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Abstract: Dipropyl phthalate (DPrP) coexists with cadmium as cocontaminants in environmental
media. A coculture system including the DPrP-degrading bacterium Glutamicibacter nicotianae ZM05
and the nondegrading bacterium Acinetobacter tandoii ZM06 was artificially established to degrade
DPrP under Cd(II) stress. Strain ZM06 relieved the pressure of cadmium on strain ZM05 and
accelerated DPrP degradation in the following three ways: first, strain ZM06 adsorbed Cd(II) on the
cell surface (as observed by scanning electron microscopy) to decrease the concentration of Cd(II) in
the coculture system; second, the downstream metabolites of ZM05 were utilized by strain ZM06
to reduce metabolite inhibition; and third, strain ZM06 supplied amino acids and fatty acids to
strain ZM05 to relieve stress during DPrP degradation, which was demonstrated by comparative
transcriptomic analysis. This study provides an elementary understanding of how microbial consortia
improve the degradation efficiency of organic pollutants under heavy metals contamination.

Keywords: metatranscriptomics; Glutamicibacter nicotianae ZM05; Acinetobacter tandoii ZM06; cooper-
ation; DPrP biodegradation; cadmium pressure

1. Introduction

Phthalic Acid Esters (PAEs), as plasticizers, can migrate out from plastic materials
into the environment during their production and disposal [1]. Dipropyl phthalate (DPrP),
as a kind of PAEs with mutagenic, teratogenic, and carcinogenic properties, has been
classified as a priority pollutant by the United States Environmental Protection Agency [2].
Furthermore, it has recently been proven that DPrP causes cacoethic effects on human
health by interfering with endogenous hormones [3].

In environments such as soil and groundwater, PAEs often cocontaminate with heavy
metals. Compared with that of individual contamination, the remediation of cocontamina-
tion with organic pollutants and heavy metals is a more complicated problem owing to
the combined toxicity and potential interactions of contaminants [4,5]. Cadmium (Cd) and
PAEs are of particular concern due to their migration and bioaccumulation [6], potentially
harmful effects on the ecosystem and human health, and frequent occurrence in several
types of anthropogenic contaminated sites. Agricultural production with cadmium content
in fertilizer applications and atmospheric cadmium dust settlement directly causes the
copollution of cadmium and PAEs [7,8]. A large body of evidence actually shows that PAEs
and heavy metals coexist in the environment [9–11].

Microorganisms play crucial roles in biogeochemical cycling in ecosystems [12] and
may mediate metal detoxification [13] and the biodegradation of organic compounds [14].
However, previous studies have shown that heavy metals have an adverse impact on the
microbial degradation of organic pollutants by repressing microbial activity [12]. Hence, for
the remediation of cocontamination with organic compounds and heavy metals, microbial

Microorganisms 2021, 9, 1417. https://doi.org/10.3390/microorganisms9071417 https://www.mdpi.com/journal/microorganisms

https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-0531-2842
https://doi.org/10.3390/microorganisms9071417
https://doi.org/10.3390/microorganisms9071417
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/microorganisms9071417
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms9071417?type=check_update&version=1


Microorganisms 2021, 9, 1417 2 of 11

consortia exhibit superior biodegradation performance [15,16]. Compared with a single
strain, bacterial consortia can facilitate the degradation of organic pollutants by improving
environmental adaptability [17], alleviating environmental stress [15], and cooperating
with metabolite-degrading bacteria [18]. For example, the cadmium-resistant bacterium
Pseudomonas sp. H1 enhanced the degradation of 2,4-dichlorophenoxyacetic acid by Ral-
stonia eutropha JMP134 in the presence of 60 µg/g cadmium by reducing the stress [19].
Interactions between microorganisms play important roles in the degradation of hazardous
materials. Therefore, constructing bacterial consortia that resist heavy metals and degrade
organic pollutants is an ideal solution for remediating combined contamination, and it
is essential to explore the interaction mechanisms of microbial cooperative degradation
during remediating cocontamination.

