TRIB2 and TMEM194B genes

on chr2; middle-1 chain near KIAA0125 on chr14 and ANP32A on chr15; right—chain 1 (blue) near SNAR-H, REG3G and CTNNAZ2 on chr2

and chain 2 (green) near ARMCX6, SAGET, ZCCHCS5 and ITM2A on chr23 and CYSLTR2, EBPL, RNASEH2B and KPNA3 on chr13. The genes listed here either
fall within a deletion or are within 25kb of a chained rearrangement breakpoint.

rearrangement or even more involved chromoplexy events.
Future larger studies are needed to correlate such events more
definitively with clinical outcome.

Increased subclonal mutation rate with age. Turning our
attention to mutational patterns, we identified an average of 3,055
mutations per genome (Fig. 2a; Methods). The average genome-
wide mutation frequency of 1.1+0.4 per Mb (range 0.4-2.1,
n =30, data are shown as mean + s.d.) is lower than that of many
other haematological malignancies and solid tumours”?22, The
pattern of mutation densities (intergenic > intronic > untranslated
region (UTR) > exonic) in different genomic regions was similar to
other WGS studies?> (Fig. 2b).

Although CLL is largely considered to be a geriatric malignancy,
about one-third of patients develop the disease much earlier. We
have previously reported that disease diagnosed at an older age is
associated with a higher number of clonal mutations (in coding
regions?%), but not subclonal mutations. Clonal mutations are
likely to have occurred during life before onset of malignancy,
while subclonal mutations arise subsequent to transformation, after
the last selective sweep, and are therefore in only a subset of cells®*.
In this cohort, we deliberately selected older and younger patients
matched for other disease characteristics, so as to better associate
mutational patterns with age of diagnosis. We confirmed the
expected increase in clonal mutations with age, but we were also
able to observe a clearly higher number of subclonal mutations
with older age (Fig. 2c-g), even though the disease duration was
comparable in the young and old cohorts (Fig. 2d). Thus, in
addition to the well-described higher clonal mutation burden
acquired before disease development in older patients, we also find

a higher ongoing rate of subclonal mutations, which may reflect
more clonal evolution and heterogeneity.

Somatic mutational landscape of indolent CLL by WGS.
Focusing on the specific somatic mutations, we observe that only
10 (33%) out of 30 patients displayed at least one mutation in a
previously reported CLL driver. In comparison, 57% (91/160) of
the cohort in our previous whole-exome study? had at least one
mutation in a CLL driver, indicating that this cohort does indeed
capture a different biology (Fisher’s exact test, P=0.027). Those
patients with at least one driver mutation in a previously reported
CLL cancer gene were more likely to have unmutated IGHV
(P=0.014) and normal cytogenetics as compared with 13q
deletion (P=0.033, Fisher’s exact test). These patients also had a
higher risk of progressing to next treatment (Hazard Ratio,
HR=5.71, P=0.0076), as expected by their IGHV status.
Interestingly, 7/30 cases (23%) did not harbour mutations in any
gene previously associated with cancer (CLL drivers®*, COSMIC or
PanCancer?® mutations) (Fig. 3a); these patients all carried 13q
deletion (Fisher’s exact test, P=0.009) and five of them had
mutated IGHV. The number of nonsilent mutations per tumour in
these seven cases was also significantly lower than the rest of the
cohort (13+5.5 versus 20+ 8.6, P=0.0027, Mann-Whitney U-
test, data are shown as mean * s.d.). No difference in the number
of rearrangements and sCNAs was seen in these two groups.
Interestingly, the 13q-deleted subgroup was enriched in 5UTR
and coding-region mutations in IGLL5 (P=0.04, Fisher’s exact
test), the gene carrying the most frequent coding-region
mutations in our cohort (Fig. 3b,c). These mutations
were also more common in IGHV-mutated cases (P=0.013).
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Figure 2 | Overview of somatic mutational landscape. (a) Pie chart depicting the percentage of different types of sSNVs detected in our cohort
genome-wide. (b) Bar chart of average mutation densities across different regions of the genome. n=30, error bars indicate +s.e.m. (¢) Dot plot of
age at diagnosis in the older versus younger cohort. The horizontal line indicates median age. (d) Dot plot of time from diagnosis to sampling in the older
versus younger cohort. (e) Bar chart comparing the mutation rate per MB genome-wide (total) and in coding regions in the entire cohort and in
younger (n=13) versus older (n=17) patients. (fg) Dot plot of average number of clonal and subclonal mutations total (f) and in coding regions

(g) in younger versus older subgroups is shown. Error bars indicate *s.e.m., P values were calculated using the Mann-Whitney U-test. NS, not significant

(i.e. P>0.05).

