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Abstract

RTS,S is the most advanced malaria vaccine candidate, currently under phase-III clinical trials in Africa. This Plasmodium
falciparum vaccine contains part of the central repeat region and the complete C-terminal T cell epitope region (Th2R and
Th3R) of the circumsporozoite protein (CSP). Since naturally occurring polymorphisms at the vaccine candidate loci are
critical determinants of the protective efficacy of the vaccines, it is imperative to investigate these polymorphisms in field
isolates. In this study we have investigated the genetic diversity at the central repeat, C-terminal T cell epitope (Th2R and
Th3R) and N-terminal T cell epitope regions of the CSP, in P. falciparum isolates from Madhya Pradesh state of India. These
isolates were collected through a 5-year prospective study aimed to develop a well-characterized field-site for the future
evaluation of malaria vaccine in India. Our results revealed that the central repeat (63 haplotypes, n = 161) and C-terminal
Th2R/Th3R epitope (24 haplotypes, n = 179) regions were highly polymorphic, whereas N-terminal non-repeat region was
less polymorphic (5 haplotypes, n = 161) in this population. We did not find any evidence of the role of positive natural
selection in maintaining the genetic diversity at the Th2R/Th3R regions of CSP. Comparative analysis of the Th2R/Th3R
sequences from this study to the global isolates (n = 1160) retrieved from the GenBank database revealed two important
points. First, the majority of the sequences (,61%, n = 179) from this study were identical to the Dd2/Indochina type, which
is also the predominant Th2R/Th3R haplotype in Asia (,59%, n= 974). Second, the Th2R/Th3R sequences in Asia, South
America and Africa are geographically distinct with little allele sharing between continents. In conclusion, this study
provides an insight on the existing polymorphisms in the CSP in a parasite population from India that could potentially
influence the efficacy of RTS,S vaccine in this region.
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Introduction

Malaria, especially that caused by Plasmodium falciparum is

responsible for nearly 800,000 deaths each year worldwide, most

of whom are young children in Sub-Saharan Africa [1].

Approximately 1.5 million cases of malaria are reported in India

each year, of which 50% are due to P. falciparum [1]. Given the

high impact of malaria on human health, a highly effective vaccine

is definitely needed for long-term control, elimination and possible

eradication of malaria.

As of today there is no licensed vaccine against malaria.

However, a number of potential vaccine candidates targeted

against pre-erythrocytic, erythrocytic and sexual stages of P.

falciparum are under various stages of clinical development [2]. The

most advanced among all, is RTS,S, a pre-erythrocytic stage

vaccine based on the parasite’s circumsporozoite protein (CSP)

[3]. The CSP is the most abundant protein on sporozoite surface

and consists of a highly polymorphic central repeat region flanked

by a less polymorphic N-terminal and highly polymorphic C-

terminal non-repeat regions [4]. The central region, which is

predominantly consisting of tandem repeats of NANP (N,

Asparagine; A, Alanine and P, Proline), in addition to small

number of NVDP (N, Asparagine; V, Valine; D, Aspartic acid and

P, Proline) repeats, constitutes immunodominant B cell epitopes.

Whereas the C-terminal region, which is concentrated in two sub-

regions, called Th2R and Th3R, makes both B cell and T cell

epitopes. In RTS,S recombinant vaccine, 19 NANP repeats and

entire C-terminal sequence of the CSP from NF54/3D7 P.

falciparum strain (amino acid residue 207 to 395) are fused to the
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hepatitis B surface antigen (HBsAg), which in turn is co-expressed

with additional unfused HBsAg in Saccharomyces cerevisiae yeast [5].

Since 1992, when the first trial of RTS,S, was conducted, it has

progressed through multiple phase-I and II trials on children and

infants in several African countries [3,6–9]. After obtaining

substantial level of protective efficacies in phase II trials, which

ranged from 30 to 50%, it is currently going through large-scale

phase-III trials at 11 sites in seven countries in Africa [3,10–15]. In

fact, initial results of the phase-III trials have been published

recently showing that the RTS,S vaccine provide African children

aged 5 to 17 months with significant protection against clinical

(56%) and severe (47%) malaria [16]. This study marks an

important milestone in the development of malaria vaccine, and

there is a hope that the first generation malaria vaccine will be

licensed by the year 2015. The malaria vaccine community has set

a goal to license a safe and affordable vaccine by 2025, that has

.80% efficacy and lasts longer than four years [17].