Based on a previous study of ours, an efficient PAEs-degrading bacterium was iden-
tified as Glutamicibacter nicotianae ZM05, which could degrade most short-chain PAEs,
including dibutyl phthalate (DBP), DPrP, diethyl phthalate (DEP), and dimethyl phthalate
(DMP) [20]. Nevertheless, the growth and degradation ability of strain ZM05 were de-
pressed under heavy metal contamination, especially cadmium pollution. In this study, an
artificially constructed consortium composed of the DPrP-degrading bacterium ZM05 and
the nondegrading bacterium Acinetobacter tandoii ZM06 effectively resisted the inhibition
of DPrP degradation by Cd(II) stress. To study the cooperative interactions during degra-
dation strains ZM05 and ZM06 were cocultured under Cd(II) stress or without Cd(II) stress
and subjected to metatranscriptomics. We centered on the differences in DPrP degradation
and gene expression in the degrading bacterium ZM05 between the monoculture and
coculture systems with and without Cd(II) stress.

2. Materials and Methods
2.1. Chemicals and Media

Di-n-propyl phthalate (DPrP, >98% purity), diethyl phthalate (DEP, >99% purity),
dimethyl phthalate (DMP, >99% purity), monomethyl phthalate (MMP, >97% purity), and
phthalic acid (PA, >99.5% purity) were purchased from Aladdin Industrial Corporation
(Shanghai, China), while monoethyl phthalate (MEP, >98% purity) was purchased from
Solarbio Science & Technology Co., Ltd. (Beijing, China), and protocatechuic acid (PCA,
>99% purity) was purchased from Macklin Biochemical Co., Ltd. (Shanghai, China).

Minimal salt medium (MSM) supplemented with DPrP was used to isolate and culture
DPrP-degrading bacterium. MSM was prepared with the following components (per liter):
5.8 g K2HPO4, 4.5 g KH2PO4, 2.0 g (NH4)2SO4, 0.34 g MgCl2·6H2O, and 1 mL trace element
medium stock solution (per liter: 2.6 g CaCl2·2H2O, 0.18 g FeSO4·7H2O, 0.15 g MnCl2·4H2O
and 0.24 g Na2MoO4·2H2O). A Luria-Bertani broth was used to isolate and culture the
nondegrading bacterium.

2.2. Isolation and Identification of the DBP-Degrading Bacterium and Cooperative Bacterium

After enrichment and selection with 1000 mg/L DPrP, the most efficient strain isolated
from agricultural surface layer soils (Hangzhou, Zhejiang Province, China) was selected
and designated as ZM05. Strain ZM05 colonies were white, and the morphology of strain
ZM0 was G+, rod-shaped and motile. The basic criterion for assessing species boundaries
is to estimate the genetic relatedness between two genomes [21]. The whole-genome
orthologous average nucleotide identity (ANI) values were calculated using an online
server: http://enve-omics.ce.gatech.edu/ani/ (accessed on 22 June 2021) [22]. And organ-
isms belonging to the same species typically showing ≥95% ANI among themselves [21].
The results of ANI between strain ZM05 (GenBank Accession No. CP059853.1) and Glu-
tamicibacter nicotianae OTC-16 (GenBank Accession No. GCA_003687415.1) was 98.53%.
Thus, based on morphological characteristics and ANI calculation of genome, the isolated
DBP-degrading bacterium was identified as Glutamicibacter nicotianae strain ZM05.

The cooperative bacterium ZM06 was isolated from the same soil samples by using
LB plates. Strain ZM06 colonies were white, and the morphology of strain ZM06 was
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G−, rod-shaped and motile. The results of ANI between strain ZM06 (NCBI accession ID:
PRJNA739801) and Acinetobacter tandoii SE63 (GenBank Accession No. GCA_006965565.1)
was 96.25%. Based on morphological characteristics and ANI calculation of genome, the
isolated nondegrading bacterium was identified as Acinetobacter tandoii strain ZM06.