Little is known about the function of the IGLL5 gene, but it
is homologous to IGLLI (lambda5), which is critical for
B-cell development. Furthermore, IGLL5 has been reported
to be recurrently mutated in diffuse large B-cell lymphoma?®.
The mutation pattern in IGLL5 was suggestive of off-target AID
activity, with clustering of mutations near the transcription start
site (TSS) through the first intron, as well as biallelic mutations
(Supplementary Fig. 1a). The mutations included non-
synonymous coding-region mutations (n=4), 5UTR mutations
(n=4) and one patient with both (total 9/30 = 30%), as well as 15
samples with mutations in the first intron (total 15/30 = 50%).
The 5UTR and coding mutations in IGLL5 were enriched in
subclonal mutations, whereas the intronic mutations were mostly
clonal (P=0.006, Fisher’s exact test), suggesting that the 5’UTR/
coding mutations were acquired later than the intronic mutations,
after the last selective sweep. The presence of 5UTR and
first exon mutations was confirmed by Sanger sequencing
(n=7/8 cases, we did not have additional DNA from the 8th
patient after sequencing). In addition, expression of the mutant
alleles in the IGLL5 coding region was also confirmed using
matched RNA sequencing (RNA-seq) data (Supplementary
Fig. 1b shows a representative Integrative Genomics Viewer
[IGV] screenshot). IGLL5 mutants showed a trend towards
reduced transcript levels as compared with wild type
(Supplementary Fig. 1c). Comparing the fraction of reads
supporting the mutated allele in the WGS and RNA-seq data
showed higher mutation allele fraction in the RNA-seq data in the
coding mutations (P =0.0078), whereas the 5’'UTR mutations had
similar allele fractions (P=0.16) (Supplementary Fig. 1d). These
data suggest a potentially different functional role for coding and
5UTR mutations in IGLL5, but future experiments will be
required to determine their true role if any in CLL pathogenesis.
Given that IGLL5 was the most commonly mutated gene in our
cohort and the mutational pattern suggested the potential
involvement of AID activity, we were interested in exploring
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more broadly the mutagenic processes, including AID, that give
rise to the somatic mutations that lead to CLL?"%8,

Unsupervised discovery of mutational signatures. Normal B
cells undergo somatic hypermutation in the germinal centre?®—a
process that is mediated by AID and induces clustered mutations
in immunoglobulin loci and some off-target regions!®3C.
Following AID-induced deamination of cytosine to uracil,
different repair processes lead to different mutational
signatures, called either c-AID or nc-AID. Specifically,
direct replication over the AID-induced U:G lesions or removal
of the uracil by UNG (uracil DNA glycosylase) followed
by replication accounts for the mutations of the c-AID
signature (C to T/G mutation at WRCY motifs, W=A or T,
R =purine, Y = pyrimidine; reviewed in ref. 31). Alternatively,
processing of the AID-induced lesions by the mismatch repair
pathway that recruits the error-prone DNA polymerase 1 gives
rise to the nc-AID-related mutations (A to C/G at WA
motifs?832; reviewed in refs 31,33).

Given our findings with IGLL5, and due to the known clustered
nature of c-AID mutations®, we considered the nearest mutation
distance (NMD—see Methods for details) as a parameter to
stratify somatic mutations. We observed a bimodal distribution of
mutation distance that enabled a partitioning of the mutations
into two groups: (i) a clustered group (NMD < 1,000 nt)
consisting of 7% of mutations and (ii) a non-clustered group
(NMD > 1,000 nt) with the remaining 93% of mutations (Fig. 4a).
Comparing the mutational spectra of these two groups revealed a
marked increase of C>T/G at GCT motifs in the group of
clustered mutations. This pattern of mutations matches the
known c-AID signature’, suggesting that this process contributes
to the mutational load in CLL (Supplementary Fig. 2). Although
AID expression has been reported in only 0.01-2% of quiescent
circulating CLL cells®>, our finding is consistent with previous
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Figure 3 | Distribution of mutations in selected genes. (a) Heatmap showing the presence of non-synonymous mutations in genes specified on

the right. In the heatmap, white box = one event, black box =two events and gray = no events. The genes are classified based on potential functional
significance as shown in the rightmost column. The top panel shows the clinical characteristics of each sample. The bar chart on the left indicates

the percentage of cases with at least one mutation in the gene on the right. The bottom four rows in the heatmap represent the presence of mutations in
IGLL5, rearrangement events and copy number alterations. The black box highlights samples with mutations in known CLL driver genes; the blue

box highlights cases with no mutations in known cancer-associated genes. (b) Graphical representation of 5’UTR and coding mutations in the

IGLL5 transcript. ***indicates mutations concentrated in the first intron. (€) Graphical representation of IGLL5-coding mutation alterations at the

protein level.

studies that have reported AID activity in CLL cells by analysing
intra-clonal IGHV diversity>®” and induction of de novo somatic
hypermutation in vitro®33,

