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Abstract

Motivation: Data-independent acquisition mass spectrometry allows for comprehensive peptide detection and rela-
tive quantification than standard data-dependent approaches. While less prone to missing values, these still exist.
Current approaches for handling the so-called missingness have challenges. We hypothesized that non-random
missingness is a useful biological measure and demonstrate the importance of analysing missingness for proteomic
discovery within a longitudinal study of disease activity.

Results: The magnitude of missingness did not correlate with mean peptide concentration. The magnitude of missing-
ness for each protein strongly correlated between collection time points (baseline, 3 months, 6 months; R¼ 0.95–0.97,
confidence interval ¼ 0.94–0.97) indicating little time-dependent effect. This allowed for the identification of proteins
with outlier levels of missingness that differentiate between the patient groups characterized by different patterns of dis-
ease activity. The association of these proteins with disease activity was confirmed by machine learning techniques.
Our novel approach complements analyses on complete observations and other missing value strategies in biomarker
prediction of disease activity.

Contact: kathryn.mcgurk@manchester.ac.uk or nophar.geifman@manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteomic biomarkers have a range of uses in respect to prediction
of disease risk, response to therapy, prognosis and diagnosis. The
discovery of proteomic biomarkers for these purposes can enable
better patient stratification and disease management. Large biobank
studies have been created, including UK Biobank (Sudlow et al.,
2015) and 100 000 Genomes Project (Caulfield et al., 2017), which

emphasize the interrogation of large-scale cohorts to uncover the
cause of disease progression. Such biobanks create a fertile ground
for discovery of new biomarkers using the many samples collected.
In clinical research, over 200 specific proteins are measured to guide
clinical decisions, and new interdisciplinary omics analyses will en-
able development of novel approaches to patient stratification and
health care. As an example, in the study of cancers, measurement of
circulating tumour DNA and proteins has enabled risk detection
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algorithms to be developed (Cohen et al., 2018). Thus, to achieve
this high demand, there is a necessity for high sample throughput,
specificity, quantitative reproducibility and deep coverage proteo-
mics techniques to profile molecular signatures that report on the
state of the patient at a given time and relate this to a genomic pro-
pensity to a condition; risk of ill health or potential (adverse) re-
sponse to treatment.

Sequential window acquisition of all theoretical mass spectra
(SWATH) is a data-independent acquisition mass spectrometry tech-
nique created to be a reproducible, label-free method of proteomic
analyses, with the sensitivity of targeted methods but with increased
proteome depth (Gillet et al., 2012). The use of cyclical acquisition
covering the entire m/z range allows for retrospective interrogation
of all peptides in a sample with the use of peptide reference libraries.
SWATH is more reproducible in peptide identification and identifies
more peptides than data-dependent methods (Krasny et al., 2018),
therefore, the resulting data has fewer missing values although it
offers informatic challenges.

The handling of data containing missing values in biomarker dis-
covery and proteomics remains a challenge and is not yet standar-
dized (Lazar et al., 2016; Webb-Robertson et al., 2015; Wei et al.,
2018). Missing values in a mass spectrometry setting can be due to
variation at a number of sources in the analysis pipeline from sample
storage, extraction, losses in protein digestion and separation, meas-
urement failure during mass spectrometry acquisition, relative quan-
tification and depends on the quality control thresholds used and the
signal-to-noise ratio. Missingness has been generalized into three
types (Rubin, 1976), missing completely at random, missing at ran-
dom and missing not at random, which are usually handled by im-
putation approaches specific to the type of missingness (Lazar et al.,
2016). For the handling of values missing not at random, the limit
of detection (LOD) of a mass spectrometer is usually the focus of
missingness approaches. Data are produced with missing values of
this sort are ‘left-censored’ data where the distribution of the pro-
teins’ abundance is truncated on the left side, due to the lower abun-
dances not detected by the mass spectrometer at the LOD (Lazar
et al., 2016).