2.3. Monoculture and Coculture Experiments

Early stationary-phase cells of strain ZM05 (OD600 = 1.80) or ZM06 (OD600 = 1.25) were
centrifuged (4 min, 10,000 rpm) and suspended in MSM. Strains ZM05 and ZM06 were
inoculated in seventy milliliters of MSM (with or without 0.8 mM CdCl2) with 1000 mg/L
DPrP to the initial OD600 of 0.03, respectively. The monoculture system was inoculated
with the same amount of strain ZM05. Coculture and monoculture experiments were
conducted in Erlenmeyer flasks with three replicates at 30 ◦C and 200 rpm.

2.4. Sample Preparation and Analysis

Samples were collected to determine the concentrations of DPrP, its metabolites, and
Cd(II) during incubation. Extraction and detection of DPrP were carried out according to
the method described previously [23]. The metabolites produced during the degradation
process were identified by HPLC-MS [24]. The amino acids and fatty acids in the supernatant
were detected by LC-MS [25] and GC-MS [26], respectively. The adsorption of Cd(II) on
the surface and inside of bacteria was determined by scanning electron microscopy (SEM),
transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) [27]. The
Cd(II) concentration in the supernatant was investigated by ICP-MS (Agilent Technologies
7800 ICP-MS) analysis [28]. Quantitative PCR (qPCR) was used to quantify the ratio of DNA
levels of the specific estG/xcpR genes to determine the ratios of ZM05 to ZM03 in the coculture
system under Cd(II) stress [29,30]. The primers used in qPCR are listed in Supplementary
Table S1. For the transcriptional analysis, CK (control), CD (monoculture under 0.8 mM Cd2+),
and CO (coculture under 0.8 mM Cd2+) samples were harvested for RNA extraction, and
sample information is provided in Table S2.

2.5. cDNA Library Construction and RNA-Seq

Total RNA was extracted using the RNeasy Mini Kit (QIAGEN, Hilden, Germany)
according to the instructions. RNA quality was monitored on 1% agarose gels, and RNA
quantity was measured using Nanodrop One (Thermo Fisher Scientific, Waltham, MA,
USA). rRNA was depleted by Ribo-Zero Magnetic Kit (Epicentre) according to the instruc-
tions. The RNA samples were subsequently sent to the Guangdong Magigene Biotech-
nology Co., Ltd. (Guangzhou, China) for library preparation and sequencing. Library
preparation was conducted with a NEBNext® Ultra II™ Directional RNA Library Prep Kit
(Illumina, San Diego, CA, USA) according to standard protocols. After cluster generation,
the library was sequenced on an Illumina HiSeq Xten platform, and 150 bp paired-end
reads were generated [31].

2.6. RNA-Seq Data Analysis

Raw data in fastq format were processed by Trimmomatic (v.0.36) to acquire clean
reads, and clean reads were mapped to NCBI Rfam databases to remove the rRNA se-
quences by Bowtie2 (v2.33). The remaining mRNA sequences were mapped to the reference
genome by Hisat2 (2.1.0) [32]. The HTSeq-count (v0.9.1) was used to obtain the read count
and function information of each gene were obtained by HTSeq-count (v0.9.1) according
to the mapping results [33]. To make the expression levels of genes comparable among
different genes and different experiments, the RPKM was calculated. The read count of
each gene was used for differential expression analysis [34]. Differentially expressed genes
(DEGs) were identified using edgeR (v3.16.5) [35]. The resulting p-value was corrected by
Benjamini and Hochberg’s approach for controlling the false discovery rate (FDR). Genes
with FDR ≤ 0.05 and | log2(fold change) | ≥ 1 were considered candidate DEGs. In
addition, those genes were used for KEGG (Kyoto Encyclopedia of Genes and Genomes)
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enrichment analyses by clusterProfiler (v3.4.4) [36], and gene length bias was corrected.
KEGG pathways with FDR ≤ 0.05 were considered significantly enriched. Raw data are
deposited in the NCBI (accession ID: PRJNA699047, PRJNA699094, and PRJNA699127).