The occurrence of high genetic diversity in the malaria parasite,

especially at the surface-expressed molecules poses the greatest

challenge in developing a universally effective malaria vaccine.

Almost all P. falciparum antigens currently under consideration for

vaccine development including CSP have been observed to exhibit

polymorphisms in field isolates from various malaria-endemic

regions of the world [18–25]. In addition, polymorphisms in the

CSP has been shown to restrict T cell reactivity to specific epitope

and affect binding to HLA indicating selection of variants due to

immune pressure [26,27]. Given the importance of antigenic

diversity in influencing the outcome of any vaccine, it is very

important to characterize the prevailing level of variation in CSP

in different endemic regions as this will help to determine if

vaccine escape variants will compromise the efficacy of RTS,S

vaccine. Therefore, we have conducted a five-year prospective

cohort study in the Madhya Pradesh state of India, to examine the

genetic polymorphisms both at the central repeat and C-terminal

regions of the CSP, included in RTS,S, and also at the N-terminal

T cell epitope region. The data from this study were compared

with the sequences available for the P. falciparum isolates from other

malaria endemic countries in the world. The global distribution of

various allelic forms of the CSP has also been discussed.

Materials and Methods

Ethics Statement
The study was conducted in accordance with the procedure and

guidelines approved by the Indian Council of Medical Research

(ICMR), Government of India, and with ethical approval from the

institutional review board of the All India Institute of Medical

Sciences (AIIMS), New Delhi, Regional Medical Research Centre

for Tribals (RMRCT), Jabalpur, India, and the Centers for

Disease Control and Prevention, Atlanta, U.S.A. Written in-

formed consent was obtained from each participant or their

parents or guardians before being included in this study.

Study design, study sites and sample collection
This five-year prospective study (2005–2010) was designed to

develop a well-characterized field site, where the epidemiology of

malaria, immune responses to key parasite antigens, genetic

diversity at leading vaccine candidate antigens, and Anopheles

vector characteristics could be understood. There were two cohort

groups in this study as the source of our samples namely: the

hospital-based cohort and the community-based cohort. The

hospital-based cohort group represents the patients who attended

either the Netaji Subhash Chandra Bose (NSCB) Medical College

at Jabalpur or the Civil Hospital Maihar in Satna district. The

community-based cohort group represents patients who were

enrolled from study sites in Bargi and Sihora; both in the Jabalpur

district (Fig 1). Approximately, 200–300 ml of peripheral blood
samples were collected from each patient who had fever or fever-

like symptoms at the time of enrollment. The malaria epidemi-

ology in both the Jabalpur and Satna districts, which are

150 kilometers apart, are identical with transmission level varying

from hypo-endemic to meso-endemic. The details of patient

enrollment, sample collection and other epidemiological param-

eters are available (Text S1).

Genomic DNA extraction and amplification of csp gene
Genomic DNA was extracted from P. falciparum infected blood

using Genomic DNA Extraction Kit (Bioneer Corporation,

Korea), in accordance with the manufacturer’s protocol. The

CSP1forward (59-TTAGCTATTTTATCTGTTTCTTCC-39)

and CSP2 reverse (59- TAAGGAACAAGAAGGATAATACC-

39) primers designed using 3D7 strain as a reference sequence,

were used to amplify 1177 bp of the 1194 bp complete pfcsp gene.

The PCR cycling conditions for this primer pair were: 10 minutes

initial denaturation at 94uC followed by 35 cycles with 1 minute

denaturation at 94uC, 1 minute annealing at 57uC, 90 seconds

extension at 72uC and a final 10 minute extension at 72uC. The
resulting PCR products were diluted 1:10 and 2 ml of this was used
as a template to amplify the internal 1026 bp fragment using

CSP3 forward (59-GAAATGAATTATTATGGGAAACAG-39)

and CSP4 reverse (59-GAAGGATAATACCATTATTAATCC-

39) primers. The 1026 bp fragment encompassed the N-terminal T

cell epitope, central repeat and C-terminal T ell epitope regions.