Missing values cannot be analysed by standard statistical tests,
which has led to three principle methods of approaching missing
data:

1. Devoting laboratory time and money to reprocessing and rerun-

ning samples.

2. Removing the participants, samples or analytes with most missing

values from statistical analyses, and therefore, diminishing the

scope of the study due to the loss of data and study power.

3. Imputation via the replacement of missing values found in the raw

data with one number, zero, a small value, the mean (Gromski

et al., 2014) or variations of calculations around the value of the

LOD (Hornung and Reed, 1990); any of these approaches may

introduce selection biases in the distributions of the proteins.

Alternatively, imputation techniques to create a varying value for

each missing value present through correlations or other statistical

estimations may be used (Oba et al., 2003).

There are many imputation approaches and software tools now
available for mass spectrometry (Choi et al., 2019; Karpievitch
et al., 2012; Wei et al., 2018), however, there are many cases where
imputation is not accurate enough in metrics of variance and sample
classification (Webb-Robertson et al., 2015); for example, if there is
a high level of missing data, if the sample size is small, if a large sub-
set of analytes have at least one missing value at random and the
training set, therefore, contains a small number of complete observa-
tions, or when the ratio between the number of values used for the
training set is small compared to the number requiring imputation
from that training set. Therefore, there is a need to analyse missing
values as they are found in the raw data, to complement the current
analyses of observed data in biomarker discovery.

In metabolomics and subsequent biomarker studies, the handling
of missing data is often by the ‘80% rule’ (Yang et al., 2015), which

is a threshold for complete observations, keeping only those metabo-
lites identified in at least 80% of samples. This threshold is arbitrary
and may not be appropriate for studies including longitudinal data
such as drug treatment response studies, where such a threshold like-
ly leads to the loss of potentially interesting data. There is no agreed
set threshold specifically for proteomics studies.

The coverage of the proteome achieved by undertaking SWATH
allows for the analysis of a novel subgroup of missing not at random
values: missing with interest or biologically missing. As SWATH
technology allows for more consistency and reproducibility in the
analyses of the proteome, we present a novel approach of analysing
missing values in a longitudinal study for the discovery of bio-
markers associated with disease activity; an example of a study set-
ting where missing values can be informative and such analyses
complement current measurement protocols. We highlight the value
of missing values in deep proteomic biomarker studies.

2 Materials and methods

2.1 Participants and samples
Rheumatoid arthritis patients were recruited at baseline and were
assessed at follow-up at 3 and 6 months. About 64 participants were
selected for SWATH proteomic analyses according to their disease
activity and used for the informatics study paradigm described
below. Serum samples were collected from the 64 participants over
the three time points; 58 participant samples were measured at base-
line, 47 at 3 months and 44 at 6 months. Disease activity at 6
months was scored using an algorithm derived to combine data on
standard markers of the disease, and this outcome was categorized
into low- and high disease activity using established criteria (Prevoo
et al., 1995), which was used as the outcome for all analyses
(Supplementary Methods). From the 64 participants selected for
proteomic analyses, 32 participants had low disease activity, 12 had
high disease activity and 20 had low disease activity at 3 months but
progressive worsening by 6 months (secondary high disease activity
group). The study complies with the declaration of Helsinki.
Participants provided written informed consent, and the study is eth-
ically approved (COREC 04/Q1403/37). The proteomics method-
ology can be found in the Supplementary Methods.

2.2 Post-acquisition bioinformatics and relative

quantification
The SWATH map from the mass spectrometer was converted from
proprietary SCIEX format (.wiff and accompanying scan files) to
.mzML open-format for the OpenSWATH engine using the SCIEX
MS Data Converter (Beta 1.3) under profile mode. The resulting
.mzML files were time-normalized against an iRT library and inter-
rogated with a serum-focused spectral library (Röst et al., 2014)
using the OpenSWATH single executable (OpenSWATHWorkflow
version 2.0.1). Parameters were set as previously described (Navarro
et al., 2016). The OpenSWATH output files were subjected to
pyProphet algorithm (Teleman et al., 2015) for false discovery as-
sessment of the inferred transition groups. The outputs were aligned
using the TRIC algorithm (Röst et al., 2016), to retain only consist-
ent inferred transition groups. Proteotypic peptides were quanto-
typic (criterion of one peptide per protein) with a 15% consensus
filter, or appear in both duplicate injections. Quality control filtering
included removal of sample data if the coefficient of variation across
duplicates was above a median of 20%. MSstats from Bioconductor
in R (Choi et al., 2014) was used for normalization and protein
quantification. The equalize medians and Top 3 features per peptide
options parameters were used.