Recently, Alexandrov et al? identified, in an unsupervised
manner, 21 mutational signatures across 30 different tumour
types by applying NMF to the mutation counts across the 96
available trinucleotide mutation contexts. Here we characterized
the mutational signatures operating in our 30 CLL cases using a
related Bayesian NMF method” considering NMD as an
additional feature. Thus, instead of analysing a 96-by-30 matrix
of mutation counts, we partitioned the mutations in each tumour
into two groups of clustered and non-clustered mutations, giving
rise to a 96-by-60 matrix (Methods). This partitioning enabled
the discovery of mutational signatures unique to the clustered and
non-clustered mutations. Our analysis identified three mutational
processes, only two of which were reported by Alexandrov et al.*:
an ageing signature characterized by increased C>T
transitions at CpG sites (analogous to their signature 1B); a nc-
AID signature, dominated by A>C at WA motifs (analogous to
their signature 9) (Figs 4b,c and 5a); and a third signature that
matches the c-AID signature (C to T/G mutation at WRCY
motifs, W= A or T, R=purine (A or G), Y= pyrimidine (C or
T)) that was not reported by Alexandrov et al* To further
validate the finding of the c-AID signature, we reanalysed the 28
WGS CLL samples from Alexandrov et al. using our method and
were able to validate both the c-AID and nc-AID signatures in
their data (Supplementary Fig. 3), although the c-AID signal was
not as strong as in our cohort. Thus, our analysis provides
definitive evidence that c-AID activity in CLL is strong enough to
be discovered in an unsupervised analysis of genome-wide
mutational patterns.

Next, we calculated for each mutation, m, the probability (py,s)
that it was generated by each of the three mutational signatures, s,
and assigned it to a signature if that probability (p,s) was greater
than 0.75 (Methods). As expected, plotting the NMD along the
genome for each signature revealed that the c-AID-associated
mutations form distinct clusters, whereas the nc-AID- and
ageing-associated mutations are scattered more evenly
(Supplementary Fig. 4). From this analysis, we were able to
determine that the three signatures exhibit differential contribu-
tion to the overall mutational landscape of each patient. The
ageing signature was predominant across all cases and the
number of ageing-related mutations was significantly higher in
patients with older age at diagnosis, as might be expected (Fig. 5b,
P =0.004, Wilcoxon’s rank-sum test). However, 70% of cases had
at least 10% of mutations due to AID activities (Fig. 5a). The
number of mutations due to c-AID and nc-AID was significantly
higher in IGHV-mutated CLLs (Fig. 4c and Fig. 5c¢,d; c-AID
P=0.0004, nc-AID P<0.0001, Wilcoxon’s rank-sum test).
Consistent with this, 7/12 IGHV-unmutated cases showed
>95% ageing signature. Among coding mutations, 95% were
associated with the ageing signature (puageing™>0.75), whereas
only 1.9 and 2.4% were associated with c-AID and nc-AID,
respectively. Therefore, the ageing signature is likely to be the
primary contributor to driver mutations in coding regions in
CLL. Interestingly, the seven samples with no mutations in
known CLL drivers or other cancer genes showed a lower number
of ageing-associated mutations (P=0.021, Mann-Whitney test).

c-AID signature exhibits classical features of SHM. Apart from
the WRCY recognition motif, other previously described
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Figure 4 | Analysis of mutational signature in CLL. () Frequency histogram of nearest mutation distance (NMD) shows bimodal distribution. (b)
Estimated mutation contributions of the indicated mutational signatures detected upon inclusion of NMD as a factor in Bayesian NMF. (¢) Number of
clustered mutations (left) and non-clustered mutations (right) associated with canonical AID (green), ageing (blue) and non-canonical AID (purple)

signature across samples. * Indicates cases with mutated IGHV.

characteristics of off-target c-AID activity include (1) multiple and
biallelic mutations (evident from the observed clustering and the
mutation pattern in c-AID targets such as IGLL5) and (2) pre-
ferential targeting + 2kb from the TSS of highly transcribed genes
(reviewed in ref. 31). We observe that the c-AID-associated
mutation rate was increased 2.5-fold within 2kb of TSS as
compared with the genome-wide rate (Fig. 6a). To confirm the
preference for highly transcribed genes, we divided the genes into
four quartiles based on their expression levels determined by RNA-
seq, and compared the contribution of the three signatures with the
mutation rate in genes in each quartile. As expected, the overall rate
of mutations decreases with higher expression levels due to tran-
scription-coupled repair. However, the c-AID mutation rate was
found to be the highest compared with the other two signatures in
the genes in the quartile with the highest expression (Q4) (Fig. 6b).