The PCR cycling conditions for CSP3/CSP4 primer pair were:

10 minutes initial denaturation at 94uC followed by 35 cycles with

1 minute denaturation at 94uC, 40 seconds annealing at 57uC,
80 seconds extension at 72uC and a final 10 minute extension at

72uC. Proof reading polymerase Pfx (Invitrogen Life Sciences,

Carlsbad, CA, USA) was used to avoid introduction of any error

during PCR. Care was also taken to exclude the possibility of

cross-contamination where a negative control without the

template DNA was always used. Further, the DNA from a culture

adapted P.falciparum was used as a control to check the reliability of

the sequencing. The amplified products were resolved on 1.2%

agarose gel.

Sequencing of the amplified products and sequence
analysis
The desired sized bands were excised from the gel and purified

using the Gel Extraction Kit (Bioneer Corporation), in accordance

with the manufacturer’s protocol. The methods for cycle

sequencing PCR and cleanup were same as described earlier

[28]. The products were sequenced on both strands using CSP3

forward, CSP4 reverse and CSP-D reverse (59-

TGGGTCATTTGGCATATTGTG-39) primers, using ABI Big

Dye Terminator Ready Reaction Kit Version 3.1 (PE Applied

Biosystems, CA, USA) on an ABI-310 genetic analyzer (ABI 310

Genetic Analyzer; PE Applied Biosystems, CA, USA). The BioEdit

Sequence Alignment Editor [29] and GeneDoc-Version 2.6.002

[30] were used to analyze the sequencing electropherograms and

generate sequence alignment, respectively. The csp sequences of

the eight laboratory-adapted P. falciparum strains (Dd2, K1,

MAD20, Wellcome, 7G8, HB3, 3D7, and RO33) were also

included in the alignment to make comparison. All of these

sequences generated in this study have been submitted into the

NCBI GenBank database under the accession numbers

HM756094-HM756109 and HM582036-HM582081.

Genetic Diversity in Malaria CSP Antigen
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We also compared our sequences with all the published and

unpublished CSP sequences deposited in the NCBI GenBank

database from around the world. The details about these isolates

have been provided as (Table S1). Here we could only compare

C-terminal Th2R/Th3R sequences since this region of the CSP

has most widely been sequenced. The genetic relationship among

the global CSP sequence (Th2/Th3R) haplotypes was deduced by

the algorithm Minimal Spanning Tree (MST), implemented in

BioNumerics version 6.6 (Applied-Maths, Inc. Austin, TX). In this

algorithm, the haplotype with the highest numbers of single locus

variants (SLVs) is considered as a root haplotype and all other

haplotypes as relatives. This not by any means suggests the origin

or ancestry of a particular haplotype.

Statistical analysis
The different parameters of genetic diversity such as numbers of

haplotypes (H), segregating sites (S), haplotype diversity (Hd) and

average number of nucleotide differences per site between two

sequences (p), for the isolates from each country were calculated

using DnaSP ver. 4. 10. 9 [31]. Only Th2R/Th3R region

sequences were included in these analyses. The difference between

non-synonymous (dN) and synonymous (dS) mutations were

estimated in MEGA version 4.0 [32] using the method of Nei

and Gojobori’s [33] with the Jukes and Cantor (JC) correction to

test the evidence of positive (balancing) selection. We also

performed Fu & Li’s F* [34] and Tajima’s D [35] test statistics

to test the neutral theory of evolution using DnaSP. In order to

look for pattern of selection across the Th2R/Th3R region,

a sliding window analysis of p, Fu & Li’s F* and Tajima’s D were

performed with window length of 10 bp and step size of 5 bp. The

significant positive values for dN-dS, Fu & Li’s F*and Tajima’s D

indicate positive (balancing) selection whereas negative values

indicate negative (purifying) selection. The Fu & Li’s F* and

Tajima’s D values are also affected by demographic factors

including population size expansion or contraction, whereas the

dN-dS is insensitive to these factors.