3. Results
3.1. Construction of a Synergistic Community under Cd Pressure

Strain ZM05 completely degraded 1000 mg/L DPrP in 24 h under the optimal condi-
tions (Figure S1), but the growth of strain ZM05 and its degradation activity were signif-
icantly inhibited under Cd(II) stress (Figure 1). Through many coculture experiments, it
was found that when ZM05 was cocultured with the nondegrading bacterium Acinetobacter
tandoii ZM06, the residual DPrP and Cd(II) were significantly decreased (Figure 1).
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Figure 1. Growth and Cd(II) concentration (a) and DPrP degradation (b) in monoculture and coculture under Cd(II)
contamination. The blue line (column) represents the monoculture of strain ZM05; the red line (column) represents the
coculture of strains ZM05 and ZM06. The solid line represents the OD600, and the dotted line represents the residual
concentration of Cd(II) in the supernatant. All data are presented as the mean ± SE. *** p < 0.001, ** p < 0.01.

3.2. Strain ZM06 Relieved Cd (II) Stress in Coculture

The degradation rate of DPrP increased significantly, and the Cd(II) concentration in
the supernatant decreased noticeably when strain ZM05 was cocultured with strain ZM06
under Cd(II) stress (Figure 1a). To explore the mechanism of Cd(II) removal, SEM and
TEM analyses were carried out. Primarily, SEM analysis was performed to compare the
cell surface morphology before and after adsorption to determine whether ZM06 could
alleviate the cytotoxicity caused by Cd(II) stress. As shown in Figure 2a,d, the surfaces
of strains ZM05 and ZM06 were smooth and clear without adhesion before Cd(II) stress,
while the morphologies of ZM05 and ZM06 changed significantly under Cd(II) stress, and
many flaky substances, which were speculated to be the “microprecipitation” of inorganic
salts, were adsorbed on the cell surface (Figure 2b,e).

To identify whether ZM05 and ZM06 reduce the free Cd(II) in the culture medium
by absorbing Cd(II) into cells through active transport, TEM analysis and EDS analysis
were used. There were obvious vacuoles in both ZM05 and ZM06 cells (Figure 2c,f), which
indicated that the cells had stress responses to Cd(II) stress. However, EDS of the cytoplasm
of ZM05 and ZM06 cells showed that neither ZM05 nor ZM06 accumulate Cd(II) or form
any cadmium-containing phosphate granules intracellularly (Figure S2).
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3.3. Strain ZM06 Utilized the Metabolites of DPrP

To detect the growth of strain ZM06 in the coculture system, qPCR was performed
with specific primers. The nondegrading bacterium ZM06 was present in high proportions
during the logarithmic growth period (Figure S3). To explore the survival mechanism
of strain ZM06 in the coculture system and the interaction mechanism between strains
ZM05 and ZM06 under Cd(II) stress, monoculture and coculture experiments supplied
with DPrP or its metabolites (DEP, DMP, MEP, MMP, PA, or PCA) were performed. The
detection of growth ability and substrates metabolic ability in mono- and coculture showed
that ZM06 could utilize the downstream intermediates of DPrP produced by ZM05 as
carbon source, including MEP, MMP, PA, and PCA (Figure 3). In particular, the degradation
efficiency of DEP and DMP in the coculture system was significantly higher than those in
the monoculture of strain ZM05.
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3.4. Transcriptional Response of Strain ZM05 to Cd(II) Stress in Monoculture