Identification of genome-wide targets of the AID signatures.
Next, we focused on the contribution of c-AID and nc-AlID to the
mutational density in individual genes (including UTRs and
introns), to find specific target genes unique to each of the AID
processes. Specifically, we identified non-overlapping sets of
trinucleotide sequence contexts that distinguish the c-AID and
nc-AlID signatures (Supplementary Fig. 5a) (using only mutations
with py,s>0.75). For each AID signature, we then compared the
observed mutation density in every gene with at least one sig-
nature-associated mutation (py,s>0.75, 281 c-AID and 809
nc-AID genes) to the context-specific background mutation
density in these genes (Methods, Supplementary Fig. 5). We then
corrected for multiple hypotheses and identified genes associated
with each signature using a g-value cutoff of 0.1 (Supplementary
Fig. 5b).
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For c-AID, we detected 34 associated genes with ¢<0.1
(Supplementary Data 3). Consistent with known AID biology, 24
(70%) of these genes were located in the cytobands with the
three immunoglobulin loci (14q32.33, 22q11.22 and 2pl1.2).
Unsurprisingly, IGLL5 was one of the most significant genes
associated with the c-AID signature in this analysis (q<10~ %,
Supplementary Data 3). The list also included BCL6 and LTB,
other known off-targets of AID in post-germinal centre B-cell
malignancies’®**? and another haematologic malignancy-related
gene, TRIP11 (ref. 41) (Supplementary Data 3).

For nc-AID, we discovered 14 genes that were specifically
targeted (9<0.1, Supplementary Data 4). This list includes two
genes in the immunoglobulin cytobands as well as cancer-related

genes such as CADM?2 (renal cell carcinoma)*2, CHRM3 (colon
cancer)®3, LPHN3 (panCancer analysis)44 and ROBOI (breast
cancer)®® (Supplementary Data 4). The biologic basis of this
signature selectivity and its relevance to cancer development will
need to be clarified in future studies.

Ageing and c-AID activities are ongoing in CLL. We analysed
mutation clonality to assess the activity of these three mutational
processes over time during the life history of the CLLs. The
clonality of a given mutation can be used to deduce the time of its
onset in relation to the most recent selective sweep, with clonal
mutations being earlier events and subclonal mutations occurring
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later. We used ABSOLUTE*® to assess clonal versus subclonal
status (Methods) and examined the proportion of clonal and
subclonal mutations associated with each mutational process
(pms>0.75) (Fig. 7a). Overall, we found a significant association
between clonality and the mutational processes (P<0.00001,
72-test). Next, we tested each mutational process independently
and found that each signature had a different proportion of
clonal mutations. The nc-AID signature had the highest
proportion of clonal mutations (P<0.00001, Fisher’s exact test).
On the other hand, c-AID-associated mutations were equally
distributed between clonal and subclonal populations (P=0.26,

8

Fisher’s exact test), and ageing was enriched in subclonal
mutations (P<0.00001, Fisher’s exact test).

Given this difference in the proportion of clonal mutations in
each signature, we were interested in using these data to infer the
time of onset of each of the mutational processes in the life
history of the CLL. To do this, we looked at the distribution of the
proportion of tumour cells bearing a signature-associated
mutation, namely, the cancer cell fraction (CCF) for each
mutation. We plotted the fraction of mutations associated with
each signature as a function of their CCF. This analysis showed
that 54% of the nc-AID mutations were clonal (high CCF). As
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expected, therefore, the fraction of nc-AID-associated mutations
declined sharply at low CCF values, indicating relatively few
subclonal mutations, and suggesting that nc-AID was more active
at earlier stages of tumour evolution (Fig. 7b; Supplementary
Fig. 6). In contrast, roughly 40% of the c-AID mutations were
clonal, and c-AID mutations showed a constant proportion across
CCF values, suggesting both early and ongoing c-AID activity.
Ageing-associated mutations were least likely to be clonal, with
only 36% clonal, and, consistent with that, ageing-associated
mutations showed a slight increase towards lower CCF, that is,
more representation in subclonal mutations. These data therefore
suggest that nc-AID occurred mostly at earlier times, whereas
c-AID and ageing are continuing to operate even after the last
selective sweep.

Ongoing c-AID activity is enriched in unmutated IGHV cases.
Being a strong mutator, AID activity is tightly regulated in cells*’.
It is expressed in a very small fraction of circulating CLL cells,
likely those in the proliferative fraction. Interestingly, and
unexpectedly given that more somatic hypermutation is present
in mutated IGHV CLLs, this expression of AID (encoded by the
AICDA gene) among circulating CLL cells has been shown to be
enriched among unmutated IGHV cases*®%°. In our present
cohort, although AID mRNA expression is very low overall, its
expression is significantly higher in unmutated IGHV
(Supplementary Fig. 7, P=0.001, Mann-Whitney U-test).
Hence, we hypothesized that the ongoing c-AID activity evident
in the low-CCF subclonal c-AID-associated mutations would be
enriched in IGHV-unmutated patients. In fact, the ratio of c-AID-
associated subclonal:clonal mutations was higher in the unmutated
compared with mutated IGHV CLLs (Fig. 7¢, pms> 0.5, P=10.001;
Pms>0.75, P=0.055, Mann-Whitney U-test, Supplementary Data
5 and 6), even though the overall frequency of c-AlID-associated
mutations was higher in mutated IGHV CLLs (Fig. 5d). These data
suggest that the ongoing c-AID activity is enriched in unmutated
IGHV CLLs, even though the sum total of c-AID activity across all
of tumour evolution is enriched in mutated IGHV CLLs. As a
control, we assessed whether the ratio of ageing-associated
subclonal:clonal mutations was associated with IGHV status, and
found no association (Fig. 7c).