Results

A total of 2336 (n= 603, Hospital cohort; n = 1733, Community

cohort) patients enrolled over the 5 years period based on the

adopted inclusion criteria. By light microscopy, only 780 (n = 603

Hospital cohort; n = 177 Community cohort) patients were

confirmed to have P. falciparum infection. Of them, 626 samples

were subjected to PCR amplification of pfcsp gene while remaining

154 samples were not available (Details of these patients are given

in Table S2). A total of 216 samples gave PCR amplification for

this gene. The PCR positivity rate for pfcsp gene was lower (34.5%)

as compared to other vaccine candidate antigen genes (44% to

56%) and P.falciparum dihydrofolate reductase (pfdhfr) gene (66%)

among these 626 isolates (Unpublished data). Such variation in

PCR positivity among the isolates can occur due to various reasons

such as variable copy number of the gene, annealing efficiency of

the primers, level of parasitemia in the samples etc. Successful

sequencing data was obtained from 161 samples each for the N-

terminal T cell epitope and central repeat regions (n = 126

Hospital cohort; n = 35 Community cohort), while 179 samples

provided sequence data for the C-terminal T cell epitope region

(n= 142 Hospital cohort; n = 37 Community cohort) (Table 1).
All the samples were of mono-infections as checked by the PCR

analysis of the merozoite surface protein (msp1 and msp2) genes

(Data not shown). Further, there were no mixed peaks in pfcsp gene

sequences for any of the isolate which also ruled out the possibility

of mixed infections with other P.falciparum strains.

Figure 1. Map of India showing sample collection sites. Map showing the study sites in Jabalpur (marked as 1) and Satna (marked as 2)
districts of Madhya Pradesh, India. Solid triangles indicate the community cohort sites whereas hospital cohort sites are shown as solid circles.
doi:10.1371/journal.pone.0043430.g001
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Sequence diversity in the central repeat region
Sixty-three unique haplotypes (CR1 to CR63) were observed

among 161 isolates in the central repeat region (Fig 2A). The
number of tetrapeptide repeats that includes NANP and other

minor variants, in this region varied from 35 to 53 among these

haplotypes. Approximately 58% of the samples (n = 161) had

number of tetrapeptide repeats between 42 and 46 (Fig 2B). Six
haplotypes were exclusive to community cohort, 18 were common

to both community and hospital cohorts, while remaining 39 were

only found in hospital cohort. Sixteen samples (CR12 to CR15)

had same number of repeats (number of repeats = 42) as in 3D7

strain, however, they had variation in sequences (Fig 2A). None of

the samples were identical to either 3D7 or Dd2 strain sequences

at this locus.

Sequence diversity in the N-terminal non-repeat region
As expected the N-terminal non-repeat region was highly

conserved among the samples analyzed and resulted into only five

haplotypes-H1 to H5 (Fig 3A). The H4 and H2 haplotypes

observed in ,55% (n= 161) and ,40% (n= 161) samples

respectively, were predominantly present in our study sites. The

H2 haplotype was identical to 7G8, Dd2, MAD20, RO33, K1 and

Wellcome strain sequences at this locus. The H1 haplotype

observed in seven samples was identical to 3D7 and HB3

sequences. The haplotype H4 was exclusively found in this study.

Sequence diversity in the C-terminal non-repeat region
A total of 24 Th2R/Th3R sequence haplotypes (H1 to H24; 1