2.3 Statistical analyses
2.3.1 Missing value threshold

Proteins that were not detected in >10% of total samples were
removed from the analyses (required > 15 observations of the total
149). This threshold was used after assessment of the distribution of
total missingness, which showed an inflated distribution of proteins
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with <15 observations (see Supplementary Figs S1 and S2). The re-
moval of the proteins with <10% total observations ensures that
proteomic outliers in specific discrete samples were excluded from
analyses, which may arise from individual heterogeneity in this small
cohort or underlying mass spectrometry noise, which is not biologic-
ally informative. Therefore, acceptance of proteins that are present
in at least 10% of measurements confirms the mass spectrometry re-
producibility in multiple disease activity groups at different time
points. Thus, the 565 proteins that remained from the initially iden-
tified 742 that were used for further analyses are unlikely to be out-
liers and their presence has been reproducibly confirmed by the
mass spectrometer and further quality control assessments. R soft-
ware (version 3.5.2) was used for all analyses and graphic plotting.

2.3.2 Assessment of proteomic outliers via magnitude of missingness

We hypothesized that the most informative proteins would be repro-
ducibly missing in a similar pattern for all patients with the same
disease activity, regardless of the time point of collection (of which
there are three); such proteins would be consistently missing/present
over the three time points. To assess if each protein’s presence or
missingness was similar over time, regardless of disease status, the
strength of relationship between time points was calculated via
Pearson’s correlation coefficient by counting the missing values for
each protein, at each of the three time points separately, and adjust-
ing by the number of samples collected at that time point
(Equation 1). To identify proteins whose presence or absence altered
with disease activity, the strength of relationship was assessed by
counting missing values for each protein, in each of the three disease
activity statuses, regardless of time point, and adjusting for the num-
ber of samples collected for certain disease activity (Equation 1).
The relationship of a protein’s missingness was plotted and outliers
were visually identified for further assessment. The magnitude of
missing values (aÞ used for all missing value analyses is described by
the count of missing values normalized by the number of samples at
each time point or disease activity group, as depicted in Equation 1
(magnitude of missingness).

Count of missing values

Number of samples
¼ Normalized missing count ¼ a (1)

2.3.3 Machine learning protocol

Feature selection and machine learning were undertaken using the
framework proposed by Perez-Riverol et al. (2017), to identify pro-
teins at baseline and at 3 months that predict the 6-month disease
activity outcome. Feature selection removed proteins by univariate
correlation of R<0.3 with disease activity, and by multivariate cor-
relation of R>0.75 with each other. Recursive feature elimination
and importance evaluation identified the best protein predictors of
the disease outcome via Random Forest. The missing values for the
comparative machine learning analyses were set to zero, as the
exploited approach does not handle missing values.

2.3.4 Assessment of batch effects

Assessment of batch effects on the magnitude of missing values was
completed in four ways:

1. a
Sum of batches ð1�12Þ 2. a

Frequency�Count of batches ð1�12Þ

3. Count of missing values ðunnormalizedÞ
Frequency�Count of batches ð1�12Þ 4. a

Count of batches ð1�12Þ

3. Results

3.1 Participant characteristics
Serum samples of 64 participants from three time points were ana-
lysed. Table 1 highlights the description of the participants included.
There was little correlation between age [R ¼ �0.18, confidence
interval (CI) ¼ �0.41 to 0.07] or gender (R ¼ �0.08, CI ¼ �0.32 to

0.17) and disease activity group (distributions depicted in
Supplementary Fig. S3).