Discussion

In summary, we describe here the results of whole-genome
sequencing of a CLL cohort comprised of low-risk cytogenetic
subgroups in which we find that a small subset have complex
rearrangements that may be associated with more aggressive
disease, while a significant number have only 13q deletion as an
obvious CLL driver.

Unlike previous studies®!, we find significant enrichment in
not just clonal but also subclonal mutations with age. Acquisition
of subclonal mutations or clonal evolution has been associated
with worsening disease?>?. While this supports the paradigm of
acquisition of passenger mutations with age, it also points
towards a more heterogeneous tumour in older patients and/or a
faster ongoing acquisition of new mutations within the tumour.
Thus, the age-associated increase in clonal diversification may be
a key factor promoting worse disease outcomes in older patients.

We discovered recurrent mutations in IGLL5 that were
previously undescribed in CLL. Interestingly, these mutations
segregate independently of the known CLL driver genes and
thus seem to be a unique feature of low-risk CLL. The pattern
of IGLL5 mutation is suggestive of off-target AID activity, which
is more prominent in lower-risk IGHV-mutated CLL. The
mutations are expressed and were associated with a trend
towards lower overall gene expression. Although the complete

functional characterization of this protein is beyond the scope of
this manuscript, we have presented several indicators that suggest
IGLL5 mutations may be of biological importance. Taken
together, these findings point towards a potential functional role
of IGLL5 perturbation in low-risk CLL. However, further
experimental work is required to confirm any such role.

Systematic analysis of mutational signatures gives insights into
key mutagenic processes governing the developmental history of
a cancer cell. Using a novel signature discovery method that uses
information on both sequence context and mutation distance, we
were able to identify three mutational signatures operative in
CLL, including two distinct AID processes (c-AID and nc-AID)
that represent a greater fraction of mutational activity in
mutated IGHV cases, and the ageing-related signature. Somatic
hypermutation is a critical physiological process in B-cell
development responsible for affinity maturation of antibodies>!.
This process is initiated by AID, a 24-kDa protein that catalyses
cytosine deamination to produce uracil, thereby creating U:G
mismatches®?. Repair of AID-induced lesions give rise to C to
T/G mutations at WRCY motifs—termed as c-AID, and A to
C/G mutations at WA motifs—termed as nc-AID*!. Although
AID activity is tightly regulated to primarily target the
immunoglobulin-variable region genes, off-target AID activit
can cause oncogenic mutations and chromosomal instability>’.
Despite scattered data suggesting that c-AID activity is present in
CLL, the c-AID mutational signature was not identified in a
previous unsupervised analysis of mutational signatures for CLL%.
Here we demonstrate that the c-AID activity is separable as a
distinct mutational signature using genome-wide unsupervised
analysis considering the mutation distance as an additional
feature.

Recently, Pettersen et al. reported c-AID-induced mutations in
kataegis regions in CLL using a supervised motif discovery
method’. A similar supervised motif discovery in four CLL whole
genomes by Rebhandl et al. had previously implicated APOBEC
activity in CLL>. Although APOBEC is widely expressed in
CLL, our unsupervised signature discovery did not yield an
APOBEC mutational footprint in our cohort. We applied the
supervised motif analysis, as per Rebhandl et al.>3, to our cohort,
and were unable to detect evidence for APOBEC activity in
clustered and non-clustered mutations at either immunoglobulin
or non-immunoglobulin loci.

Analysis of whether a mutation is clonal or subclonal can be
used to infer the time of occurrence of that mutation in relation
to initial malignant transformation, with clonal mutations
occurring earlier. We therefore examined the clonal fraction of
mutations associated with each of our signatures. The ageing
signature activity was enriched in patients with late-onset disease
and enriched in subclonal mutations, which occur later, therefore
suggesting that the ageing signature is a source of ongoing
mutagenesis in CLL. This finding is consistent with our
observation of not just increased clonal, but also increased
subclonal mutations with age. Interestingly, the nc-AID-asso-
ciated mutations were more clonal, suggesting that this process
primarily occurred before the last selective sweep and perhaps
even before cancer initiation. The mutation clonality analysis
suggested that c-AID activity represents both an early and an
ongoing process in the CLL life cycle. The higher proportion of
newer subclonal c-AID-related mutations in IGHV-unmutated
CLL, suggests that ongoing c-AID activity is higher in this
subgroup. These findings are consistent with prior work showing
that in mature circulating CLL cells, AID activity is more easily
induced in unmutated IGHV patients, and hence more likely to
create newer mutations®. It should be noted that the sum total of
all AID-related mutations is significantly higher in the mutated
IGHYV cases, as also reported by Alexandrov et al.*
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Circulating CLL cells are mostly in the GO/G1 phase®®>,
although recent work has demonstrated that a small pool of
proliferating cells is always present®®, likely arising from tissue
niches. Our data suggest that DNA-polymerase-n-mediated
repair of AID-induced genetic lesions, which results in nc-AID
mutations, occurs predominantly earlier in the CLL life cycle,
perhaps even before transformation, while UNG-mediated repair,
which results in c-AID mutations, is ongoing early and later.
Little is known about the factors governing the relative activity
and timing of pol-n and UNG in repairing AID-mediated strand
breaks. DNA pol-n which contributes to nc-AID mutations, is
more active in the S phase>”*8, UNG, which contributes to c-AID
mutations, is most abundant in the G1/S transition and S phase®”,
but it is possible that in somatic hypermutation and class-switch
recombination, UNG exerts its function in GI, similar to
AID*760, Specifically, using a mouse model, Sharbeen et al.®!
have shown that the mutagenic activity of UNG on AID-induced
lesions was exclusively restricted to the G1 phase. These data
may suggest that pol-n is more active in the S phase, while
UNG is more active in G1; how this paradigm applies during the
early development and transformation of a B cell to a CLL cell is
yet unclear, but our data suggest that pol-n activity is earlier in
this process.