specific to community cohort, 15 specific to hospital cohort and 8

common to both cohorts) were defined from 179 samples

analyzed, predominant being the H1/Dd2 type sequence

(,61%, n=179) (Fig 3B). This most common haplotype H1

differed from 3D7 sequence at 4 codons (3 in the Th2R and 1 in

the Th3R region). The second most common haplotype H2

(,12%, n= 179) found only in hospital cohort samples was a single

locus variant (SLV) of H1, since it differed from H1 only by one

mutation (Valine to Alanine) in the Th3R region. In comparison

to 3D7 sequence that is represented in RTS,S vaccine, poly-

morphism was observed at 13 codons in the Th2R region and at 7

codons in the Th3R region (Fig 3B). None of the sample had

Th2R/Th3R sequence identical to the 3D7 strain. The over all

haplotype diversity (Hd) for the combined Th2R/Th3R region

was 0.61460.041 and p nucleotide diversity was 0.006560.0065,

suggesting moderate level of genetic diversity at the C-terminal

region of CSP in this population (Table 2). The evidence of

selection occurring on this gene was not very conclusive as both

the Fu & Li’s F* (23.53, P,0.05) and Tajima’s D (22.13,

P,0.05) were negative for the whole Th2R/Th3R region. Sliding

window analysis also showed negative values of these indices across

the shorter segments of the Th2R and Th3R (Fig S2). However,

the dN-dS difference (0.00860.003) was positive for this region.

Global analysis of the Th2R/Th3R sequences
The multiple sequence alignment and minimal spanning tree

(MST) analysis of Th2R/Th3R sequences of all 1339 global

isolates including 179 from the current study resulted into 117

unique haplotypes (Table 2, Fig 4, Fig S1). These included 53

haplotypes from Asia (n = 974), 10 haplotypes from South America

(n = 181) and 63 haplotypes from Africa (n = 184). Other

parameters of genetic diversity also suggested that the African

populations show greater diversity at the Th2R/Th3R locus

followed by Asian and South American populations (Table 2).
The level of genetic diversity at the Th2R/Th3R locus in our

study population was very close to the diversity shown by the

isolates from other Asian countries. Broadly, there were two

predominant Th2R/Th3R sequence haplotypes in South Amer-

ica, one was H52 (7G8 type) and other was H53 (HB3 type) (Fig 4).
In Asia, five Th2R/Th3R sequence haplotype groups can be

described. The first group includes H1 (Dd2 type) and its SLVs

(directly connected to H1 by red line in Fig 4). The second group

includes H51 (MAD20 type) sequence and its SLV H28. The third

group H25 differed from the Dd2 type sequence by 2 mutations

(Double locus variants or DLVs). Interestingly, the fourth group

H52 was identical to the South American haplotype 7G8. The

fifth group H30 was very distant from its other Asian relatives.

Though there were 63 unique haplotypes in Africa, they were

distributed into 3 major clusters: H60 (3D7 type), H61 and H62.

The haplotype H52 (7G8 type) was the only Th2R/Th3R

sequence common among Asian, African and South American

population (Fig 4).

Discussion

To date, several antigens in the P. falciparum have been identified

and considered for the development of vaccine(s) against malaria.

One of the underlying challenges, which have been delaying the

successful development of malaria vaccine, is the high level of

antigenic diversity present in almost all candidate vaccine antigens.

The antigenic diversity in the parasite arises over time as a result of

immune selection pressure within the human host. Also, almost all

vaccine candidates under clinical development are based on

a single allelic form of the antigen and thus may not be able to

provide protective immunity against all the parasite strains

circulating in the population. The RTS,S, which is a subunit

vaccine has shown only partial protection (about 50%) in recent

phase III trials against clinical episodes of malaria [16]. It is

unclear whether polymorphisms observed in the CSP is a contrib-

uting factor in the partial efficacy of this vaccine and this may

become clear when follow up studies related to this vaccine trial

Table 1. Year-wise distribution of P. falciparum isolates collected from two sites for CSP sequence analysis.

Cohort
Groups Number of samples sequenced for csp gene

Central repeat region N-terminal region C-terminal region

2005 2006 2007 2008 2009 Total 2005 2006 2007 2008 2009 Total 2005 2006 2007 2008 2009 Total

Hospital 4 33 64 4 21 126 4 33 64 4 21 126 4 30 80 5 23 142

Community 0 0 21 2 12 35 0 0 21 2 12 35 0 1 21 1 14 37

Total 4 33 85 6 33 161 4 33 85 6 33 161 4 31 101 6 37 179

doi:10.1371/journal.pone.0043430.t001
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are completed. The results from this study are relevant for future

RTS,S vaccine trials in India as this is the first major study to

comprehensively analyze the diversity of CSP in Indian P.falci-

parum population.