3.2 SWATH missingness is not due to LOD
A total of 565 proteins were included in the analysis; 99 proteins
had complete observations in all serum samples, the remainder of
proteins contained at least one missing value (Supplementary Table
S1). We addressed the hypothesis that missing values found in
SWATH analyses are increased in low abundance proteins where
concentrations are near or below the LOD of the mass spectrometer.
We found a weak relationship between the mean log abundance of
the proteins and the count of missing values in the 149 samples (R ¼
�0.37, CI ¼ �0.44 to �0.30, Supplementary Fig. S1), as well as
when the samples are separated by disease activity group and collec-
tion time point (R ¼ �0.33 (CI ¼ �0.40 to �0.25) to R ¼ �0.09
(CI ¼ �0.17 to �0.01), Supplementary Fig. S2). We concluded that
when using the SWATH mass spectrometry methodology, including
the standard bioinformatic approaches, missingness is not strictly
left-censored and this suggests that missingness might be reprodu-
cible and informative at the biological level. Such missing values
could, therefore, be treated as measures in themselves, rather than
due to methodological issues in measuring them (e.g. mass spec-
trometry matrix effects).

3.3 Proteomic missingness is similar over time
Since it is possible that some protein levels alter markedly over the
time course of the study, we examined how levels of missingness
change over time. There was higher magnitude of missingness (see
Equation 1) in proteins measured at the baseline collection of sam-
ples (58 samples, 39% missing protein values) than the samples
collected at 3 months (47 samples, 31% protein missing values) or
6 months (44 samples, 30% protein missing values). We assessed
the strength of the relationship of magnitudes of missingness for
each protein between the time points (Fig. 1). This relationship
was strong (R¼0.95–0.97, CI ¼ 0.94–0.97), showing that the
magnitude of missingness for each protein was similar regardless
of time point of collection. This similarity in missingness is likely
due to the reproducibility of the technique; identifying proteins in
the same way in each sample, or further, from the fidelity of the
bioinformatics workflow; assessing the certainty of the presence of
the peptide with appropriate quality control filters. This reprodu-
cibility is a firm foundation for the analyses of missing data, as any
deviations in missingness are more likely due to a biological
change.

3.4 Proteomic missingness differs by disease activity
The relationship strength and similarity found previously in the ana-
lysis of the magnitude of missingness between time points, decreased
when comparing between disease activity groups. Figure 1 also
depicts the correlation between the disease activity groups for the
magnitude of missingness of each protein. Missingness in the high
disease activity group correlated with secondary high disease activity

Table 1. Summary statistics of the study participants

Trait Mean (range)

DA High 2� High Low

N 12 20 32

Age (years) 63 (21–82) 66 (37–81) 59 (28–81)

Gender 8% male 20% male 19% male

BMIa 32.29

(22.27–50.32)

26.61

(17.04–35.80)

29.43

(19.71–43.70)

Note: The mean and range for each trait that describes the 64 participants

included in the proteomic analyses are shown.

BMI, body mass index; DA, disease activity; n, sample size.
aBMI is measured at baseline.
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to R¼0.84 (CI ¼ 0.82–0.86), and with low disease activity to
R¼0.82 (CI ¼ 0.79–0.84). Such strength of relationship was stron-
ger between the missingness of peptides between secondary high dis-
ease activity and low disease activity, at R¼0.94 (CI ¼ 0.93–0.95),
which is likely due to the secondary high disease activity participants
having a favourable disease activity until the 3-month time point. As
the strength of relationship between missingness at the different
time points was R>0.95, and the strength of relationship when ana-
lysing the magnitude of protein missingness by the disease activity of
the participant was lower (R<0.94), outliers of missingness can be
assessed from correlation with disease activity status, and such out-
liers may be informative of a biological change due to the response
to treatment.