In summary, by characterizing a lower-risk CLL cohort with
WGS, we were able to show for the first time the operation of a
distinct c-AID signature in CLL using unsupervised genome-wide
analysis, and to demonstrate that this signature is in fact more
abundant in cases with lower-risk mutated IGHV. These cases
have fewer driver mutations and their key causative events
beyond deletion 13q are still unclear. We are continuing to
analyse noncoding and promoter regions from these whole
genomes, as well as to correlate these results with epigenetic
analyses, in an effort to identify the key driving events in these
indolent CLL patients. Meanwhile, our new mutational signature
detection method can be extended to other cancers to better
elucidate signatures associated with clustered mutations.

Methods

Sample preparation. Matched peripheral blood (tumour) and saliva (normal)
samples were collected after obtaining informed consent to a tissue banking
protocol approved by the Institutional Review Board at Dana-Farber Cancer
Institute (protocol no. 99-224). For samples with white blood cell count <25K or
absolute lymphocyte count <20K, B cells were purified using the Easy Sep Human
B cell Enrichment Kit (StemCell Technologies Inc., Vancouver, Canada) according
to the manufacturer’s instructions before viably freezing. Tumour and saliva DNA
were extracted using QIAamp Blood DNA (Qiagen Inc., Valencia, CA) and
Oragene DNA (Oragene, Ontario, Canada) kits, respectively, according to the
manufacturer’s directions.

Whole-genome sequencing. Purified DNA was submitted to the Genomics
Platform at the Broad Institute (Cambridge, MA) for high-throughput whole-
genome sequencing. All samples were subjected to in-house quality control (QC)
procedures such as Picogreen-based double-stranded DNA quantification (Life
Technologies, Carlsbad, CA) and fingerprinting to confirm the match between a
tumour and its intended normal, before library preparation.

For a subset of samples, starting with 3 pug of genomic DNA, library construction
was performed as described by Fisher et al.®> Another subset of samples, however,
was prepared using the protocol by Fisher et al, with some slight modifications.
Initial genomic DNA input into shearing was reduced from 3 pig to 100 ng in 50 pl of
solution. In addition, for adapter ligation, Illumina paired-end adapters were
replaced with palindromic forked adapters with unique eight-base index sequences
embedded within the adapter. For a subset of samples, size selection was performed
using gel electrophoresis, with a target insert size of either 340 or 370 bp  10%.
Multiple gel cuts were taken for libraries that required high sequencing coverage. For
another subset of samples, size selection was performed using Sage’s Pippin Prep.

Following sample preparation, libraries were quantified using quantitative PCR
(kit purchased from KAPA biosystems) with probes specific to the ends of the
adapters. Cluster amplification was performed according to the manufacturer’s
protocol (Illumina) using either HiSeq 2000 v2, or HiSeq v3 cluster chemistry and
flowcells. For a subset of samples, after cluster amplification, SYBR Green dye was
added to all flowcell lanes, and a portion of each lane was visualized using a light

10

microscope, to confirm target cluster density. Flowcells were sequenced on HiSeq
2000 using HiSeq 2000 v2 or v3 Sequencing-by-Synthesis kits, then analysed using
RTA v1.10.15. or RTA v.1.12.4.2.

Mean target coverage of 30X and 60X was achieved for the tumour and normal
samples, respectively. Pilot analysis of two normal saliva samples to determine
the percentage of bacterial DNA contamination suggested that 60X coverage would
be adequate to achieve 30X human DNA coverage in our samples. Average length
of the paired-end reads was 101 bp with an 8-bp index. The raw sequence
reads were processed and aligned to the hgl9 human reference genome using the
‘Picard’ pipeline, followed by QC using ‘Firehose’ tools developed at the Broad??
(https://www.broadinstitute.org/cancer/cga/Firehose). The QC parameters tested
include lane cross-check fingerprinting for sample identity, tumour normal
cross-contamination measured using ContEst® and coverage statistics. All samples
passed the QC check.