To analyze the impacts of Cd(II) on the gene expression of strain ZM05 during DPrP
degradation, transcriptional differences between strain ZM05 with and without Cd(II) stress
in monoculture systems were determined. The results of the comparative transcriptomic
analysis revealed 579 significantly upregulated genes and 439 significantly downregulated
genes in strain ZM05 under Cd(II) stress (Figure 4a). The DEGs of strain ZM05 without
Cd(II) stress vs. ZM05 with Cd(II) stress were significantly identified in “metabolism”,
“genetic information processing” and “environmental information processing” (Figure 4b).
Upregulated DEGs related to ‘metabolism of cofactors and vitamins’, ‘energy metabolism’,
‘amino acid metabolism’, ‘translation’ and ‘folding, sorting and degradation’ outnumbered
downregulated DEGs. A converse trend was obtained in ‘signal transduction’ and ‘mem-
brane transport’, in which downregulated DEGs outnumbered upregulated DEGs. As
shown in Figure S4a, genes involved in quorum sensing, ABC transporters, two-component
systems, pyruvate metabolism, fatty acid degradation, and benzoate degradation were
downregulated, while genes involved in the ribosome, oxidative phosphorylation, purine
metabolism, and the citrate cycle were upregulated when strain ZM05 was grown under
Cd(II) stress. These results indicated that Cd(II) stress inhibited the normal activity of
strain ZM05, which was followed by a stress response.

Microorganisms 2021, 9, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 4. Volcano plot (a) and KEGG enrichment analysis (b) of DEGs from strain ZM05 with or without Cd(II) stress. ** 
p < 0.01. 

3.5. Gene Expression of Strain ZM05 in Coculture and Monoculture 
In light of the DPrP degradation behavior (Figure S1), strain ZM06 synergistic pro-

moted DPrP degradation by strain ZM05 when cultured under Cd(II) stress but had no 
such effect when grown without Cd(II) stress. Hence, we assumed that under Cd(II) stress, 
strain ZM06 could affect the gene expression of strain ZM05 in coculture systems. The 
volcano map reveals that strain ZM06 influenced the gene expression of strain ZM05 in 
the coculture system under Cd(II) stress, which represented 343 upregulated genes and 
212 downregulated genes (Figure 5a). The significant DEGs of strain ZM05 in the mono-
culture system vs. ZM05 in the coculture system were mainly identified in “metabolism” 
and “environmental information processing” (Figure 5b). The upregulated DEGs related 
to ‘signal transduction’, ‘amino acid metabolism’ and ‘membrane transport’ outnumbered 
the downregulated DEGs significantly, while the upregulated DEGs related to ‘nucleotide 
metabolism’ and ‘metabolism of cofactors and vitamins’ were significantly fewer than the 
downregulated DEGs. As shown in Figure S4b, the depleted KEGG pathways from strain 
ZM05 included ribosome and valine, leucine, and isoleucine biosynthesis; other KEGG 
pathways, including quorum sensing, ABC transporters, two-component system, glycol-
ysis, pyruvate metabolism, and benzoate degradation, were upregulated. 

 
Figure 5. Volcano plot (a) and KEGG enrichment analysis (b) of DEGs from strain ZM05 in the monoculture system or 
coculture system under Cd(II) stress. ** p < 0.01. 

Figure 4. Volcano plot (a) and KEGG enrichment analysis (b) of DEGs from strain ZM05 with or without Cd(II) stress. ** p < 0.01.