In this analysis outliers of missingness were identified; one of
these is highlighted in Figure 2. An outlier when comparing the mag-
nitude of missingness between low disease activity and both types of
high disease groups was found, demonstrating a higher than
expected degree of missingness in the low disease activity group.
This suggests that the protein may predict the underlying biology
when comparing low disease activity with any high disease activity
category and offers encouragement that this approach can identify
biomarkers to be validated further. The protein did not demonstrate
outlier behaviour in the correlation of magnitude of missingness be-
tween high disease activity and secondary high disease activity, and
therefore, does not differentiate between these two groups. Further,
it was not found to be an outlier of missingness when comparing the
different time points (Supplementary Fig. S4). This example demon-
strates how correlation analysis assessing the relationship of total
missingness in all measurements, identified a protein that can poten-
tially discriminate in respect of disease activity status.

3.5 Missingness outliers may associate with disease

activity
Further descriptions of the protein identified as an outlier of miss-
ingness between response groups are shown in Table 2. The table
shows the raised level of missing values identified for the measure-
ment of this protein in low disease activity participants at each time

point. The protein is a candidate biomarker of high disease activity
due to its raised number of observations. To assess how abundant
this protein is usually in serum, we used the Protein Abundance
Database, PaxDb (Wang et al., 2015), a comprehensive absolute
protein abundance database. In humans, the protein is very abun-
dant in multiple cells and tissues around the body, while there is no
data on serum expression; it is found at lowest identifiable abun-
dance in plasma (0.04–0.11 ppm range). This may suggests that an
abnormal increased concentration can be indicative of disease path-
ology. This, and other identified outlier proteins were not found to
be enriched with any specific protein domains or functional catego-
ries, as assessed by enrichment analysis (Supplementary Methods).

3.6 Confirmation of a missingness outlier protein as a

predictor of disease activity by machine learning

techniques
Clearly, our data also contain relative quantitation measurements of
the outlier protein in the samples where it was detected. Machine
learning was used as previously published (Perez-Riverol et al.,
2017) to identify proteomic biomarkers that predict the disease ac-
tivity at 6 months based on the measured levels within the same
analysis.

Using the observed values for the proteomic biomarkers meas-
ured at baseline (as opposed to magnitude of missingness), Random
Forest identified the exemplar outlier protein alongside 21 other
proteins in the prediction of disease activity (Supplementary Fig.
S5). Using the proteomic biomarkers measured at the 3-month time
point, the outlier protein was identified with only three other pro-
teins as predictors of disease activity (Supplementary Fig. S6), sup-
porting our identification of this protein from our analysis of
missingness.

3.7 Batch does not affect the missingness results
The samples were run together in the proteomic analyses, i.e. each
participant’s samples (baseline, 3 months, 6 months) were run se-
quentially. We, therefore, assessed the effect of batch on the
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Fig. 1. The assessment of missingness for each protein over collection time points and by disease activity status. (A) The correlation between protein missingness over three

time points showed a strong relationship; the magnitude of missingness for each protein measured at baseline correlated with those measured at 3 months and with those at 6

months to R¼ 0.95 (CI ¼ 0.94–0.96). The protein missingness measured at 3 months correlated with those measured at 6 months to R¼0.97 (CI ¼ 0.96–0.97). (B) The correl-

ation between protein missingness separated by response status to treatment. The magnitude of missingness for each protein identified in the high disease activity group corre-

lated with those measured in secondary high disease activity group to R¼0.84 (CI ¼ 0.82–0.86), and to those measured in low disease activity group to R¼0.82 (CI ¼ 0.79–

0.84). The protein missingness measured in secondary high disease activity group correlated with that of low disease activity group to R¼0.94 (CI ¼ 0.93–0.95)
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missingness outcomes of disease activity status. There were 12
batches used to run the samples, Supplementary Figure S7 depicts
the distributions of the samples at each time point and disease activ-
ity status over the batches. Samples of all time points were distrib-
uted over all 12 batches. High disease activity samples were
distributed over only two batches, secondary high disease activity
samples over eight batches and low disease activity samples over 10
batches. All four adjustments to assess batch effects (see Section
2.3.4 ) did not affect the results, including the relationships of miss-
ingness or on the outlier protein (Supplementary Fig. S8).