Identification of somatic mutations. High-confidence somatic mutation calls
were made by applying MuTect® to whole-genome sequencin% data from tumours
and patient-matched normal samples. Refer to Cibulskis et al.%* for more details. In
addition, commonly occurring germline variants were filtered out using a panel of
normals. The somatic mutation calls were further subjected to a realignment filter
to remove remaining false-positive calls (Supplementary Data 7 for genome-wide
somatic single nucleotide variants (sSNV) calls).

Estimation of clonality using ABSOLUTE. Tumour samples are frequently
contaminated with normal cells. ABSOLUTE?® infers the purity and ploidy of this
heterogeneous population using copy-number and mutation data. ABSOLUTE also
estimates local copy number in the cancer cells and the CCF of each mutation (that
is, the fraction of cancer cells harbouring the mutation). We followed the same
procedure as described in Landau et al.>* (Supplementary Data 8). Specifically,
mutations with probability > 0.5 of having CCF > 0.95 were classified as clonal, and
the rest were classified as subclonal. Mutations with CCF <0.1 were filtered out
due to low power.

Discovery of structural rearrangements. Clusters of discordant read pairs were
used to infer the presence of structural rearrangements using the dRanger!! and
BreakPointer!! algorithms. Mapped distance between pairs that is greater than that
expected, based on library insert-size distribution, indicated the presence of a
deletion. Inter-chromosomal rearrangements were identified as mate-pairs with each
end mapping to different chromosomes. Tandem duplications were identified as
pairs with same orientation, as well as an unexpected insert size. dRanger uses a panel
of 177 whole-genome-sequenced normals to filter known germline rearrangements
and artefacts. The algorithm assigns a final score based on number of supporting
read pairs and a series of filtering matrices described in greater detail previously!l. A
score cutoff >4 was selected, as previous work has shown that it yields at least 85%
true positives in a large-scale PCR-based validation study'!. Breakpointer can be
downloaded at https://www.broadinstitute.org/cancer/cga/breakpointer. See
Supplementary Data 1 for a list of structural rearrangements.

Analysis of SNP array data. A minimum of 250 ng of tumour and matched
normal DNA was used to run Affymetrix Genome-Wide Human SNP Array 6.0
containing 906,600 SNPs and more than 946,000 probes for the detection of copy-
number variation on a single genotyping array. The Genome-Wide Human SNP
Array 6.0 uses a Birdsuite calling pipeline that delivers SNP as well as CNA calls.
Germline CNAs and artefacts were removed by normalizing against a panel of
normals. The resultant copy number segments file (seg file) with log2 copy-number
ratios was used for further analysis. The number of SCNAs per sample was cal-
culated manually using the following parameters, followed by visual inspection in
IGV and comparison with germline: segment length >0.2 MB, amplification
threshold >0.1, deletion threshold < —0.1.

The structural rearrangement data and SNP array data were modelled together
using the ChainFinder'® algorithm to detect inter-dependent events, as described
in detail by Baca et al.'® The algorithm is available at https://www.broadinstitute.
org/cancer/cga/chainfinder. See Supplementary Data 2 for ChainFinder output.

Discovering mutational signatures. The mutation signatures discovery is a de-
convolution process of the somatic mutation counts in each tumour, stratified by
mutation contexts and potentially other biologically meaningful parameters, into a
set of characteristic mutational signatures. Here we applied the Bayesian NMF
algorithm (BayesNMF)5 to infer the number of mutational signatures and their
sample-specific contributions. In addition to raw mutation counts stratified by 96
base substitutions in trinucleotide sequence contexts, we also considered the
clustering information of mutations as an additional feature in the signature
discovery. We considered the NMDs, a minimum genomic distance to all other
mutations on the same chromosome in the same patient, as a parameter to stratify
mutations, and partitioned them into ‘clustered’” (NMD < 1,000 nt) and ‘non-
clustered’ groups (NMD > 1,000 nt) (Fig. 4a). The comparison of overall mutation
spectrum between clustered and non-clustered mutation groups (Supplementary
Fig. 4) revealed a significant elevation of C>T/G at GCT context and A>G at WA
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(W =A/T) in the clustered mutation group, corresponding to the known AID
mutation motifs. On the basis of this observation, we separately counted clustered
and non-clustered mutations across 96 trinucleotide mutation contexts in each
sample. We split mutations in each tumour into two columns representing clustered
and non-clustered mutational groups, giving rise to the mutation count matrix X (96
by 2M, M = the number of samples). This mutation count matrix was ingested as an
input for the BayesNMF and factored into two matrices, W' (96 by K) and H' (K by
2M), approximating X by WH'. It should be noted that clustered and non-clustered
mutations from the same patient were separately handled to capture a characteristic
signal from clustered mutations. While the conventional NMF requires the number
of signatures K a priori, BayesNMF automatically prunes away irrelevant
components that do not contribute to explaining X and effectively determines the
appropriate number of K. We ran BayesNMF 50 times with exponential priors for
W’ and H' and 41 out of the 50 runs converged to the solution of K= 3, while 9 runs
converged to the solution of K=4. We used the three-signature solution (K= 3)
with the maximum posterior for the downstream analysis. To enumerate the number
of mutations associated with each mutation signature, we performed a scaling
transformation, X ~W'H' = WH, W= W'U ! and H = UH/, where U is a K-by-K
diagonal matrix with the element corresponding to the 1-norm of column vectors of
W/, resulting in the final signature matrix W and the activity matrix H. Note that the
kth column vector of W (wy) represents a normalized mutability of 96 trinucleotide
mutation contexts in the kth signature and the kth row vector of H (hy) dictates the
estimation of clustered and non-clustered mutations associated with the kth
signature across samples (Fig. 4c).