3.5. Gene Expression of Strain ZM05 in Coculture and Monoculture

In light of the DPrP degradation behavior (Figure S1), strain ZM06 synergistic pro-
moted DPrP degradation by strain ZM05 when cultured under Cd(II) stress but had no
such effect when grown without Cd(II) stress. Hence, we assumed that under Cd(II) stress,
strain ZM06 could affect the gene expression of strain ZM05 in coculture systems. The
volcano map reveals that strain ZM06 influenced the gene expression of strain ZM05 in the
coculture system under Cd(II) stress, which represented 343 upregulated genes and 212
downregulated genes (Figure 5a). The significant DEGs of strain ZM05 in the monoculture
system vs. ZM05 in the coculture system were mainly identified in “metabolism” and
“environmental information processing” (Figure 5b). The upregulated DEGs related to
‘signal transduction’, ‘amino acid metabolism’ and ‘membrane transport’ outnumbered
the downregulated DEGs significantly, while the upregulated DEGs related to ‘nucleotide
metabolism’ and ‘metabolism of cofactors and vitamins’ were significantly fewer than
the downregulated DEGs. As shown in Figure S4b, the depleted KEGG pathways from
strain ZM05 included ribosome and valine, leucine, and isoleucine biosynthesis; other
KEGG pathways, including quorum sensing, ABC transporters, two-component system,
glycolysis, pyruvate metabolism, and benzoate degradation, were upregulated.
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4. Discussion

The coexistence of cadmium with DPrP in the environment is a particular challenge
for bioremediation because cadmium is toxic and cannot be degraded by biological pro-
cesses [37]. However, the DPrP-degrading bacterium ZM05 shows weak resistance to Cd(II)
stress, with a low rate of growth and DPrP degradation. To address environmental pressure,
the synergistic relationships among microbes can be advantageous [38,39]. According to
the analysis of DPrP degradation, cooperative interaction between strains ZM05 and ZM06
forms when straining ZM05 experiences Cd(II) stress.

4.1. Cd (II) Strongly Stressed Strain ZM05

Cadmium, one of the most toxic heavy metals, can disrupt cell proliferation and dif-
ferentiation, cell cycle progression, apoptosis, and other cellular activities by proteotoxicity
and DNA damage induced by oxidative stress [40,41]. Furthermore, microorganisms can
alter their structure, physiology, and metabolic ability in detrimental environments [42].
In this study, SEM results revealed that the morphology of strain ZM05 was significantly
changed, and bacteria formed insoluble cadmium salts under Cd(II) stress. Changes in
the morphology of microorganisms after heavy metal biosorption generate an adaptive
mechanism for surviving the stress forced by heavy metals [43]. As reported previously,
Cd(II) stress clearly caused membrane indentations and decreased the surface area/volume
ratio of Acidiphilium symbioticum H8, resulting in more elongated cells [44].

In response to Cd(II) stress, strain ZM05 upregulates genes involved in a stress re-
sponse such as cold shock protein (cspA), riboflavin synthesis genes (rib), and thioredoxin
reductase (trxB, TRR) (Table S3). Cold shock proteins play important roles in transcription,
mRNA stability, and translation [45], and riboflavin, as an important coenzyme of oxidore-
ductases, prevents oxidative stress [46]. Thioredoxin also serves as a stress-response factor
in some bacteria [47]. The upregulation of genes involved in the stress response suggests
that Cd(II) causes strong environmental stress on strain ZM05. Interestingly, the expression
of the ribosome was significantly upregulated, suggesting that the ribosome probably plays
an important role in the repair of cadmium-mediated cellular damage [48].

4.2. Strain ZM06 Accelerated the Degradation of DPrP

Many degrading bacteria are closely related to other microbes, and they constitute
composite microbial degradation systems with improved capability [49], especially in
an unfavorable environment, microbes prefer to form consortia to resist stress [15]. In
this study, both strains ZM05 and ZM06 adsorbed cadmium on the surface and did not
transport Cd(II) into cells. The addition of strain ZM06 greatly reduced the concentration
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of free cadmium in the culture system. The results illustrated that the nondegrading
bacterium ZM06 relieved the stress of Cd(II) on the degrading bacterium ZM05.