3.8 Reproducible missingness is created by standard

SWATH bioinformatic approaches
The bioinformatics tools align the samples to retain only consistent-
ly inferred transition groups. At this point, the presence of any pep-
tide for the exemplar protein was investigated in the samples to
explore where the missing values were created along the bioinfor-
matic pipeline (Supplementary Fig. S9). As expected, there was an
increase in the magnitude of missing values for the protein after bio-
informatic quality control thresholds were applied (post pyProphet,
TRIC and thresholds applied). However, the trend of missing values
between collection time points was comparable before and after bio-
informatic quality control. The missing values were assessed similar-
ly against disease activity, which showed that the low disease
activity participants had an increased magnitude of missing values
both before and after bioinformatic quality control when compared
with high disease activity participants. This highlights the biological
importance of this protein, which was more likely missing in low
disease activity participants and more identifiable in high disease ac-
tivity participants from the mass spectrometry data. The missingness
is increased by the bioinformatic quality control in the identification
of high-fidelity assignment of protein identity using standard prote-
omic approaches.

3.9 Further analyses of current missingness thresholds
The effect of specific thresholds in our biomarker discovery process
was assessed; three based on the percentage of missing values
(<90%, <50% and <20%), and one using a discrete value based on
the distribution of missingness, which showed a dip in the frequency
of proteins with <50 missing values (see Supplementary Fig. S10).
The same machine learning technique was used to identify prote-
omic biomarkers that predict disease activity using each of the dif-
ferent missingness thresholds. The best performance was achieved
for proteins at baseline and 3 months when using a threshold of
>10% observations (<90% missing values) (Supplementary Fig.
S11). This accuracy is less due to the differing number of proteins
included at each threshold, as the correlation between the number of

proteins and the accuracy of the machine learning was R¼0.48 (CI
¼ �0.21 to 0.85; n¼10), but more likely the removal of noise and
the underlying assumption by the machine learning software that
the proteins with the most missing values are lowest due to the zero
imputation. Further correlation plots and Principal component anal-
yses using the different missing values thresholds are shown in
Supplementary Figure S12, where the strength of relationship be-
tween the missingness and time point or disease activity status
decreases with the missing values lost at each observation threshold.

4 Discussion and conclusions

We present an alternative approach for the analysis of missing data
in a SWATH mass spectrometry setting for an exemplar set of 149
samples. This complements the analyses of complete observations,
imputation, and other missing value replacement statistical techni-
ques. We show that such analyses allow for the identification of pro-
teins that differ in missingness by disease activity. We confirmed the
predictive importance of an exemplar protein by machine learning
techniques. Similarly, we show that this protein was observed more
in high disease activity participants, with more missingness found in
patients with low disease activity.

The 90% missingness threshold (10% observations), which
includes any biomarker found with at most 90% missing values,
allowed for better accuracy in the prediction of proteomic bio-
markers of disease activity and therefore showed that more stringent
thresholds decrease prediction accuracy and remove potentially im-
portant discoveries. As there was a weak relationship between the
number of proteins included in the analysis and the accuracy of the
analysis, this high accuracy found when using the 90% missing
threshold is likely due to the importance of missing values on predic-
tion of disease activity. Had a missing value threshold of 80% been
used (maximum 20% missing values), as is usual of mass spectrom-
etry studies, the outlier protein we identified as a marker of low ac-
tivity would have been removed from analyses and left
undiscovered.