Signature-enrichment analysis. Using the determined W and H from the
BayesNMF, we annotated each mutation with the probability (likelihood of asso-
ciation) that it was generated by each of the discovered mutational signatures, pp,s,
where ‘m’ denoted a mutation and ‘s’ refers to the signature. More specifically, the
likelihood of association to the kth signature for a set of mutations corresponding
to ith mutation context and jth clustered or non-clustered mutation group was
defined as [wihi/Ziwihi];j, where wy and hy correspond to the kth column vector
and kth row vector of W and H, respectively.

For the gene-level signature-enrichment analysis, we first attempted to identify
a hotspot mutation motif out of 96 contexts in each signature by considering
mutations only with p,s >0.75. Note that keeping mutations with a higher py,,
filtered out mutations shared by multiple signatures and enabled the discovery of
more distinct mutation motifs unique to each signature. By considering
contributions more than the third quintile, we were able to extract characteristic
mutation motifs to each signature—19 hotspot mutation motifs in c-AID and five
hotspot mutation motifs in nc-AID (Supplementary Fig. 5a). To take into account
sequence composition variation across the genome, we enumerated all available
trinucleotide contexts across genes having non-zero mutations with p,,;>0.75 in
each signature. This information was used to estimate the background mutation
rates at the hotspot motifs in each signature, resulting in r.arp = 0.27 per Mb and
Tneatp = 0.58 per Mb for c-AID and nc-AID signatures, respectively. Then, for
given mutation counts, x, at hotspot motifs and available sequence context, n, in
each gene, we performed a binomial test with the estimated background mutation
rate to assess the significance of the enrichment of each signature across 281 genes
for c-AID and 809 genes for nc-AID having non-zero mutations with py,, >0.75
(Supplementary Fig. 5b; Supplementary Data 3 and 4). We corrected for multiple
hypotheses and identified genes that are associated with each signature using a g-
value cutoff of 0.1 (see Q-Q plots in Supplementary Fig. 5¢).

Two threshold values (0.5 and 0.75, Supplementary Data 5 and 6) for p,,s were
utilized for the clonality analysis to dichotomize the signature association of
mutations.

RNA sequencing and analysis. RNA was extracted using the Qiagen RNeasy kit
and the RNA integrity number was measured using Agilent Bioanalyzer at the
Harvard BioPolymers Facility to assess the quality of the extracted RNA. Only
samples with a RNA Integrity Number > 8 were submitted for sequencing. Poly-A-
selected RNA was used for library construction using the Illumina TruSeq Paired
End Strand-specific kit according to the manufacturer’s protocol and sequenced
using Illumina HiSeq. The RNA-seq BAMs were aligned to the hgl9 genome using
TopHat® (Gencode gtf used for annotation). QC analysis was performed using the
metrics described by DeLuca et al.% Gene-level expression data represented as
fragments per kilobase of exons mapped was obtained using Cufflinks®’.

Statistical analysis. Statistical analysis was performed using with SAS version 9.2
(SAS Institute, Cary, NC) and R version 2.15.2 (the CRAN groject). Categorical
variables were compared using the Fisher’s exact test or a y”-test as appropriate,
and continuous variables were compared using the Wilcoxon’s rank-sum test.
TTNT was defined as the time of sampling to the first treatment after sampling or
death, whichever occurs first. Patients who did not receive a treatment after
sampling were censored at the date last known alive and without any treatment.
TTNT was estimated using the Kaplan and Meier method, and the difference was
tested using the log-rank test. In addition, univariable Cox modelling was per-
formed for known CLL risk factors as well as exploratory factors presented in this
paper. Due to the limited number of events, multivariable Cox modelling was not

explored. The linearity assumption for continuous variables was examined using
restricted cubic spline estimates of the relationship between the continuous variable
and log-relative hazard, and the cutoff points of these variables were based on the
change of the log-relative hazards. All P values are two sided and considered
significant at the 0.05 level. Due to the exploratory nature, multiple comparisons
were not adjusted in the significance level.
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