Simultaneously, microbes can cooperate with the bacteria that metabolize the down-
stream metabolites to form bacterial consortia to accelerate the degradation of organic
pollutants [50,51]. Under Cd(II) stress, the accelerated degradation of DPrP was presum-
able attributed to faster depletion of downstream intermediates by strain ZM06 in the
coculture system (Figure 3). Strain ZM05 downregulated the genes responsible for the
upstream metabolism of DPrP degradation but upregulated the genes responsible for the
downstream metabolism in the monoculture system under Cd(II) stress, which indicated
that stress impeded the committed step during degradation (Table S4). When cocultured
with strain ZM06, the variations in the transcriptional levels of the genes involved in
DPrP degradation occurred in the opposite directions of the variations in the monoculture.
The utilization of DPrP downstream metabolites by strain ZM06 not only relieved the
inhibition of metabolites but also accelerated the key degradation steps of strain ZM05.
Reducing the accumulation of intermediates and thus accelerating the consumption of
substrates that produce growth-inhibiting intermediates, is important to optimize the
desired biotransformation [52].

4.3. Strain ZM06 Contributed Amino Acids and Fatty Acids to Strain ZM05

In cooperative relationships of microbes, the exchange of substances occurs fre-
quently [53]. Under Cd(II) stress, monoculture of strain ZM05 upregulated valine, leucine,
and isoleucine biosynthesis, while coculture with ZM06 downregulated valine, leucine, and
isoleucine biosynthesis (Figure S4). At the same time, strain ZM05 upregulated the genes
involved in translation in monoculture but downregulated the genes involved in transla-
tion when cocultured with strain ZM06 (Figures 4b and 5b). Moreover, the concentration
of leucine in coculture was significantly higher than that in monoculture (Figure S6b). The
results indicated that strain ZM06 probably offers amino acids and proteins to strain ZM05
under Cd(II) stress.

Similarly, Cd(II) stress caused the downregulation of fatty acid degradation required
for energy production in strain ZM05 in the monoculture system. Strain ZM05 upregulated
fatty acid degradation in the coculture system (Figure S4). And the detected palmitic acid
was more abundant in the coculture system (Figure S5b). We suggest that strain ZM06
may contribute fatty acids to support the response of strain ZM05 to Cd(II) stress. Bacterial
communities can make efficient use of limited resources through metabolites exchange,
providing survival advantages under challenging conditions [54]. Strain ZM06 effectively
alleviated Cd(II) stress on ZM05, and much substance and signal communication occurred
between strains ZM05 and ZM06.

4.4. Mechanism of Cooperation between Strain ZM05 and Strain ZM06

According to the above results, we construct a model of the interaction between the
DPrP-degrading bacterium ZM05 and the nondegrading bacterium ZM06, as shown in
Figure 6. In a coculture system, DPrP was degraded by strain ZM05, and readily available
intermediates were utilized not only by strain ZM05 but also by strain ZM06 as a carbon
source. The stress of Cd(II) leads to significant changes in the expression of genes involved
in the crucial step of DPrP degradation, signal transduction, and energy metabolism. The
symbiotic bacterium ZM06, surviving on the metabolites of DPrP, supplies amino acids
and fatty acids to strain ZM05 to coping with stress. At the same time, the coculture
strengthened the signaling and substrate communication between the two bacteria, and
the coculture system is stable and efficiently degrades DPrP.
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5. Conclusions

In summary, this study proves that a consortium of the DPrP-degrading bacterium
ZM05 and the nondegrading bacterium ZM06 has an improved performance in degrading
DPrP under Cd(II) stress. Strain ZM06 could not degrade DPrP, but it offers fatty acids and
amino acids to strain ZM05 in response in the coculture system, which might relieve the
pressure on strain ZM05. Our results clarify the interactions within the synergistic com-
munity during DPrP degradation under Cd(II) stress and hint at environmental pressure
as a major driver of species co-occurrence. Moreover, this study provides new insights
and theoretical basis for the application of microbial consortium in the remediation of
pollutants in an unfavorable environment.
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