Missingness as an informative tool is not a novel concept; miss-
ingness is informative when a value is missing due to a test not being
carried out because of a reason that is not missing at random. For
example, this can be due to the test being left unanswered; where
personal information is involved, where it was answered as ‘Prefer
not to answer’, where it is thought that scoring highly is unlikely, or
where a test is only provided to subgroups of participants (e.g. med-
ical screening specific for certain genders, ages, risk populations, or
disease activity). For example, a portion of the UK female popula-
tion do not have cervical smear test results, as many do not attend
their free testing appointment (77% attendance rate). Some of the
reasons provided for non-attendance include embarrassment,

Fig. 2. Identification of an example outlier protein (in the square) as a predictor of disease activity from the assessment of missing values. The outlier protein is identified as an

outlier due to increased missingness count in low disease activity participants when compared to both types of high disease activity groups. The protein’s missingness does not

separate those at particularly high disease activity participants from secondary high disease activity participants. The shaded area is a line parallel to the linear regression line,

expanded in size
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negative perceptions of health professionals, worry and trust in
results, concerns about the procedure, idiosyncratic beliefs, extreme
negative experiences and not receiving prompts to be screened
(Marlow et al., 2019). In some cases, the absence of data can be in-
formative by its own accord, as in electronic health records (EHRs).
Missing values in this setting may be due to biased screening, tests
only conducted if clinically relevant to specific ailments, or informa-
tion being fragmented across multiple healthcare systems (Beaulieu-
Jones et al., 2018). Thus, in some scenarios, no test result can poten-
tially be informative. While it may be possible that missingness is
not informative in such a way in a mass spectrometry setting, in-
formative missingness can be exampled by blood antibody rheuma-
toid factor, where the concentration correlates with severity of
rheumatoid arthritis. This test is typically only performed for
patients with some indication of rheumatoid arthritis. Thus, patients
with high rheumatoid factor levels are more likely to have rheuma-
toid factor measures, while the missing values could not be imputed
(Mason et al., 2010).

The need for novel biomarkers of disease has led to an increase
in the collection of large-scale cohorts and consortiums, in the aim
of identifying biological predictors that stratify patients with poly-
morphic phenotypes, differing response to treatment, or those at
risk of the occurrence of a disease event. Many cohorts have limited
samples and resources; it is of great importance that the full benefit
of the effort dedicated to the cohort collection and funding, is
achieved in the resulting discoveries. SWATH-MS is a particularly
useful tool for large-scale proteomics due to its reproducibility, ana-
lysis depth and the ability to recursive data mine for proteomic bio-
markers of interest via differential peptide/protein reference
libraries. The proteomic coverage obtained from SWATH results in
the production of fewer missing values and we show here that they
are not fully due to the LOD. The proteins that are of an average log
intensity but identified in few samples are likely due to the quality
control thresholds of the retrospective data interrogation used for
SWATH proteomics (Fu et al., 2018). As the assumption of missing-
at-random (MAR) cannot be verified from observed data, sensitivity
analyses have been used to assess the impact on results of departures
from the assumption of MAR (Leacy et al., 2017). Here, we provide
an additional method of such assessment for SWATH-MS data.

The generalisability of this approach to other datasets, which
contain their own missing data patterns and processes, is currently
unclear. However, the strength of the dataset used here is the avail-
ability of protein measurements at multiple time points, allowing for
confirmation of reproducible missingness. Similarly, other applica-
tion would also require similar data that allow the consistency of
missingness to be tested. While not tested here, it is likely that this
method can be applied to other analysis platforms, sample types and
diseases, as it is the dataset of multiple time points and disease sta-
tuses that is of importance to the methodology. This is demonstrated
by a similar study assessing mortality outcomes and ICD-9 criteria
(Che et al., 2018). As far as we are aware, there is no reason wider
application could not be pursued. A limitation of this study is the
relatively small sample size, and large cohort studies will aid this ef-
fort. In order to take forward any protein as a biomarker, the results
will need to be validated in an independent cohort. Nevertheless,
here, we demonstrate the proposed technique has potential and can

contribute to presently employed informatics techniques. In conclu-
sion, we have shown that the peculiar features of SWATH-MS allow
for the inclusion of samples with missing values in statistical analysis
for biomarker discovery. Furthermore, we have shown the useful-
ness of analysing missingness as it is found in raw data, complement-
ing and expanding on the findings achievable with current missing
value strategies.
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