The N-terminal region of CSP, which contains T cell pro-

liferation determinants, putative hepatocyte binding site and B cell

epitopes [36], [37], did not show much polymorphisms among the

161 samples sequenced (Fig 3A). This is similar to earlier studies

where only limited numbers of polymorphisms have been observed

within this region [21,22,38–42]. Global analysis of this region

revealed that H2 (Dd2 type) is the most common haplotype found

in Asia followed by H1 (3D7 type) [21,22,38–40]. Both H1 and

H2 haplotypes have been previously reported from Africa and H1

being the predominant one [22,41]. A previous study using various

Figure 2. Sequence diversity in the central repeat region of PfCSP. (A) Representation of the variation in sequence repeats in the central
region of the CSP in 161 samples. The sequences of eight laboratory-adapted P. falciparum strains [Dd2 (Indochina), K1 (Thailand), MAD20 (Papua
New Guinea), Wellcome (West Africa), 7G8 (Brazil), HB3 (Honduras), 3D7 (The Netherlands) and RO33 (Ghana)] are shown here for comparison. The
NANP repeats are indicated as ‘‘1 with gray shade’’, NVDP repeats are indicated as ‘‘2 with black shade’’ and all other repeats are un-shaded. Numbers
on the right indicate numbers of samples belonging to that particular haplotype. Numbers above the alignment are amino acid position with
reference to 3D7 sequence. Dots represent amino acid positions identical to the 3D7 haplotype, whereas those different are indicated. Dashes have
been inserted for maximum alignment. C, community cohort; H, hospital cohort; T, total; WC, Wellcome. (B) Distribution of repeats in the central
region of the CSP in 161 samples.
doi:10.1371/journal.pone.0043430.g002

Figure 3. Sequence diversity in the N- and C-terminal non-repeat region of PfCSP. (A) Sequence alignment showing polymorphisms in the
non-repeat N-terminal T cell epitope region (amino acid residue 84 to 104) of CSP in 161 samples. The shaded region (amino acid residue 93 to 97) is
a conserved motif involved in sporozoite invasion of mosquito salivary gland as well as in binding to hepatocytes prior to invasion. (B) Sequence
alignment showing polymorphisms in the non-repeat C-terminal T cell epitope regions (Th2R spanning from amino acid residues 311 to 327 and
Th3R from amino acid residues 341 to 364) of CSP in 179 samples. The highly conserved sequences flanking the Th2R and Th3R domains are shaded
grey. The eight laboratory-adapted strains are also included in this alignment. Numbers on the right indicate numbers of samples belonging to that
particular haplotype. Dots represent amino acid positions identical to the 3D7 haplotype, whereas those different are indicated. C, community cohort;
H, hospital cohort; T, total; WC, Wellcome.
doi:10.1371/journal.pone.0043430.g003
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deletion constructs of the CSP has demonstrated that the N-

terminal region of this protein contains the motif required for

binding and subsequent invasion of liver cells by the sporozoites

[43]. Specifically, the 82–100 amino acid residues

(DNEKLRKPKHKKLKQPADG) called ‘region I-plus’ is critical

and has the highest binding affinity to heparan sulfate (HS) ligand

expressed on the liver cell surface [44]. Furthermore, antibodies

raised against the N-terminal region have been found to be

protective in nature, and were able to inhibit the binding and

invasion of the liver cells by the sporozoites [45–47]. Since this

region is important for sporozoite attachment and invasion, the

presence of non-synonymous mutations in this region may cause

structural changes in the protein leading to a reduction in its

binding affinity to the liver cell [45].

We observed a very high level of repeat polymorphisms in the

central repeat region where almost 88% of the samples contained

42 to 49 tetrapeptide repeats (Fig 2A, 2B). This is very similar to

a previous study by Escalante et al where they had observed 37 to

49 repeats in 75 samples analyzed from different countries

including 11 samples from India [22]. The central repeat region,

apart from making immunodominant B cell epitopes also provides

structural stability to CSP [22]. The simulation study by Escalante

et al [22] has shown that the stability of the type-I b turn in CSP

increases with the number of repeats. It is not clearly understood

how the variable number of NVDP, NADP, NAHP, NVNP and

other minor repeats influence antibody response against CSP.

However, it has been suggested that the diversity in the repeat

region is maintained by balancing selection [22].

Like other malaria-endemic countries we also found here high

level of polymorphisms in the C-terminal region of CSP among

Indian isolates. The Th2R region was more polymorphic than

Th3R (Fig 3B). The sequence polymorphisms in the Th3R

domain are very critical as they are involved in cytotoxic T cell

activity and HLA binding [26,27]. These polymorphisms may

help parasites to escape the immune pressure of the host and will

have a significant impact on vaccine efficacy. However, several

studies in Africa have shown that the current RTS,S vaccine

induces a cross-reactive immune response against a wide range of

CSP alleles and the protection is not strain-specific [48–50]. These

studies analyzed CSP sequences of the parasites strains in the

RTS,S-vaccinated individuals who became re-infected, and in the

control population, and found that both groups had almost similar

distribution of vaccine-type and other CSP allelic variants. This

suggests that the RTS,S vaccine does not favor selection or

expansion of the parasite with a particular CSP allele(s) in the

vaccinated individuals. Given that the emergence and subsequent

expansion of an advantageous allele in a population depends on

several factors, including the strength and duration of the applied

selection pressure as well as transmission dynamics in the region, it

will be interesting to monitor the effect of the long-term and wide-

spread use of RTS,S vaccine on the emergence of any selective

CSP variants.

Table 2. Nucleotide diversity and tests of neutrality for the C-terminal epitope region (Th2R/Th3R) of the P. falciparum csp gene in
global isolates.

Country N H S Hd6SD p6SD dN-dS6SE Fu & Li’s F* Tajima’s D Reference

Asia

Jabalpur (India) 179 24 26 0.61460.041 0.006560.0065 0.00860.003 23.53*** 22.13*** This study

India 12 4 6 0.56160.154 0.007360.0025 0.00460.006 21.55* 21.53* [22]

Iran 90 5 3 0.60360.041 0.005660.0004 0.00760.004 1.23* 1.54* [42]

Myanmar 21 5 9 0.48660.124 0.008160.0028 0.01060.004 21.01* 21.24* [40,52]

Thailand 336 12 16 0.62960.018 0.011660.0006 0.01560.005 20.77* 20.37* [38–40]

Vietnam 142 20 14 0.69760.040 0.010560.0012 0.01360.004 0.43* 20.79* [55]

Indonesia 36 5 8 0.26060.095 0.003360.0013 0.00460.002 21.78* 21.92*** [55]

Vanuatu 136 2 2 0.31260.042 0.003260.0004 0.00460.002 0.91* 1.03* [21]

PNG 22 1 0 0.00060.000 0.000060.0000 0.00060.000 0 0 [56]

Total 974 53 33 0.63660.017 0.009460.0004 0.01260.004 22.64*** 21.62*

South America

Venezuela 10 7 14 0.91160.077 0.033360.0034 0.03660.015 0.85* 0.64* [22]

Brazil 33 3 5 0.31660.093 0.007760.0022 0.00960.004 1.12* 0.56* [52,53]

Peru 138 3 7 0.45660.032 0.011660.0008 0.01560.007 1.61* 1.71** [54]

Total 181 10 16 0.50660.036 0.013860.0011 0.01760.007 20.12* 20.37*

Africa

Kenya 18 13 18 0.92860.052 0.030260.0039 0.03460.011 20.16* 20.16** [22]

The Gambia 47 23 19 0.95760.014 0.031860.0020 0.04060.010 1.08* 0.59** [41,57]

Senegal 11 9 10 0.96460.051 0.023560.0029 0.03060.001 1.10* 0.47** [52]

Sierra Leone 99 40 27 0.91960.017 0.025360.0012 0.02760.009 20.49* 20.47* [58]

Cameroon 9 7 12 0.94460.070 0.023660.0053 0.03060.001 20.81* 20.84* [22]

Total 184 63 30 0.95960.006 0.028060.0009 0.03360.010 21.09* 20.30*

Note: N, Number of isolates analyzed from each country; H, Number of haplotypes; S, Number of segregating (polymorphic) sites; Hd, Haplotype diversity; p, Observed
average pairwise nucleotide diversity; dN-dS, rate of non-synonymous mutations minus rate of synonymous mutations; PNG, Papua New Guinea; SD, Standard
deviation; SE, Standard error. *, P.0.10; **, P.0.05; ***, P,0.05.
doi:10.1371/journal.pone.0043430.t002
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Interestingly, majority of our samples were identical or nearly

identical to Dd2/Indochina type, and almost all samples clustered

with the Asian type sequences (Fig 4). As illustrated in figure 4,

Th2R/Th3R sequence haplotypes are geographically distinct and

have a very distinct pattern of polymorphism in populations in

Asia, South America and Africa. The Dd2 type or closely related

Th2R/Th3R sequences are predominant in Asia whereas 7G8

and HB3 types are predominant in South America [22,38,51–54].

As expected, Africa has lot more unique Th2R/Th3R sequence

haplotypes apart from the predominant 3D7 type [22,41]. It is also

worth noting that there is not much sharing of alleles between

continents at least at Th2R/Th3R region (Fig 4, Fig S1).
Consistent with previous study, we also found that the African

populations (Hd6 SD =0.95960.006) exhibit greater diversity at

CSP compared to the populations from Asia (Hd 6 SD

=0.63660.017) and South America (Hd 6 SD =0.50660.0036)

(Table 2) [22]. Haplotype diversity (Hd) and average nucleotide

diversity (p) in our study population was similar to that of the

population from other Asian countries. We could not find any

conclusive evidence of the role of positive natural selection in

maintaining the diversity at CSP in Indian population. This is in

agreement with previous studies where signatures of selection at

CSP were not found [41]. Our analysis on the global isolates also

confirms that the signature of selection at CSP is not uniform in all

populations (Table 2, Fig S2).

In conclusion, this study makes an important contribution in

understanding the type and distribution of naturally occurring

polymorphisms in RTS,S vaccine candidate antigen in a popula-

tion from Madhya Pradesh, India, which is endemic to malaria.

The N-terminal region of the CSP showed limited polymorphisms,

whereas the central repeat and C-terminal regions were highly

polymorphic. Almost all Th2R/Th3R sequences were identical or

nearly identical to the Dd2 type or other Asian type sequences but

distinct from African and South American sequences. This data

would be helpful in the future trials of the RTS,S vaccine in India

and to monitor changes in parasite population with different CSP

variants before and after vaccine administration. Also, the global

analyses of CSP allelic variants reported in this study may be

helpful in identifying the predominant allele(s) prevalent in Asia,

Africa and South America, and may aid in designing a region or

population-specific CSP-based malaria vaccine in the future.

Figure 4. Global population structure of csp gene. A minimal spanning tree (MST) generated using BioNumerics software version 6.6 showing
the relationship among all the 117 haplotypes based on the Th2R/Th3R sequences of the CSP from worldwide isolates [Asia, n = 974; South America,
n = 181 and Africa, n = 184)]. Each circle represents an individual haplotype and the size of the circle is proportional to the number of isolates
belonging to that haplotype (also shown as pie). The lines connecting the circles are branch length and are red if two haplotypes differ by only one
mutation, blue if differ by 2 mutations, solid black if differ by 3 mutations, dashed black if differ by 4 mutations and gray if they differ by more than 4
mutations. Numbers outside the circles indicate haplotypes H1 to H117. The Dd2, 3D7, HB3, 7G8 and MAD20 type sequences are highlighted in bold.
The haplotype pairs H55 & H58; H57 & H87; H60 & H106 and H97 & H98 are identical at amino acid level; but have one synonymous mutation. H1 to
H24 are the same haplotypes we observed in our study sites and shown in Fig 3B. Please refer to Table S1, Table S3 and Fig S1 for more details
on these sequence haplotypes and their country-wise distributions.
doi:10.1371/journal.pone.0043430.g004
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